用户名: 密码: 验证码:
电化学生物传感器的研制及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对电化学生物传感器的类型、制备方法以及在分析化学中的应用作了较为详细的评述。在此基础上,采用多种电极材料,对生物材料的固定化方法进行了一系列探索,构筑了多种性能良好的生物传感器,并对其应用进行了研究。各项研究工作简述如下:
     1.葡萄糖氧化酶生物传感器的制备与应用研究
     1.1聚中性红修饰玻碳电极研制葡萄糖生物传感
     以中性红为电子传递介质,电聚合于Nafion修饰玻碳电极表面,以戊二醛作交联剂固定葡萄糖氧化酶,最后覆盖一层Nafion膜防止酶流失,构建一种新型葡萄糖生物传感器。详细探讨了传感器的电化学性能及其对葡萄糖的最佳响应条件,结果表明,30℃时,传感器在pH 7.0的PBS中线性响应范围为1.0×10~(-5)~5.0×10~(-3) mol·L-1。该传感器制作简单、性能优良,有潜在应用前景。
     1.2基于静电吸附碳纳米管和壳聚糖固定葡萄糖氧化酶生物传感器的研究本文以Nafion-聚中性红修饰电极为基底,自组装多壁碳纳米管和壳聚糖之后,再固定上葡萄糖氧化酶,制成葡萄糖氧化酶生物传感器。实验表明,该传感器在30℃的PBS (pH 7.0)中对葡萄糖的线性响应范围为5.0×10~(-6)~2.0×10~(-3) mol/L,线性相关系数为0.9948,检出限为1.0×10~(-6) mol/L,达到95 %稳态电流所用的时间<10 s,于4℃环境保存30 d后峰电流值约为原来的84.3 %,且具有较低的工作电位,能有效地消除抗坏血酸等的干扰。
     2.辣根过氧化物酶生物传感器的制备与应用研究
     2.1明胶固定辣根过氧化物酶制备H2O2传感器
     用明胶将辣根过氧化物酶(HRP)固定于多壁碳纳米管(MWNT)和茜素红(AR)修饰的玻碳(GC)电极上,制成HRP生物传感器(HRP/AR/MWNT/GC),然后在3 %戊二醛(GA)中进行交联改性,以克服明胶膜易溶胀的缺点并提高膜的稳定性。同时详细探讨了该传感器对H2O2的响应性能,并优化了实验条件。结果表明,该传感器对H2O2的线性响应范围为5.0×10~(-6)~1.0×10~(-3) mol/L,线性相关系数为0.9932,检出限为1.0×10-7 mol/L,且放于4℃环境30 d后,峰电流值约为原来的72.1 %。该传感器响应快速,灵敏度高,且具有良好的重现性、稳定性及较长的使用寿命,具有潜在的应用价值。
     2.2茜素红修饰玻碳电极研制辣根过氧化物酶生物传感
     以多壁碳纳米管(MWNT)修饰玻碳电极为基底,自组装一层带负电荷的电子媒介体茜素红(AR),再通过分子间静电作用力吸附固定辣根过氧化物酶(HRP),制成辣根过氧化物酶生物传感器(HRP/AR/MWNT/GC)。探讨了媒介体组装时间、pH、温度、工作电位对电极响应的影响。结果表明,该传感器对H2O2具有良好的催化作用,还原峰电流与H2O2的浓度在1.0×10~(-6)~1.0×10~(-3) mol/L范围内呈现良好的线性关系:ip=139.4811+1.0537c,R = 0.9953,检出限为2.0×10-8 mol/L。该传感器响应快速,灵敏度高,且具有良好的重现性、稳定性及较长的使用寿命,具有潜在的应用价值。
     3.细胞色素c在纳米杂化膜修饰玻碳电极上的直接电化学
     以多壁碳纳米管(MWNT)修饰玻碳(GC)电极为基底,自组装金纳米粒子(AuNPs)及L-半胱氨酸(L-Cys)研制杂化膜修饰电极(L-Cys/AuNPs/MWNT/GC)。实验表明,该膜修饰电极在PBS(pH 7.0)中对细胞色素c(Cyt c)的直接电子转移反应具有良好的电催化行为,于0.121 V(vs. Ag/AgCl)附近有一对可逆的氧化还原峰,峰电流与浓度在4.037×10~(-5)~3.230×10~(-4) mol/L范围内呈现良好的线性关系,线性相关系数R=0.9957,检出限是2.423×10~(-5) mol/L。该传感器响应快速,性能优良。
This article described in detail the types, preparation methods and applications of electrochemical biosensors in the field of analytical chemistry. On the basis of different electrode material and lots of researches on immobilization of bio-material, some novel biosensors was fabricated. Electrochemical behaviors and their applications of the resulting modified electrodes were studied. The main research work was as follows: 1. Preparation of Glucose Oxidase Biosensors and Applications
     1.1 Glucose Biosensor Based on Poly(neutral red) Modified Glassy Carbon Electrode
     A novel glucoseoxidase biosensor was fabricated through crosslinking method. Neutral red, which was used as the electron mediator, electropolymerized on the Nafion modified glassy carbon electrode, forming NR/Nafion/GC electrode. Then glucose oxidase was immobilized on NR/Nafion/GC electrode by a cross-linker Glutaraldehyde. Lastly, additional Nafion membrane prevent the glucose oxidase dissipating from Glucose Biosensor. The biosensor kept a linear relationship with the concentration of glucose in the range of 1.0×10~(-5)~5.0×10~(-3) mol·L-1 in pH 7.0 PBS at 30℃.
