用户名: 密码: 验证码:
智能聚电解质刷复合纳米粒子的制备和表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能材料正越来越多地吸引研究者的目光,并已成为材料科学的研究热点。智能纳米粒子,作为智能材料的一个重要分支,在可控催化、药物控释、传感器、微纳米驱动等方面有着广泛的应用前景。另外,还有一类被称为Janus的纳米粒子因形状或结构的各向异性而具有特殊的自组装和刺激响应能力,是另一种具有很大应用潜力的智能纳米材料。
     本文在聚丙烯酸(PAA)球形聚电解质刷(SPB)的基础上合成了多种智能纳米微球,包括温度/pH双响应型球形聚电解质刷、有机/无机杂化二氧化硅复合微球和二氧化硅空心微球;首次利用Pickering乳液法结合光乳液聚合方法在聚合物纳米粒子表面接枝了非球形聚电解质刷,得到各向异性(Janus)纳米粒子;另外,通过不同的合成路线还制备了聚合物/二氧化硅Janus微球和聚合物/四氧化三铁磁性Janus微球。本文还利用原子力显微镜(AFM)研究了球形刷和Janus刷的形貌以及在不同性质的基底表面的自组装行为。具体内容如下:
     1.通过光乳液聚合将N-异丙基丙烯酰胺(NIPA)和丙烯酸(AA)共聚接枝到PS核表面,制得同时对pH和温度具有响应的双功能球形聚合物刷(BSPB)。动态光散射(DLS)对BSPB的pH和温度响应行为的观察表明,以共聚方式结合的NIPA和AA杂化刷与均聚的PAA刷相比从酸性到碱性的pH响应发生一定的滞后。另外,本文用原子力显微镜(AFM)在气相和液相中原位观察了双功能球形刷的形貌,并通过定性分析,发现其表面粘附力在pH值=3时达到最低,并随pH值增加有增大的趋势。
     2.以PAA球形聚电解质刷为模板,合成了核直径在100nm左右近单分散的SPB/二氧化硅核-壳型微球和空心微球。通过与聚乙烯基吡咯烷酮(PVP)中性刷对比,证明以PAA阴离子球形聚电解质刷作为模板更适合原位沉积二氧化硅。同时发现PAA刷厚度、金属盐浓度和体系温度对二氧化硅的沉积都有显著影响。DLS的数据证明,在用溶剂除去聚合物核后的空心微球仍具有pH值响应的能力,并且核-壳结构微球和空心微球在水相中均具有良好的再分散能力。
     3.通过Pickering乳液法制备了PS/PAA和PS/SiO2Janus微球。具体合成路线包括:1)制备得到Pickering乳液后,PS核一部分嵌入石蜡固体表面,紫外光引发水溶性单体AA接枝到PS核暴露部分的表面,得到非对称的Janus PAA(?);2)同样先制备Pickering乳液,然后通过湿法腐蚀对吸附在石蜡表面的PS/SiO2(?)球进行不对称腐蚀,得到Janus SiO2复合微球;3)利用苯乙烯单体对Pickering乳液中的PS/SiO2微球进行非对称溶胀和种子乳液聚合制备得到Janus SiO2复合微球。对Pickering乳液的制备进行了研究,考察了PS核的浓度和体系搅拌的速度对Pickering乳液的影响。在用AFM表征Janus刷时,先用硫醇季铵盐对AFM镀金探针改性,同时让PAA刷在低温下干燥并保留少量水分,最后促使成像过程中探针与刷子因强相互作用而发生不规律共振,使得刷子部分与PS核部分的图像形成较大反差,呈现出Janus刷各向异性的形貌特征。
     4.用共沉淀法先制备得到粒径10nm左右的Fe304纳米粒子,然后在细乳液聚合过程中Fe3O4纳米粒子与聚合物之间因相分离而形成一半为Fe304一半为聚苯乙烯的粒径100nm左右的PS/Fe3O4磁性Janus微球。然后用苯乙烯单体对微球进行溶胀并进行种子乳液聚合得到200nm和450nm左右的磁性Janus微球;选用200nm的PS/Fe3O4磁性Janus微球为模板,分别结合光乳液聚合方法和阴影-气相沉积法制备了PAA@PS/Fe3O4磁性Janus刷和Pd@PS/Fe3O4磁性Janus微球。利用DLS观察磁性Janus刷的水力学直径随pH值的变化;考察了磁性Janus刷和磁性Janus微球的饱和磁化强度;用高分辨电镜表征了磁性Janus微球的形貌。研究了外加磁场下镀钯磁性Janus微球在石蜡(液)/水(液)界面中的自组装形态。
     5.研究了基底的表面极性、表面电荷、沉积温度和球形刷浓度等对球形刷在固体表面自组装的影响;用AFM观察了Janus刷在基底表面的自组装,发现依据不同的基底表面性质Janus刷呈现不同的取向。
Smart materials have increasingly attracted the attention of researchers, and became the hotspot of materials science research. Smart nanoparticles is an important branch of smart materials has been broad applied in controlled catalysis, controlled drug delivery, sensors, micro-drivers, etc. In addition, there are a class of nanoparticles are anisotropic in shape or surface functionality with special self-assembly and stimulus-response capability, known as the Janus nanoparticles, which are also smart nano-materials showing a great potential applications.