     1.2 Glucose Oxidase Biosensor Based on Carbon Nanotubes And Chitosan Through Electrostatic Adsorption
     A novel glucose biosensor was fabricated by means of self-assembled technique to immobilize Glucose Oxidase (GOD). Neutral Red was electorpolymerized on glassy carbon electrode (GCE) modified with Nafion to form a positively charged surface, then Multi-walled Carbon Nanotubes (MWNT) and Chitosan (Cs) was linked by electrostatic adsorption step by step, finally GOD was electrostaticly absorbed in Cs film to prepare a glucose biosensor. The experiments showed a linear range to concentration of glucose was 5.0×10~(-6)~2.0×10~(-3) mol/L with a detection limit of 1.0×10~(-6) mol/L in PBS(pH 7.0) at 30℃, and response time was less than 10 s. The biosensor retained 84.3% of its original peak current after thirty days. Moreover, the biosensor exhibited good reproducibility, high selectivity and anti-interference ability to ascorbic acid, etc.
     2. Preparation of Horseradish Peroxidase Biosensors and Applications
     2.1 Hydrogen Peroxide Biosensor Based on Gelatin Immobilizing Horseradish Peroxidase
     A novel Hydrogen Peroxide biosensor was obtained by successfully immobilizing horseradish peroxidase (HRP) on a glassy carbon (GC) electrode, which was modified with multi-walled carbon nanotubes (MWNT) and alizarin red(AR). Then the biosensor was immerged in 3% glutaraldehyde (GA) in order to overcome the swelling and improve the stability of the gelatin membrane. The experimental condition was optimized, and the electrochemistry behavior of the HRP/AR/MWNT/GC biosensor in PBS (pH 7.0) and H2O2 were discussed. The biosensor displayed rapid response and expanded linear response range from 5.0×10~(-6) to 1.0×10~(-3) mol/L (R=0.9932) with detection limit of 1.0×10-7 mol/L in PBS (pH 7.0), as well as acceptable preparation reproducibility and excellent stability.
     2.2 Horseradish Peroxidase Biosensor Based on Alizarin Red Modified Glassy Carbon Electrode
     A novel biosensor was fabricated by multi-walled carbon nanotubes (MWNT) modified glassy carbon (GC) electrode self-assembling Alizarin red (AR) coated with negative charge and staticly adsorbing with horseradish peroxidase (HRP) to fabricate amperometric biosensor (HRP/AR/MWNT/GC). The experimental condition was optimized, and the sensor showed a good catalytic behavior to H2O2. The linear response of the sensor to H2O2 is in the range of 1.0×10~(-6)~1.0×10~(-3) mol/L with a correlation coefficient of 0.9953. The detection limit of the biosensor was 2.0×10-8 mol/L. Experiments showed that the sensor response rapidly with high sensitivity and good reproducibility, stability and longer service life, which possessed potential application value.
     3. Direct Electrochemistry of Cytochrome c at Nanohybrid Film Modified Electrode
     Being novel favorite promoters, L-cysteine (L-Cys), gold nanoparticles (AuNPs) and multi-walled carbon nanotubes (MWNT), because of particular multi-absorbing sites, was immobilized on glassy carbon (GC) electrode surface by layer-by-layer self-assembly technique to form a robust and effective nanohybrid film. The film modified electrode (L-Cys/AuNPs/MWNT/GC) can promote the direct electron change reaction of cytochrome c (Cyt c). Experiments showed a pair of well-defined and nearly reversible peaks of Cyt c at about 0.121 V (vs.Ag/AgCl) was obtained. The sensor responded rapidly to Cyt c in the linear range from 4.037×10~(-5) to 3.230×10~(-4) mol/L with detection limit of 2.423×10~(-5) mol/L in PBS(pH 7.0) .
引文
[1]李鹏,现代分子生物学技术在医学检验中的应用[J].临床和实验医学杂志, 2007, 3: 161.
    [2]何宝山,周爱玉,李华清等.现场检测用谷丙转氨酶光学生物传感器研究[J] .微纳电子技术,2007, 7:345-347.
    [3]代晶,吕太平,邓力等.一氧化氮光学生物传感器用于药物活性的考察[J].四川大学学报(医学版), 2007,1:150-153.