     A series type of smart nanoparticles has been synthesized based on spherical polyelectrolyte brushes (SPB) in this article, including temperature/pH double-responsive nano spherical polyelectrolyte brushes, SPB/silica composite microspheres; With an assistant of Pickering emulsion method, pH-responsive anisotropy polyelectrolyte brushes were prepared through grafting nonsperical poly (acrylic acid)(PAA) brushes onto nano-sized core surfaces by photo-emulsion polymerization, and the morphology, stimulate-response and self-assembly of the microspheres were characterized by atomic force microscopy (AFM); more over, polyer/silica and magnetic-responsive Janus composite microspheres were also synthesized. Details are listed as follows:
     1. Isopropylacrylamide (NIPA) and acrylic acid (AA) copolymer were grafted onto the PS core surface by the light emulsion polymerization to obtain a pH and temperature bifunctional spherical polymer brush (BSPB). The dynamic light scattering (DLS) studies showed that the pH-responsive behavior of BSPB occurs lag compared to the homopolymer poly (acrylic acid)(PAA) brush. In addition, we used AFM to observe the morphology of BSPB in the gas and liquid, and to qualitatively analyze its surface adhesion by force curves. It was found that the surface adhesion responses to the pH value that increasing with increases of pH, and show low-sticky in pH value=3.
     2. Using PAA SPB as a template, SPB/silica core-shell and hollow microspheres was synthesized with a diameter ca.100nm. Compared to neutral brush polyvinylpyrrolidone (PVP), PAA anionic spherical polyelectrolyte brush is a more ideal template for in situ deposition of silica. The effect of the PAA brushes thickness, the salt concentration and temperature on silica deposition were discussed in the thesis. The DLS data proved that the hollow microspheres still have pH-response, and core-shell and hollow structure microspheres with good dispersion properties in water.
     3. PAA Janus polyelectrolyte and PS/SiO2Janus microspheres were prepared by Pickering emulsion method. Specific synthesis strategies include:1) After formation of Pickering emulsions, PS core embedded into paraffin wax surface, and the exposed part of the surface grafted PAA brush under UV irradiation to obtain non-spherical PAA brushes;2) PS/SiO2microspheres Janus nanoparticles were fabricated by asymmetric wet-etching based on Pickering emulsion;3) in the Pickering emulsion, styrene monomer asymmetrical swelled the PS/SiO2microspheres and then polymerized to obtain asymmetric SiO2shell structure. The effects of concentration and system stirring speed on Pickering emulsions were investigated. AFM probe modification and PAA brush incomplete drying was used to make a sharp contrast with the PS core in AFM images.
     4. Iron oxide nanoparticles of10nm were made by coprecipitation method. Magnetic Janus microspheres of100nm with a half of Fe3O4and a half of polystyrene were synthesized through phase separation by miniemulsion. Furtherly,200nm and450nm PS/Fe3O4magnetic Janus microspheres were prepared by seed emulsion polymerization. Using200nm PS/Fe3O4magnetic Janus microspheres as a template, respectively, PAA@PS/Fe3O4magnetic Janus brush and Pd@PS/Fe3O4magnetic Janus microspheres were prepared by photo-emulsion polymerization and the shadow vapor deposition. The thicknesses of Magnetic Janus brushes changed with pH as observed by DLS; The saturation magnetization and morphology of the magnetic Janus microspheres and brushes were investigated. The self-assembly of Janus microspheres controlled by an external magnetic field was observed.
     5. The polarity and surface charge of the substrate surface, the deposition temperature and the concentration of spherical brushes which influenced the self-assembly of spherical brush were discussed in this thesis; AFM was used to observe the orientation of Janus brush upon different surface.
引文
[1]Baughman R H, et al. Carbon Nanotube Actuators. Science.1999,284,1340-1344.
    [2]Li J, et al. Superfast-Response and Ultrahigh-Power-Density Electromechanical Actuators Based on Hierarchal Carbon Nanotube Electrodes and Chitosan. Nano Lett. 2011,11,4636-4641.
    [3]Alexeev A, et al. Harnessing Janus Nanoparticles to Create Controllable Pores in Membranes. ACS Nano.2008,2,1117-1122.
    [4]Cross L E. Ferroelectric ceramics:materials and application issues. Ceram. Trans., 1996,68,15-55.
    [5]Hathaway K B, Clark A E. Mater. Res. Bull.,1993,18:34.
    [6]杨大智.智能材料与智能系统.天津大学出版社:天津,2006.
    [7]赵连城,蔡伟,郑玉峰,合金的形状记忆效应与超弹性,国防工业出版社:北京,2002.
    [8]解守宗.我们周围的化学.上海科学技术出版社:上海,2003.
    [9]高志刚.形状记忆合金的应用.现代制造技术与装备.2007,1,5-8.
    [10]付博,王辉,孙杰.压电材料的研究与发展.科技创新导报.2007,35,1-1.
    [11]闫洪,窦明民,李和平.二氧化锆陶瓷的相变增韧机理和应用.陶瓷学报,2000,21(1),46-50.
    [12]Hiraish H. Smart Structure System. Concrete Journal.1998, (1),11-12.
    [13]Nishi S, Kotaka T. Complex-forming Polyoxyethylene:Poly (acrylic acid) Inter-Penetrating Polymer Networks. III. Swelling and Mechanochemical Behavior. Polym J. 1989,21(5),393-402.