    [4]张耀东,杨伯伦.胆碱酯酶生物传感器检测农药残留物研究进展[J].卫生研究, 2006, 2: 250-253.
    [5]郑琦,卢卫红,辛平等.生物传感器在环境监测和发酵工业中的应用[J].仪器仪表学报, 2006, 12: 1746-1748.
    [6]闫慧慧,府伟灵,张波.蛋白质-DNA相互作用压电阵列传感器的构建及应用[J] .山东医学, 2007, 27: 60-62.
    [7]陈俭霖.生物传感器在环境监测中的应用及发展前景[J].污染防治技术,2006, 3: 59-62.
    [8]董绍俊,车广礼,谢远武,化学修饰电极(修订版)[M],北京:科学出版社2003, 501-538.
    [9]池其金,董绍俊.酶直接电化学与第三代生物传感器[J].分析化学, 1994, 22(10): 1065-1072.
    [10]陈旭.中国科学院长春应用化学研究所博士学位论文, 2002.
    [11]卢基林,庞代文.电化学生物简介[J].大学化学, 1998, 13(2) : 30-35.
    [12]李文友,鲍素敏,韦朝领.淡水湖泊富营养化的微生物全细胞传感器的构建和应用[J].安徽大学学报(自然科学版), 2006, 5: 83-86.
    [13]董绍俊,车广礼,谢远武.化学修饰电极(修订版)[M],北京:科学出版社2003,501-538.
    [14] Wu J, Suls J, Samen W. Amperometric Glucose Sensor With Enzyme Covalently Immobilized by Sol-Gel Technology[J], Anal. Sci,1999,15(10):1029-1032.
    [15]宫志龙,章竹君,张海.基于固定化酶的流动荧光法测定血清中的葡萄糖[J],分析化学, 1996, 4(9):998-1001.
    [16]应太林,孙康,刘海英等.用Nation膜固定的N-甲基吩嗪为介体的过氧化氢生物传感器[J].上海大学学报(自然科学版), 1997, 3(2):88-93.
    [17] Ivanov A. N, Evtagyn G. A. Comparative investigation of electrochemical cholinesterase biosensors for pesticide determination[J], Anal. Chim. Acta, 2000, 404(1):55-65.
    [18] Lei C. H, Dang J. Q.. Hydrogen Peroxide Sensor Based on Coimmobilized Methylene Green and Horseradish Peroxidasc in the salne Montmorillonite Modified Bovine Serum Albumin-Glutaraldehyde Matrix on a Glassy Carbon Electrode Surface[J]. Anal.Chem.,1996, 68, 3344-3349.
    [19]陈丹丹,刘宝红,孔继烈.三氧化二铝溶胶-凝胶固定过氧化氢生物传感器[J].分析化学, 2003, 30, 958-961.
    [20]杨绍明.辣根过氧化物酶多层膜酶电极的构筑及其应用.浙江大学博士学位论文, 2006, 6, 45-62.
    [21] Zhuo Y, Yuan R., Chai Y. Q., et a1. Amperometric enzyme iminunosensors based on layer-by-layer assembly of gold nanoparticles and thionine on Nation modified electrode surface for alpha-1-fetoprotein determinations[J]. Sensor Actuat B, 2006, 114, 631-639.
    [22] Chert S. H, Yuan R., Chai Y.Q., et a1. Amperomctric Hydrogen Peroxide Biosensor Based on the Immobilization of Horseradish Peroxidase(HRP)on the Layer-by-Layer Assembly Films of Gold Colloidal Nanoparticles and Toluidine Blue[J]. Electroanalysis, 2006, 18, 471-477.
    [23]阳明辉,李春香,杨云慧,沈国励,俞汝勤.基于静电吸附多层膜固定酶的过氧化氢生物传感器的研究[J].化学学报, 2004, 62(5): 502-507.
    [24] Dagan M. L., Tibbon M. S., Katz E., et a1. Photoswitchable Electrical Communication of Glucose Oxidase and Glutathione Reduetase with Electrode Surfaces through Photoisomerizable Redox Mediators[J]. Angew. Chem.,Int. Ed. Engl., 1995, 34, 1604-1606.
    [25] Willner L, Lapidot N., Riklin A., et a1. Eletron-Trausfer Communication in Glutathione Reductaso Assemblies : Electrocatalytic,photocatalalytic,and Catalytic Systems for the Reduction of Oxidized Glutathione[J]. Am. Chem. Soc. 1994, 116:1428-1441.
    [26] Ozge M., Christopher J. B. Stable sensor layer-assembled onto surfaces usingazobenzene-containing polydectrolytes[J]. Analyst, 2001, 126, 1861-1865.
    [27] Tsai Y.C., Li S.C.,Liao S.W. Electrodeposition of polypyrrolv-multiwalled carbon nanotubo-glucose oxidase nanobiocomposite film for the detection of glucose[J]. Biosens. Bioelectrom, 2006, 22, 495-500.
    [28] Korri-Youssoufi H., Makrouf B.,Yassar A. Synthesis of 3-derivatized pyrroles precursors polymers for functionalization with biomolecules toward biosensor devices[J]. Mater.Sci.Eng.C, 2001, 15, 265-268.
    [29] Zou Y. J., Sun L. X., Xu E. Biosensor based on polyaniline-Prussian Blue/multi-walled carbon nanotubes hybrid composites[J]. Biosens. Bioelectron. 2007, 22, 2669-2674.
    [30] Mc Mahon C. P., Rocchitta G, Kirwan S. M., et a1. Oxygen tolerance of an implantable polymer/enzyme composite glutamate biosensor displaying polycation-enhanced substrate sensitivity[J]. Biosens. Bioelectrom, 2007, 22. 1466-1473.
    [31] Serge Cognier, Bruno Galland, Chantal Gondran et a1. Electrogeneration of Biotinylated Functionalized Polypyrroles for the Simple Immobilization of Enzymes[J]. Electroanalysis. 1998, 10(12):808-813.
    [32] Korri Youssoufi H.,Crarnier E, Srivastava P. et a1. Toward Bioelectronics: Specific DNA Recognition Based on an Oligonucleotide-Funct/onalized Polypyrrole[J]. Am. Chem. Soc., 1997,119(31):7388-7389.
    [33] Gooding J J, Praig V, Hall E A H, Platinum Catalysed Enzyme Electrodes immobilised on Gold using self-assembled layers[J]. Anal. Chem., 1998, 70: 2396-2402.
    [34] Kurusu F, Ohna H, Redox reaction of PEO modified cytochrome c adsorbed on the electrode in ion conductive PEO matrix analyzed with non-contact optical waveguide spectroscopy[J]. Electrochimica Acta, 2000, 45:2911-2915.
    [35] Thierry B, Winnik FM, Tabrizian M, et al. Bioactive coatings of endovascular stents based on polyelectrolyte multilayers[J]. Biomacromolecules, 2003, 4:1564-1571.
    [36] Karyakin A A, Presnova G v, Rubtsova M Y., et a1.Oriented immobilization of antibodies ontothe gold surfaces via their thiol groups[J]. Anal.Chem., 2000,72(16): 3805-3811.
    [37] Karl J. Q, Pan X. H, Chen C. Polyaniline-uricase biosensor prepared with template process[J]. Biosens. Bioelectron. 2004, 19:1635-1640.
    [38]朱如瑾,殷弘浩,刘永盛等.聚乙烯-葡萄糖氧化酶膜的制备和性能研究[J].高分子学报, 1996,17(1): 97-101.
    [39] Fang Y. S, Si S. H, Zhu D. R, Piezoelectric crystal for sensing bactefia by immobilizing antibodies on divinylsulphone activated poly-m-aminophenol film[J]. Talanta, 2000, 51(1):151-158.
    [40]孔德领,俞耀庭,贾永会等.纤维素固定化血红蛋白研究[J].高分子学报, 1999,17(2):22l-226.
    [41]王永先,李贵荣,吕昌银.甘油三酯酶传感器的研制及应用[J].生物化学与生物物理进展, 1999, 2(2): 144-146.
    [42] Nilanjana D, Prakash P, Avrind M. K, Enzyme entrapped inside the reversed micelle in the fabrication of a new urea sensor[J]. Biotechnol. Bioen, 1997, 54(4): 329-332.
    [43]王怀生,潘芊秀,王桂香.壳聚糖/聚乙烯吡咯烷酮固定辣根过氧化物酶的过氧化氢生物传感器[J],分析化学, 2005, 11(33): 1623-1626.
    [44] Ansgar E., Mike K., Gabriele C. C. Flexible amperometric transducers for biosensors based on a screen printed three electrode system[J]. Electroanal. Chem, 2000, 481(1): 82-94.
    [45] Wang J., Pamidi P.V., Park D. Screen-printable sol-gel enzyme-containing carbon inks[J]. Anal. Chem. 1996, 68, 2705-2708.
    [46] Wang J., Pamidi P.V. Sol-gel-derived gold composite electrode[J]. Anal. Chem. 1997, 69, 4490-4494.
    [47]钱军民,李旭祥,锁爱莉.氨基化硅胶固定化葡萄糖氧化酶的研究[J],生物化学与生物物理进展, 2002, 29(3): 394-397.
    [48] Sampath S., Lev O. Inert metal-modified composite ceramic-carbon amperometric biosensors: renewable, controlled reactive layer[J]. Anal. Chem. 1996, 68, 2015-2021.
    [49 ]彭承林.生物医学传感器原理及应用[M] .北京:高等教育出版社,2000.
    [50] L.Charpentier, N.E.L.Murr. Amperometric determination of cholesterol in serum with use a renewable surface peroxidase electrode[J]. Anal.Chim.Acta.,1995,318:89-93.
    [51]彭图治,程琼. TPD修饰电化学生物传感器测定DNA片段序列[J].化学学报, 2001, 59(7): 1125.