    [14]Hoffman AS, Afrassoabi A, Dong LC. Thermally Reversible Hydrogels Delivery and Selective Removal of Substances from Aqueous Solution. J. Control. Release.1986, 4(4),213-222.
    [15]陈莉,韩永良,赵义平.环境响应型智能高分子凝胶.天津工业大学学报.2004,23(4),83-87.
    [16]邱广亮,李咏兰,丁炜.磁性导向柔红霉素白蛋白微球的研究.精细化工.2001,18(3),141-143.
    [17]Matsumoto A, Yoshida R, Kataoka K. Glucose-Responsive Polymer Gel Bearing Phenylborate Derivative as a Glucose-Sensing Moiety Operating at the Physiological pH. Biomacromolecules,2004,5(3),1038-1045.
    [18]Lee Y M, Ihm S Y, Shim J K. Preparation of Ssurface-modified Stimuli-responsive Polymeric Membranes by Plasma and Ultraviolet Grafting Methods and Their Riboflavin Permeation. Polymer.1995,36(1),81-85.
    [19]Topp M D C, Dijkstra P J, Talsma H. Thermosensitive Micelle-forming Block Copolymers of Poly(ethylene glycol) and Poly(N-isopropylacrylamide). Macromolecules.1997,30(26),8518-8520.
    [20]Shi H, Tsai W, Garrison M D, Ferrari S, Ratner B D. Template-imprinted Nanostructured Surfaces for Protein Recognition. Nature.1999,398,593-597.
    [21]Koberstein J. T. Molecular Design of Functional Polymer Surfaces. J. Polym. Sci. Pol. Phys.2004,42,2942-2956.
    [22]Carey D H, et al. Entropically Influenced Reconstruction at the PBD-ox/water Interface:Macromolecules.2000,33,8802-8812.
    [23]Draper J, et al. Mixed Polymer Brushes by Sequential Polymer Addition:Anchoring Layer Effect. Langmuir.2004,20,4064-4075.
    [24]Motornov M, et al. Stimuli-responsive Colloidal Systems from Mixed Brushcoated Nanoparticles. Adv. Funct. Mater.2007,17,2307-2314.
    [25]Azzaroni O, et al. UCST Wetting Transitions of Polyzwitterionic Brushes Driven by Self-association. Angew. Chem. Int. Ed.2006,45,1770-1774.
    [26]Xu C, et al. Effect of Block Length on Solvent Response of Bock Copolymer Brushes: Combinatorial Study with Block Copolymer Brush Gradients. Macromolecules.2006, 39,3359-3364.
    [27]Abu-Lail N, et al. Micro-cantilevers with End-grafted Stimulus-responsive Polymer Brushes for Actuation and Sensing. Sensor. Actuat. B-Chem.2006,114,371-378.
    [28]Wu T, et al. Behaviour of Surface-anchored Poly(acrylic acid) Brushes with Grafting Density Gradients on Solid Substrates. Macromolecules.2007,40,8756-8764.
    [29]Santer S, et al. J. Dynamically Reconfigurable Polymer Films:Impact on Nanomotion. Adv. Mater.2006,18,2359-2362.
    [30]Motornov M, et al. Nonwettable Thin Films from Hybrid Polymer Brushes can be Hydrophilic. Langmuir.2007,23,13-19.
    [31]Sheparovych R, et al. Adapting low-adhesive Thin Films from Mixed Polymer Brushes. Langmuir.2008,24,13828-13832.
    [32]Toomey R, et al. J. Swelling Behaviour of Thin Surface attached Polymer Networks. Macromolecules.2004,37,882-887.
    [33]Tokarev I, Orlov M, Minko S. Responsive Polyelectrolyte Gel Membranes. Adv. Mater. 2006,18,2458-2460.
    [34]Lvov, Y, et al. Assembly of Multicomponent Protein Films by Means of Electrostatic Layer-by-layer Adsorption. J. Am. Chem. Soc.1995,117,6117-6123.
    [35]Kharlampieva E, et al. Hydrogenbonded Multilayers of Thermoresponsive Polymers. Macromolecules.2005,38,10523-10531.
    [36]Hua F, et al. Ultrathin Cantilevers Based on Polymerceramic Nanocomposite Assembled Through Layer-by-layer Adsorption. Nano Lett.2004,4,823-825.
    [37]Mertz D, et al. Mechanically Responding Nanovalves Based on Polyelectrolyte Multilayers. Nano Lett.2007,7,657-662.
    [38]Tokareva I, et al. Nanosensors Based on Responsive Polymer Brushes and Gold Nanoparticle Enhanced Transmission Surface Plasmon Resonance Spectroscopy. J. Am. Chem. Soc.2004,126,15950-15951.
    [39]Andreeva D. V, et al. Self-healing Anticorrosion Coatings Based on pH-sensitive Polyelectrolyte/inhibitor Sandwich-like Nanostructures. Adv. Mater.2008,20, 2789-2794.
    [40]Ebara M, et al. Temperature-responsive Cell Culture Surfaces Enable "on-off" Affinity Control Between Cell Integrins and RGDS Lligands. Biomacromolecules.2004,5, 505-510.
    [41]Howse JR, et al. Reciprocating Power Generation in a Chemically Driven Synthetic Muscle. Nano Lett.2006,6,73-77.