    [52] W Joseph.Preparation of single-celled platform electrode and its evaluation of cell response[J]. Eletroanalysis, 2001, 13(12): 983-988.
    [53] Pastorino L, Caneva S F, GiacominiM, et al. Developmentof a p iezoelectric immunosensor for the measurement of paclitaxel[J]. Journal of Immunological Methods, 2006, 313 (1): 191-198.
    [54] Antje J B, Nieole A S, Naomi S S, et a1. Biosensor for dengue virus detection:sensitive,rapid,and serotype specific[J]. Anal. Chem, 2002, 74(6): 1442-1448.
    [55]陈宁,焦国嵩,牟宇翔等. BOD微生物传感器和BOD智能生物检测仪的研究[J].中国环境监测, 2002, 18(2): 48-50
    [56] Suriyawattanakul L, Surareungchai W, Sritongkam P, et a1. The use of coimmobilization of Trichospomn cutaneum and Bacillus licheniformis for a BOD Sensor[J]. Applied Micmbiology and Biotechnology, 2002, 59(1): 40-44.
    [57] Freire R S, Thongngamdee S, Duran N, et a1. Mixed enzyme (laccase/tyrosinase)-based remote electrochemical biosensor for monitoring phenolic compounds[J]. Analyst, 2002, 127(2): 258-26l.
    [58] Chen X, Cheng G J, Dong S J. Amperomtric tyrosinase biosensor based on a sol-gel-derived titanium oxide-copolymer composite matrix for detection of phenolic compounds[J]. Analyst, 2001, 126(10): 1728-1732.
    [59]刘小兵,蒋柏泉,刘海.生物传感器应用于环境监测的新进展[J].环境科学与技术, 2004, 27(4):111-113.
    [60]李花子,张悦,施汉昌等. BOD生物传感器在海洋监测中的应用[J].海洋环境科学, 2002, 21, (3):14-17.
    [61] Damgaard L R, Larsen L H, Revsbech N P. Microscale biosensors for environmental monitoring[J]. TrAC, 1995, 14 (7): 300-303.
    [62] Marko Varga G, Emneus J, Gorton L, et al. Development of enzyme based amperometric sensors for the determination of phenolic compounds[J]. TrAC, 1995, 14(7): 319-328.
    [63]曹焕生,徐明芳.生物传感器在渔业监测中的研究进展[J].海洋环境科学, 2002, 21(1): 75-80.
    [64]刘小兵,蒋柏泉,刘海.生物传感器应用于环境监测的新进展[J].环境科学与技术, 2004 ,27(4) :111-113.
    [65] Normura Y, Ikebukuro K, Yokoyama K, et al . A novel microbial sensor for anionic surfactant determination[J]. Anal. Lett., 1994, 27(15): 3095
    [66]舒友琴,罗国安,李清文等.生物传感器在食品分析中的发展和应用[J].食品科学, 1999,11: 14-17.
    [67] Stanislav Miertus, Jaroslav Katrlik, Andren Pizzariello, et al. Amperomertric biosensor base on solid binding matrices applied in food quality monitoring[J]. Biosensor and Bioelectronics, 2003, 18: 911-923.
    [68]史贤明.食品安全全程控制体系的基本要素及主要科学技术问题[M].第二次中美食品安全全程控制研讨会资料汇编, 2004, 36-39.
    [69] Hamano T, Mitsuhashi Y, Kojima N ,et al. Enzyme electrodes for the sugar substitute aspartame[J]. Analyst, 1994, 120(1):135-138.
    [70]董文宾,徐颖,姜海英等.生物传感器及其在食品分析中的应用[J].陕西科技大学学报, 2004 ,22(1) :57 - 62.
    [71]金利通.味觉电化学传感器的研究[J].分析化学, 1994, 21(1): 64-66.
    [72] Zkuo S, Araki. Enzyme Microbiol.[J] Technol, 1980, 2: 177-184.
    [73] Karube I., Matsaoka H., Suzuki S., et al.[J]. Agric Food Chem, 1984, 32:314-319.
    [74] Suzuki J. M. [J]. Chem Sens. ,1991,7: 57-71.
    [1]覃柳,刘仲明,邹小勇.电化学生物传感器研究进展[J].中国医学物理学杂志, 2007,24(01): 60-63.
    [2]曾辉,任力锋,刘昭前.医学领域中的新型生物传感器[J].传感器技术, 2002,21(10): 59-64.
    [3]李彦文.生物传感器及其在环境监测方面的应用[J].环境保护科学, 2004,30(01): 35-38.
    [4]毛斌,韩根亮,李工农等.生物传感器在食品农药和抗生素残留检测中的应用[J].甘肃科学学报, 2007,19(2): 72-76.
    [5]刘洁生,彭志英.生物传感器在食品工业中的应用[J].食品与发酵工业, 1997,23(04): 61-66.