    [42]Blanazs A, Armes SP, Ryan AJ. Self-assembled Block Copolymer Aggregates:From Micelles to Vesicles and Their Biological Applications. Macromol. Rapid Comm.2009, 30,267-277.
    [43]Voets IK, et al. Spontaneous Symmetry Breaking:Formation of Janus Micelles. Soft Matter.2009,5,999-1005.
    [44]Li MH, Keller P. Stimuli-responsive Polymer Vesicles. Soft Matter.2009,5,927-937.
    [45]Chiu HC, Lin YW, Huang YF, Chuang CK, Chem CS. Polymer Vesicles Containing Small Vesicles Within Interior Aqueous Compartments and pH-responsive Transmembrane Channels. Angew. Chem. Int. Ed.2008,47,1875-1878.
    [46]Morimoto N, et al. Dual stimuliresponsive Nanogels by Self-assembly of Polysaccharides Lightly Grafted with Thiol-terminated Poly(N-isopropylacrylamide) Chains. Macromolecules.2008,41,5985-5987.
    [47]Morimoto N, et al. Botryoidal Assembly of Cholesteryl-pullulan/poly (N-isopropylacrylamide) Nanogels. Langmuir.2007,23,217-223.
    [48]Motornov M, et al. "Chemical transformers" from Nanoparticle Ensembles Operated with Logic. Nano Lett.2008,8,2993-2997.
    [49]Lu Y, et al. Thermosensitive Core-shell Microgel as a "Nanoreactor" for Catalytic Active metal Nanoparticles. J. Mater. Chem.2009,19,3955-3961.
    [50]Skirtach AG, et al. Laser-induced Release of Encapsulated Materials inside Living Cells. Angew. Chem. Int. Ed.2006,45,4612-4617.
    [51]Gillies ER, et al. Stimuli-responsive Supramolecular Assemblies of Linear-dendritic Copolymers. J. Am. Chem. Soc.2004,126,11936-11943.
    [52]Lee ES, et al. A Virus-mimetic Nanogel Vehicle. Angew. Chem. Int. Ed.2008,47, 2418-2421.
    [53]Edwards EW, et al. Stimuliresponsive Reversible Transport of Nanoparticles Across Water/oil Interfaces. Angew. Chem. Int. Ed.2008,47,320-323.
    [54]Lee SH, et al. Synthesis and Assembly of Nonspherical Hollow Silica Colloids Under Confinement. J Mater Chem.2008;18(41),4912-4916.
    [55]Riley EK, Liddell CM. Confinement-controlled Self Assembly of Colloids with Simultaneous Isotropic and Anisotropic Cross-section. Langmuir.2010;26(14), 11648-11656.
    [56]Hosein ID, Liddell CM. Convectively Assembled Asymmetric Dimer-based Colloidal Crystals. Langmuir.2007;23(21),10479-10485.
    [57]Ding T, Song K, Clays K, Tung C-H. Fabrication of 3d Photonic Crystals of Ellipsoids: Convective Self-assembly in Magnetic Field. Adv Mater.2009,21(19),1936-1940.
    [58]Yin YD, Lu Y, Gates B, Xia YN. Template-assisted Self-assembly:a Practical Route to Complex Aggregates of Monodispersed Colloids with Well-defined Sizes, Shapes, and Structures. J Am Chem Soc.2001,123(36),8718-8729.
    [59]Wei Y, Bishop KJM, Kim J, Soh S, Grzybowski BA. Making Use of Bond Strength and Steric Hindrance in Nanoscale "Synthesis". Angew Chem Int Edit.2009,48(50), 9477-80.
    [60]Sacanna S, Irvine WTM, Chaikin PM, Pine DJ. Lock and Key Colloids. Nature.2010, 464(7288),575-8.
    [61]Badaire S, Cottin-Bizonne C, Stroock AD. Experimental Investigation of Selective Colloidal Interactions Controlled by Shape, Surface Roughness, and Steric Layers. Langmuir.2008,24(20),11451-63.
    [62]Poulin P, Stark H, Lubensky T, Weitz D. Novel Colloidal Interactions in Anisotropic Fluids. Science.1997,275(5307),1770-1773.
    [63]De Gennes PG, Soft matter. Rev. Mod. Phys.,1992,64,645-648.
    [64]Jang JH, et al. A Route to Three-Dimensional Structures in a Microfluidic Device: Stop-Flow Interference LithographyAngew. Chem., Int. Ed.2007,46,9027-9031.
    [65]Yuet KP, et al. Multifunctional Superparamagnetic Janus Particles. Langmuir 2010,26, 4281-4287.
    [66]Yin Y, Lu Y, Xia Y. A Self-Assembly Approach to the Formation of Asymmetric Dimers from Monodispersed Spherical Colloids. J. Am. Chem. Soc.2001,123, 771-772.
    [67]Xia Y, Yin Y, Lu Y, McLellan J. Template-Assisted Self-Assembly of Spherical Colloids into Complex and Controllable Structures Adv. Funct. Mater.2003,13, 907-918.
    [68]Saito N, Nakatsuru R, Kagari Y, Okubo M. Formation of "Snowmanlike" Polystyrene/Poly(methyl methacrylate)/Toluene Droplets Dispersed in an Aqueous Solution of a Nonionic Surfactant at Thermodynamic Equilibrium. Langmuir 2007,23, 11506-11512.