    [6]冶保献,刘瑛,曾东华等.聚甲苯胺蓝修饰碳纤维微柱电极的制备及其电化学性质[J].郑州大学学报(自然科学版), 2000,32(01) : 73-76.
    [7]冶保献,张娟,李风菊等.聚亚甲蓝修饰碳纤维微电极的性质及对多巴胺的电催化测定[J].天津师大学报(自然科学版), 2000,20(04): 10-14.
    [8]袁倬斌,张玉忠,赵红.聚天青Ⅰ玻碳修饰电极对血红蛋白催化还原[J].分析化学, 2001,29(11): 1332-1335.
    [9]罗济文,李家洲,李家贵等.聚灿烂甲酚蓝修饰玻碳电极的制备及电化学性质[J].化学研究, 2003,14(01): 18-22.
    [10]刘颜,袁若,柴雅琴等.聚中性红和纳米金修饰玻碳电极的葡萄糖生物传感器[J].西南师范大学学报(自然科学版), 2005,30(03) : 478-482.
    [1] Constantine C A, Mello S V, Dupont A, Cao X H, Santos D J, Oliveira O N J, Strixino F T, Pereira E C, Cheng T C, Defrank J J, Leblance R M. [J]. Am. Chem. Soc. , 2003, 125: 1805-1809.
    [2] Forzani E S, Solis V M, Calvo E. [J]. Anal. Chem. , 2000, 72(21): 5300-5307.
    [3]王存嫦,王桦,吴朝阳,曾光明,沈国励,俞汝勤.一种新的压电免疫传感器中生物分子固定化方法的研究[J].化学学报, 2002, 60(7): 1284-1290.
    [4] Nigel F, Eithne D, Timothy M C. [J] Electroanal. Chem. , 2005, 574: 359-366.
    [5] Hodak J, Etchenique R, Calvo E J, Singhal K, Bartlett P N. Layer-by-layer self-assembly of glucose oxidase with a poly(allylamine) ferrocene redox mediator[J]. Langmuir, 1997, 13(10): 2708-2716.
    [6] Wang C C, Wang H, Wu Z Y, Shen G L, Yu R Q. A piezoelectric immunoassay based on self-assembled monolayers of cystamine and polystyrene sulfonate for determination of Schistosoma japonicum antibodies[J]. Anal. Bioanal. Chem. , 2002, 373(8): 803-809.
    [7] Tomonori H, Hidekazu S, Sachie K, Chikako T, Chen Q, Anzai J.[J] Anal. Chem. , 2001, 73(21): 5310-5315.
    [8]尹峰,赵紫霞,吴宝艳,王新胜,王艳艳,陈强.基于多壁碳纳米管和聚丙烯胺层层自组装的葡萄糖生物传感器[J].分析化学, 2007, 35(7): 1021-1024.
    [9] Kang X H, Mai Z B, Zou X Y, Cai P X, Mo J Y. Talanta, 2008, 74(4): 879-886.
    [10] Miao Y, Chia L S, Goh N K, Tan S N. Amperometric Glucose Biosensor based on Immobilization of Peroxidase in Chitosan Matrix Crosslinked with Glutaradehyde[J]. Electroanalysis, 2001, 3(4): 347-349.
    [11]王淑敏,李照山,屈建莹.多壁碳纳米管修饰玻碳电极伏安法测定氯霉素[J].化学研究, 2007, 18(3): 83-86.
    [12] Zheng H, Xue H G, Zhang Y F, et al. A glucose biosensor based on microporous polyacrylonitrile synthesized by single rare-earth catalyst[J]. Biosensors and Bioelectronics,2002, 17(6-7): 541-545.
    [13] Tang H, Chen J H, Yao S Z, et al. Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode[J]. Analytical Biochemistry, 2004, 331(1): 89-97.
    [1]董绍俊,车广礼,谢远武,化学修饰电极[M],北京:科学出版社, 1995, pp.490~492.
    [2] Iijima, S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354, 56-58.
    [3] Ajayan, P.M. [J].Chem. Rev. 1999, 99, 1787-1799.
    [4] Kong, J.; Franklin, N.R.; Zhou, C. W. Nanotube molecular wires as chemical sensors[J] . Science, 2000, 287, 622-625.
    [5] Rochette, J. F.; Sacher, E.; Meunier, M.; Luong, J. H. T. A mediatorless biosensor for pu-trescene using multiwalled carbon nanotubes[J]. Anal. Biochem. 2005, 336, 305-311.
    [6] Lim, S. H.; Wei, J.; Lin, J. Y.; Li, Q. T.; You, J. K. A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode[J]. Biosens. Bioelectron. 2005, 20, 2341-2346.
    [7] Bigi, A.; Panzavolta, S.; Rubini, K. Relationship between triple helix content and mechanical properties of gelatin films[J]. Biomaterials 2004, 25, 5675-5680.
    [8]吉静,黄明智.开发智能性明胶[J].明胶科学与技术, 2001, 21(1), 4-12.