    [69]Sheu, H. R.; El-aasser, M. S.; Vanderhoff, J. W. Phase Separation in Polystyrene Latex Interpenetrating Polymer Networks. J. Polym. Sci. Part A:Polym. Chem.1990, 28(3),629-651.
    [70]Lu W, et al. One-step synthesis of organic-inorganic hybrid asymmetric dimer particles via miniemulsion polymerization and functionalization with silver. Journal of Colloid and Interface Science.2008,328,98-102.
    [71]Giersig M, et al. Direct Observation of Chemical Reactions in Silica-coated Gold and Silver Nanoparticles. Adv.Mater.1997,9,570-575.
    [72]Powell CF, et al. Vapor Deposition. John Wiley & Sons, New York,1966.
    [73]Han S, et al. Template-free Directional Growth of Single-walled Carbon Nanotubes on a-and r-plane Sapphire. J. Am. Chem. Soc.2005,127,5294-5295.
    [74](a) Fischer U. Ch, Zingsheim H. P. Submicroscopic contact imaging with visible light by energy transfer. Appl. Phys. Lett.1982,40,195-197. (b) Deckman H. W., Dunsmuir J. H. Natural lithography. Appl. Phys. Lett.1982,41,377-379.
    [75]Takei H, Shimizu N. Gradient Sensitive Microscopic Probes Prepared by Gold Evaporation and Chemisorption on Latex Spheres. Langmuir.1997,13,1865-1868.
    [76]Hulteen JC, Martin CR. A general template-based method for the preparation of nanomaterials J. Mater. Chem.1997,7,1075-1087.
    [77]Haynes CL, Van Duyne RP. Nanosphere lithography:A versatile nanofabrication tool for studies of size-dependent nanoparticle optics J. Phys. Chem. B.2001,105, 5599-5611.
    [78]Malkinski L, et al. Hexagonal lattice of 10-nm magnetic dotsJ. Appl. Phys.2003,93, 7325-7327.
    [79]Pickering SU. CXCVI.-Emulsions. J Chem Soc.1907,91,2001-2021.
    [80]a) Binks BP, Lumsdon SO. Influence of Particle Wettability on the Type and Stability of Surfactant-Free EmulsionsLangmuir 2000,16,8622-8631; b) Binks BP, Fletcher and PD. Particles Adsorbed at the Oil-Water Interface:A Theoretical Comparison between Spheres of Uniform Wettability and "Janus" Particles Langmuir 2001,17, 4708-4710; c) B P. Binks and J H. Clint. Solid Wettability from Surface Energy Components:Relevance to Pickering EmulsionsLangmuir 2002,18,1270-1273.
    [81]Daisuke S, et al. Janus Microgels Prepared by Surfactant-Free Pickering Emulsion-Based Modification and Their Self-Assembly. J. Am. Chem. Soc.2007,129, 8088-8089.
    [82]Liu B, e al. Janus Colloids Formed by Biphasic Grafting at a Pickering Emulsion Interface. Angew. Chem. Int. Ed.2008,47,3973-3975.
    [83]Hong L, Jiang S, Granick S. Simple Method to Produce Janus Colloidal Particles in Large Quantity. Langmuir 2006,22,9495-9499.
    [84]Liu B, e al. Janus non-spherical colloids by asymmetric wet-etching. Chem. Commun., 2009,3871-3873.
    [85]Jiang S, Granick S. Solvent-free Synthesis of Janus Colloidal Particles. Langmuir, 2008,24,2438-2445.
    [86]For more details, see http://www2.parc.com/hsl/projects/gyricon/(accessed March 2012)
    [87]Rodney TC, et al. Such, Almar Postma, Keith M. McLeanb and Frank Caruso. Fabrication of asymmetric "Janus" particles via plasma polymerization. Chem. Commun.2010,46,5121-5123.
    [88]Manish G. Bajaj, Paul E. Laibinis. Selective DNA-Directed Assembly on Dual-Functionalized Microparticles Molecular Engineering of Biological and Chemical Systems (MEBCS) (conference)http://dspace.mit.edu/handle/1721.1/3947.
    [89]Ruhe J, et al. Polyelectrolyte brushes. Adv Polym Sci.2004,165:79-150.
    [90]Biesalski M, Ruhe J. Preparation and Characterization of a Polyelectrolyte Monolayer Covalently Attached to a pPlanar Surface. Macromolecules.1999,32,2309-2316.
    [91]Bendejacq D, Ponsinet V, Joannicot M. Water-dispersed Lamellar Phases of Symmetric Poly(styrene)-block-poly (acrylic acid) Diblock Copolymers:Model Systems for Flat Dense Polyelectrolyte Brushes. Eur Phys J E.2004,13,3-13.
    [92]Muller F, Delsanti M, Auvray L, Yang J, Chen YJ, Mays JW, et al. Ordering of Urchin-like Charged Copolymermicelles:Electrostatic Packing and Polyelectrolyte Correlations. Eur Phys J E.2000,3,45-53.
    [93]Zhang L, Yu K, Eisenberg A. Ion-induced Morphological Changes in "Crew-cut" aAggregates of Amphiphilic Block Copolymers. Science.1996,272,1777-1779.
    [94]Biver C, Hariharan R, Mays JW, Russel WB. Neutral and Charged Polymer Brushes:a Model Unifying Curvature Effects from Micelles to Flat Surfaces. Macromolecules. 1997,30,1787-1792.
    [95]Guo X, Weiss A, Ballauff M. Synthesis of Spherical Polyelectrolyte Brushes by Photo-emulsion Polymerization. Macromolecules.1999,32,6043-6046.
    [96]Lee A, et al. Structure of pH-dependent Block Copolymer Micelles:Charge and Ionic Strength Dependence. Macromolecules.2002,35,8540-8551.
    [97]Seidel C, Netz RR. Individual Polymer Paths and End-Point Stretching in Polymer Brushes. Macromolecules.2000, (33),634-640.
    [98]Zhulina EB, Borisov OV, Birshtein TM. Polyelectrolyte Brush Interaction with Multivalent Ions. Macromolecules.1999, (32),8189-8196.
    [99]Ross R, Pincus P. The Polyelectrolyte Brush:Poor Solvent. Macromolecules.1992, (25),2177-2183.
    [100]Pincus P. Colloid Stabilization with Grafted Polyelectrolytes. Macromolecules.1991, (24),2912-2919.
    [101]Biesalski M, Ruehe J. Swelling of a Polyelectrolyte Brush in Humid Air. Langmuir. 2000,(16),1943-1950.
    [102]Konradi R, Riihe J. Interaction of Poly(Methacrylic Acid) Brushes with Metal Ions: Swelling Properties[J]. Macromolecules.2005,38(10),4345-4354.
    [103]Biesalski M, Johannsmann D, Ruhe J. Electrolyte-Induced Collapse of a Polyelectrolyte Brush.[J]. Journal of Chemical PhysicsJournal of Chemical Physics. 2004,120(18),8807-8814.
    [104]Balastre M, Li F, Schorr P, et al. A Study of Polyelectrolyte Brushes Formed From Adsorption of Amphiphilic Diblock Copolymers Using the Surface Forces Apparatus. Macromolecules.2002,35(25),9480-9486.
    [105]Raviv U, Giasson S, Kampf N, et al. Lubrication by Charged Polymers[J]. Nature. 2003,425(6954),163-165.
    [106]Argillier JF, Tirrell M. Adsorption of Water-soluble Ionic/hydrophobic Diblock Copolymer on a Hydrophobic Surface. Theoretica Chimica Acta.1992, (82),343-350.
    [107]Zhulina EB, Borisov OV, Birshtein TM. The Effect of Free Branches on the Collapse of Polyelectrolyte Networks. J. Phys. II,1992, (2):177-181.
    [108]Hariharan R, Biver C, Russel WB. Ionic Strength Effects in Polyelectrolyte Brushes: The Counterion Correction. Macromolecules,1998, (31),7514-7518.
    [109]Guo X, Ballauff M. Spherical Polyelectrolyte Brushes:a Comparison Between Annealed and Quenched Brushes. J. Phys. Rev E.2001, (64),051406,1-9.
    [110]Ballauff M, Borisov O. Polyelectrolyte Brushes. Current Opinion in Colloid & Interface Sci.2006, (11),316-323.
    [111]Guo X, Weiss A, Ballauff M. Synthesis of Spherical Polyelectrolyte Brushes by Photoemulsion Polynerization. Macromolecules.1999, (32),6043-6048.
    [112]Guo X, Ballauff M. The Spatial Dimensions of Colloidal Polyelectrolyte Brushes as Determined by Dynamic Light Scattering. Langmuir.2000, (16),8719.
    [113]Pyun J, Kowalewski T, Matyjaszewski K. Synthesis of Polymer Brushes Using Atom Transfer Radical Polymerization. Macromol Rapid Commun.2003,24,1043-1059.
    [114]Boyes SG, Cyrus C, Akgun B, Caplan A, Mirous B, Brittain JW. Synthesis and Application of Polyelectrolyte Brushes in Stimuli-responsive Polymeric Films and Coatings. ACS Symp Ser.2005,912,55-67.
    [115]Jayachandranan KN, Takacs-Cox A, Brooks DE. Synthesis and Characterization of Polymer Brushes of Poly(N,NO-dimethylacrylamide) from Polystyrene Latex by Aqueous atom Transfer Radical Polymerisation. Macromolecules.2002,35,4247-57.
    [116]Zhang M, Liu L, Zhao H, Fu G, He B. Double-responsive Polymer Brushes on the Surface of Colloid Particles. J Colloid Interf Sci.2006,301,85-91.
    [117]Zhang L, et al. Ion-Induced Morphological Changes in "Crew-Cut" Aggregates of Amphiphilic Block Copolymers. Science.1996,272(5269),1777-1779.
    [118]Lee A S, et al. Structure of Ph-Dependent Block Copolymer Micelles:Charge and Ionic Strength Dependence. Macromolecules.2002,35(22),8540-8551.
    [119]Forster S, et al. Structure of Polyelectrolyte Block Copolymer Micelles. Macromolecules.2002,35(10),4096-4105.
    [120]Groenewegen W, et al. Counterion Distribution in the Coronal Layer of Polyelectrolyte Diblock Copolymer Micelles. Macromolecules.2000,33(11), 4080-4086.
    [121]Sharma G, Ballauff M. Cationic Spherical Polyelectrolyte Brushes as Nanoreactors for the Generation of Gold Particles. Macromolecular Rapid Communications.2004, 25(4),547-552.