    [9] Gorton, L.; Johansson, G.; Torstensson, A. Torstensson, A. A kinetic study of the reaction between dihydronicotinamide adenine dinucleotide (NADH) and an electrode modified by adsorption of 1,2-benzophenoxazine-7-one[J]. Electroanal. Chem. 1985, 196, 81-92.
    [10] Gorton, L.; Torstensson, A.; Jaegfeldt, H.; Johansson, G. Electrocatalytic oxidation of reduced nicotinamide coenzymes by graphite electrodes modified with an adsorbed phenoxazinium salt, meldola blue[J]. Electroanal. Chem. 1984, 161, 103-120.
    [11]杜攀,石彦茂,吴萍,周耀明,蔡称心,碳纳米管的快速功能化及电催化[J].化学学报, 2007, 65, 1.
    [12] Jia, N. Q.; Zhou, Q.; Liu, L.; Yan, M. M.; Jiang, Z. Y. Journal of Electroanalytical Chemistry 2005, 580, 213-221.
    [13] Yan, R.; Zhao, F. Q.; Li, J. W.; Xiao, F.; Fan, S. S.; Zeng, B. Z. Electrochimica Acta, 2007, 52, 7425.
    [14]王淑敏,李照山,屈建莹.多壁碳纳米管修饰玻碳电极伏安法测定氯霉素[J].化学研究, 2007, 18, 83-86.
    [15]李南强,赵燕南,高小霞.茜素配位剂极谱行为的研究[J].化学学报, 1984, 42, 1057-1061.
    [16]陈丹丹,刘宝红,孔继烈.三氧化二铝溶胶-凝胶的固定过氧化氢生物传感器[J].分析化学, 2002, 30, 958.
    [17] Jia, J. B.; Wang, B. Q.; Wu, A. G.; Cheng, G. J.; Dong, S. J. A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel network [J]. Anal. Chem. 2002, 74, 2217.
    [1]董绍俊,车广礼,谢远武,化学修饰电极[M],北京:科学出版社,1995.
    [2] J. Kong, N. R. Franklin, C. W. Zhou. Nanotube molecular wires as chemical sensors[J]. Science 2000, 287, 622-625.
    [3] S. Iijima. Helical Microtubules of Graphitic Carbon[J]. Nature 1991, 354, 56-58.
    [4] P.M. Ajayan. Nanotubes from Carbon[J]. Chem. Rev. 1999, 99, 1787-1799.
    [5] J. Kong, N.R. Franklin, C. W. Zhou. Nanotube molecular wires as chemical sensors[J]. Science 2000, 287, 622-625.
    [6] J. F. Rochette, E. Sacher, M. Meunier, J. H. T. Luong. A mediatorless biosensor for putrescine using multiwalled carbon nanotubes[J]. Anal. Biochem. 2005, 336, 305-311.
    [7] S. H. Lim, J. Wei, J. Y. Lin, Q. T. Li, J. K. You[J]. Biosens. Bioelectron. 2005, 20, 2341.
    [8] J. P. Li , X. P. Wei, T. Z. Peng. [J] Anal. Sci. , 2005 , 21:1217~1221.
    [9]时巧翠,彭图治,陈金媛.碳纳米管负载铂修饰电极结合溶胶-凝胶技术制备胆固醇传感器[J].分析化学, 2005, 33 (3):329~332.
    [10] J. Kulys, R. Vidziunaite. J. Kulys, R. Vidziunaite. Biosensors and Bioelectronics[J]. Biosensors and Bioelectronics, 2003, 18: 319~323.
    [11] J. S. Ye, Y. Wen , W. D. Zhang, et al.[J] Electrochem. Commun., 2004, 6(1) : 66~701
    [12] L.Gorton, G.Johansson, A. Torstensson. A kinetic study of the reaction between dihydronicotinamide adenine dinucleotide (NADH) and an electrode modified by adsorption of 1,2-benzophenoxazine-7-one[J]. J Electroanal. Chem. 1985, 196, 81.
    [13] L.Gorton, A. Torstensson, H. Jaegfeld, et al. Electrocatalytic oxidation of reduced nicotinamide coenzymes by graphite electrodes modified with an adsorbed phenoxazinium salt, meldola blue[J]. J Electroanal. Chem. 1984, 161, 103-120.
    [14]王淑敏,李照山,屈建莹.多壁碳纳米管修饰玻碳电极伏安法测定氯霉素[J].化学研究, 2007, 18, 83.
    [15]李南强,赵燕南,高小霞.[J]化学学报, 1984, 42, 1057-1062.
    [16]陈丹丹,刘宝红,孔继烈.三氧化二铝溶胶-凝胶的固定过氧化氢生物传感器[J].分析化学, 2002, 30, 958-961.
    [17] Jia, J. B.; Wang, B. Q.; Wu, A. G.; Cheng, G. J.; Dong, S. J.[J] Anal. Chem. 2002, 74, 2217-2223.