    [122]Lu Y, Mei Y, Schrinner M, et al. In Situ Formation of Ag Nanoparticles in Spherical Polyacrylic Acid Brushes by UV Irradiation. Journal of Physical Chemistry C,2007, 111(21),7676-7681.
    [123]Mei Y, Sharma G, Lu Y, et al. High Catalytic Activity of Platinum Nanoparticles Immobilized On Spherical Polyelectrolyte Brushes. Langmuir.2005,21(26), 12229-12234.
    [124]Mei Y, Lu Y, Polzer F, et al. Catalytic Activity of Palladium Nanoparticles Encapsulated in Spherical Polyelectrolyte Brushes and Core-shell Microgels. Chemistry of Materials.2007,19(5),1062-1069.
    [125]Lu Y, Lunkenbein T, Preussner J, et al. Composites of Metal Nanoparticles and TiO2 Immobilized in Spherical Polyelectrolyte Brushes. Langmuir.2010,26(6),4176-4183.
    [126]Schrinner M, Ballauff M, Talmon Y, et al. Single nanocrystals of platinum prepared by partial dissolution of Au-Pt nanoalloys. Science.2009,323(5914),617-620.
    [127]Wittemann A, Haupt B, Ballauff M. Adsorption of proteins on spherical polyelectrolyte brushes in aqueous solution. Physical Chemistry Chemical Physics. 2003,5(8),1671-1677.
    [128]Henzler K, et al. Adsorption of bovine hemoglobin onto spherical polyelectrolyte brushes monitored by small-angle x-ray scattering and fourier transform infrared spectroscopy. Biomacromolecules.2007,8(11),3674-3681.
    [129]Henzler K, et al. Adsorption of beta-lactoglobulin on spherical polyelectrolyte brushes: direct proof of counterion release by isothermal titration calorimetry. Journal of the American Chemical Society,2010,132(9):3159-3163.
    [130]Anikin K, et al. Polyelectrolyte-mediated protein adsorption:fluorescent protein binding to individual polyelectrolyte nanospheres. Journal of Physical Chemistry B. 2005,109(12),5418-5420.
    [131]Haupt B, et al. Activity of enzymes immobilized in colloidal spherical polyelectrolyte brushes. Biomacromolecules.2005,6(2),948-955.
    [132]Welsch N, et al. Enhanced activity of enzymes immobilized in thermoresponsive core-shell microgels. Journal of Physical Chemistry B.2009,113(49),16039-16045.
    [133]Rosenfeldt S, et al. Interaction of proteins with spherical polyelectrolyte brushes in solution as studied by small-angle x-ray scattering. Physical Review E,2004,70 (0614036Part 1).
    [134]Kaimin Chen, et al. Synthesis of Magnetic Spherical Polyelectrolyte Brushes Macromolecules.2011,44,632-639.
    [135]Lu, Y, et al. Drechsler, M. Preparation of Poly (styrene)-poly(N-isopropylacrylamide) (PS-PNIPA) Core-shell Particles by Photoemulsion Polymerization. Macromol. Rapid Commun.2006,27,1137-1141.
    [136]Zhang J, et al. Polymer Microgels:Reactors for Semiconductor, Metal, and Magnetic Nanoparticles. J. Am. Chem. Soc.2004,126,7908-7914.
    [137]Cernakova, L'U, et al. Nanosized Polystyrene/Poly(Butyl Acrylate) Core-Shell Latex Particles Functionalized with Acrylamides. J. Macromol. Sci. A.2005,42,427-439.
    [138]Gu S, et al. Study on Acrylic Emulsion with Core-shell Structure Containing High Hydroxyl Content. J. Macromol. Sci. A.2005,42,771-781.
    [139]Zhang Y, et al. Novel Nanosize Polymer Latexes Prepared by a Core-shell Microemulsion Copolymerization:Preparation and CharacterizationInt. J. Polym. Mater.2005,54,279-291.
    [140]Berndt I, et al. Temperature-sensitive Core-shell Microgel Particles with Dense Shell. Angew. Chem., Int. Ed.2006,45,1737-1741.
    [141]Bradley M, et al. Poly(vinylpyridine) Core/Poly(N-isopropylacrylamide) Shell Microgel Particles:Their Characterization and the Uptake and Release of an Anionic Surfactant. Langmuir.2008,24,2421-2425.
    [142]DingenoutsN, et al. Observation of the Volume Transition in Thermosensitive Core-shell Latex Particles by Small-angle x-ray Scattering. Macromolecules 1998,31, 8912-8917.
    [143]Crassous J, et al. Quantitative Analysis of Polymer Colloids by Cryo-Transmission Electron Microscopy. Langmuir 2009,25(14),7862-7871.
    [144]Bolisetty S, et al. Formation of Stable Mesoglobules by a Thermosensitive Dendronized Polymer. Macromolecules 2009,42,7122-7128.
    [145]Schurer B, et al. Second harmonic light scattering from spherical polyelectrolyte brushesJ. Phys. Chem. C 2011,115,18302-18309.
    [146]Deffieux A, et al. J. Am. Chem. Soc.2008,130,5670-5672.
    [147]Matyjaszewsk K, et al. Effect of Initiation Conditions on the Uniformity of Three-Ann Star Molecular Brushes. Macromolecules 2003,36,1843-1849.