    [1] Wang J X, Li M X, Shi Z. Direct Electrochemistry of Cytochrome c at a Glassy Carbon Electrode Modified with Single-Wall Carbon Nanotubes [J]. Anal. Chem., 2002, 74(9) : 1993-1997.
    [2] Ikeda O , Ohtani M, Yamaguchi T. Direct electrochemistry of cytochrome c at a glassy carbon electrode covered with a microporous alumina membrane [J]. Electrochim. Acta, 1998, 43 : 833-839.
    [3] Cai C. X. The direct electrochemistry of cytochrome c at a gold microband electrode modified with 4,6-dimethyl-2-mercaptopyrimidine [J]. Electroanal. Chem., 1995, 393: 119-122.
    [4] Zhang M. N., Gong G. P., Zhang H. W. Mao L. Q. Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid [J]. Biosensors and Bioelectronics, 2005, 20: 1270–1276.
    [5] Cheng F L, Du S, Jin B K. Electrochemical Studies of Cytochrome c on Electrodes Modified by Single Wall Carbon Nanotubes [J]. Chin. J. Chem., 2003, 21: 436-441.
    [6] Lojou , Bianco P. Membrane electrodes can modulate the electrochemical response of redox proteins—direct electrochemistry of cytochrome c [J]. Electroanal.Chem. , 2000, 485: 71-80.
    [7] Lojou , Giudici-OrticoniM T, Bianco P. Direct electrochemistry and enzymatic activity of bacterial polyhemic cytochrome c3 incorporated in clay films [J]. Electroanal. Chem., 2005, 579: 199-213.
    [8] Yin Y. J., Lu Y. F., Wu P., Du P., Shi Y. M., Cai C. X. Immobilization of Cytochrome c on the Surface of Single-wall Carbon Nanotube and Its Direct Electron Transfer and Electrocatalysis [J]. Electrochemistry, 2006, 3(12): 63-68.
    [9] Daniel, M. C., Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology [J]. Chem. Rev., 2004, 104(1), 293-346.
    [10] Xian, Y. Z.; Hu, Y.; Xian, Y.; Wang, H. T.; Jin, L. T. Glucose biosensor based on Au nanoparticles–conductive polyaniline nanocomposite [J]. Biosens. Bioelectron., 2006, 21,1996.
    [11] Di, J. W.; Shen, C. P.; Peng, S. H.; Tu, Y. F.; Li, S. J. A one-step method to construct a third-generation biosensor based on horseradish peroxidase and gold nanoparticles embedded in silica sol–gel network on gold modified electrode [J]. Anal.Chim. Acta, 2005, 553, 196.
    [12] Yang, W. W.; Li, Y. C.; Bai, Y.; Sun, C. Q. Hydrogen peroxide biosensor based on myoglobin/colloidal gold nanoparticles immobilized on glassy carbon electrode by a Nafionfilm [J]. Sens. Actuators B, 2006, 115, 42.
    [13] Ulman A. An introduction to Ultrathin organic films. from langmuir blodgett to self-assembly [M], SanDiego : CA Academic Press, 1991.
    [14] Li Hai-Ying, Zhang Hao-Li, Zhang Jin, et al. Preparation and Structural Characterization of Self assembled Monolayers from a New Series of Mercapto Contained Azobenzene Derivatives [J], Acta Physico-Chimica Sinica, 1999,15 (3) :198-203.
    [15] Wang Jun, Zeng Bai-Zhao, Zhou Xing-Rao. Applications of Self-Assembled Monolayers in Electroanalytical Chemistry [J]. Journal of Analytical Science, 2000,16 (3) :253-258.
    [16] Ulman A. Formation and Structure of Self-Assembled Monolayers [J]. Chem Rev., 1996, 96(4) : 1533-1554.
    [17] Wang S F, Du D, Cai H C, et al. Electrocatalysis of Metol at L-Cysteine Self-assembled Monolayers Modified Gold Electrode and Its Application[J]. Chinese Journal of Analytical Chemistry, 2001, 29 (11) : 1288-1291.
    [18] Zhao G. C., Yin Z. Z., L. Zhang, Wei X. W. Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2[J]. Electrochemistry Communications, 2005, 7: 256-260.
    [19] Liu F, Hu Y, Cheng Y X, et al. Direct electrochemistry of Cytochrome c at nanocomposite modified electrode [J]. Chemical Sensors, 2005, 25(3): 26-30.
    [20] Liu Y C, Cui S Q, Yang Z S. Journal of The Study on Electrochemical Property of Cyt C/L-Cysteine Modification Electrode [J]. Anhui Normal University(Natural Science), 2006, 29(3): 255-257.
    [21] Jiang Z L, Feng Z W, Li T S. Resonance scattering spectra of gold nanoparticle [J]. Science in China (Series B:Chemistry),2001, 31(2): 183-188.
    [22] Frens G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions [J]. Nat Phys Sci., 1973, 241:20-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700