    [148]SeikoS, et al. Measuring Molecular Weight by Atomic Force Microscopy. J. Am. Chem. Soc.2003,125,6725-6728.
    [149]Liu J, et al. Recent developments in the chemical synthesis of inorganic porous capsules. J. Mater. Chem.2009,19,6073-6084
    [150]Lou X.W, et al. Hollow Micro-/Nanostructures:Synthesis and Applications. Adv. Mater.2008,20,3987-4019.
    [151]Tanev, P.T.; Pinnavaia, T. J. Biomimetic Templating of Porous Lamellar Silicas by Vesicular Surfactant Assemblies. Science 1996,271,1267-1269.
    [152]Zou, H.; Wu, S. S.; Shen. J. Polymer/Silica Nanocomposites:Preparation, Characterization, Properties, and Applications. Chem. Rev.2008,108,3893-3957.
    [153]Bourgeat-Lami, E.; Tissot, I.; Lefebvre. F.; Synthesis and Characterization of SiOH-Functionalized Polymer Latexes Using Methacryloxy Propyl Trimethoxysilane in Emulsion Polymerization. Macromolecules 2002,35,6185-6191.
    [154]Cornelissen, J. J. L. M.; Connor, E. F.; Kim, H. C.; Lee, V. Y.; Magibitang, T.; Rice, P. M.; Volksen, W.; Sundberg, L. K.; Miller, R. D. VersatileSynthesis of Nanometer Sized Hollow Silica Spheres. Chem. Commun.2003,8,1010-1011.
    [155]Yamada, Y.; Mizutani, M.; Nakamura, T.; Yano, K. Mesoporous Microcapsules with Decorated Inner Surface:Fabrication and Photocatalytic Activity. Chem. Mater.2010, 22,1695-1703.
    [156]Cao, S.; Jin, X.; Yuan, X.; Wu, W.; Hu, J.; Sheng, W. A Facile Method for the Preparation of Monodisperse Hollow Silica Spheres with Controlled Shell Thickness. J. Polym. Sci., Part A:Polym. Chem.2010,48,1332-1338.
    [157]Schiller, R.; Weiss, C. K.; Geserick, J.; Hiising, N.; Landfester, K. Synthesis of Mesoporous Silica Particles and Capsules by Miniemulsion Technique. Chem. Mater. 2009,21,5088-5098.
    [158]Caruso, F.; Mohwald, H. Preparation and Characterization of Ordered Nanoparticle and Polymer Composite Multilayers on Colloids. Langmuir 1999,15,8276-8281.
    [159]Zou, H.; Wu, S. S.; Ran, Q. P.; Shen, J. A Simple and Low-Cost Method for the Preparation of Monodisperse Hollow Silica Spheres. J. Phys. Chem. C 2008,112, 11623-11629.
    [160]Du, B. Y.; Cao, Z.; Li, Z. B.; Mei, A. X.; Zhang, X. H.; Nie, J. J.; Xu, J. T.; Fan, Z. Q. One-Pot Preparation of Hollow Silica Spheres by Using Thermosensitive Poly(N-isopropylacrylamide) as a Reversible Template. Langmuir 2009,25, 12367-12373.
    [161]Wan, Y.; Yu, S. H.; Polyelectrolyte Controlled Large-Scale Synthesis of Hollow Silica Spheres with Tunable Sizes and Wall Thicknesses. J. Phys. Chem. C 2008,112, 3641-3647.
    [162]Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica in the micron size range [J]. J. Colloid Interface Sci.1968,26 (1):62-69.
    [163]Iler Ralph K. The Chemistry of Silica; Wiley:New York,1979.
    [164]Lu A, et al. Magnetic nanoparticles:synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed.2007,46,1222.
    [165]Arruebo M, et al. Magnetic nanoparticles for drug delivery Nanotoday,2007,2(3), 22-32.
    [166]Maeda Y, et al. Novel Nanocomposites Consisting of in Vivo-biotinylated Bacterial magnetic Particles and Quantum Dots for Magnetic Separation and Fluorescent Labeling of Cancer Cells. J. Mater. Chem.,2009,19,6361.
    [167]Dressman D, et al. Acad. Sci. U. S. A.,2003,100,8817.
    [168]Mangeney C, et al. Magnetic Fe2O3-Polystyrene/PPy Core/Shell Particles: Bioreactivity and Self-Assembly. Langmuir,2007,23,10940.
    [169]Rebolledo A. F, et al. Adv. Mater.,2008,20,1760.
    [170]Behrend C J, et al. Microrheology with modulated optical nanoprobes (MOONs). Journal of Magnetism and Magnetic Materials.2005 (293):663-670.
    [171]Perro A, et al. Production of large quantities of "Janus" nanoparticles using wax-in-water emulsions. Colloids Surf. A.2009,332,57-62.
    [172]Okubo M, et al. Synthesis of Micron-sized, Monodisperse Polymer Particles of Disc-like and Polyhedral Shapes by Seeded Dispersion Polymerization. Colloid Polym. Sci.2005,283,793.
    [173]Feynman R P, et al. There's plenty of room at the bottom. Journal of Microelectromechanical Systems.1992, 1(1):60-66.
    [174]Kessel C.R, et al. Formation and Characterization of a Highly Ordered and Well-Anchored Alkylsilane Monolayer on Mica by Self-Assembly. Langmuir.1991,7, 532-538.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700