用户名: 密码: 验证码:
UV固化水性超支化聚氨酯丙烯酸酯的制备、结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水性光固化体系因结合了水性树脂和光固化技术两者的优点,具有环保(无稀释剂、无VOC)、适用性广(适于各种涂装设备、易清洗)、产品性能好(附着力好、软硬程度适宜)等特点,成为涂料工业发展的必然趋势。水性聚氨酯丙烯酸树脂(WPUA)由于综合性能较好,是当前UV固化水性基体树脂中研究最多、应用最广的体系。但线型WPUA树脂中普遍存在的固含量不高、粘度过大以及交联密度不够、硬度和耐热性能不理想等问题也成为了其继续发展的障碍。
     超支化聚合物因其独特的三维球形多分枝结构,而具有外围官能度高、反应性强、粘度低、溶解性好等众多特性,可将其应用于UV固化WPUA体系,以缓解线型WPUA体系高固含与低粘度间的矛盾,提升整个体系的性能。但目前对UV固化水性超支化聚氨酯丙烯酸酯体系研究的还很少。本论文便是以此为主要思路,通过分子设计的方式,以超支化聚酯(HBP)为核,通过对其外围端羟基进行不同程度的亲水化及丙烯酸酯化改性,制得了一系列稳定性好、固含量高,且粘度适宜的水性超支化聚氨酯丙烯酸酯分散液(WHBPUAD),并将其应用于UV固化体系,得到的固化膜硬度高、柔韧性好,力学性能优良。论文主要的研究内容和成果包括如下四点。
     第一:以超支化聚酯为中心核,先采用马来酸酐(MA)对其部分端羟基进行亲水化改性,得到亲水改性物(B-H20-MA),再以异佛尔酮二异氰酸酯(IPDI)及丙烯酸羟乙酯(HEA)的加成产物(IPDI-HEA)对其剩余的端羟基进行丙烯酸酯化改性,通过控制不同的改性程度,制备了一系列羧基含量及C=C双键含量不同的WHBPUAD。采用FTIR、1H-NMR、GPC及DSC等分析测试手段表征了WHBPUAD的分子结构,并通过红外监控及化学滴定的方法考察了温度、时间、催化剂种类及催化剂用量等因素对各步反应转化率的影响。结果表明,温度及催化剂用量对反应影响很大,各步最佳的反应条件为:以4wt.%的4-二甲氨基吡啶(DMAP)为催化剂,50℃下反应5h,利用B-H20的端羟基及MA的酸酐基团之间的单酯化反应制得亲水改性物B-H20-MA;以0.5wt.%的二月桂酸二丁基锡(DBTDL)为催化剂,35℃下反应2.5h制得含异氰酸酯基团的加成物IPDI-HEA;最后以0.5wt.%的DBTDL为催化剂,由IPDI-HEA和B-H20-MA在70℃下反应5h制得WHBPUAD。不同组成产物的玻璃化转变温度差别不大,均在30℃左右;相对分子量与设计的理论值基本相符,但要小于理论值,分子量分布随硬段结构的增加而加宽。
     第二:以激光粒度分析仪和旋转流变仪为主要测试手段,考察了体系的各项稳定性指标,研究了固含量、亲水基团含量及中和度等诸多因素对WHBPUAD体系分散性及流变性的影响,通过Cross、Krieger-Dougherty(K-D)等模型方程对体系的流变曲线进行了模拟,得到了拟合方程,求得了最大体积分数φm,并通过拟合参数的标准化处理得到了不同固含量时粘度的主曲线。研究表明:WHBPUAD有着良好的稳定性,可避光保存一年以上。体系分散性良好,分散液粒径基本在100nm以下,随着亲水基团含量及中和度的增加而增大。WHBPUAD体系为非牛顿流体,具有剪切变稀现象,且随着固含量、亲水基团含量及中和度的增加而更为明显;体系较线型WPUA粘度明显更低,随着固含量和中和度的增加及亲水基团含量的降低而呈增大趋势。通过K-D方程得到该体系的φm为0.71。另外,幂律、Cross及Carreau三种流动方程均可较好对WHBPUAD体系流动行为进行描述,但后两者描述的更为准确。
     第三:通过FTIR实时监控的方法,研究了WHBPUAD体系的UV固化过程,考察了影响UV固化过程和固化膜力学性能的因素,并对其干燥过程进行了研究。结果表明:结构中亲水基团含量增加会显著延长干燥脱水所需时间,但80℃下2min足以干燥脱除WHBPUAD湿膜中大部分的水,结合所选引发剂综合考虑,得到适宜的干燥脱水条件为:50℃下真空干燥2~10min。FTIR监控表明,固化历程受C=C双键浓度和体系粘度的双重控制,在光引发剂Darocur1173用量为4wt.%时,WHBPUAD8-8有着最快的光固化速率R max
     P和最高的最终转化率τf,其值分别为71mmol·g-1s-1及93%。固化膜力学性能优良,附着力为0级、冲击强度55kg.cm,柔韧性为1mm,固化膜硬度随初始C=C双键浓度增大,WHBPUAD12-4硬度最高,摆杆硬度值为0.7。
     第四:以热重分析(TG)为测试手段,研究了不同组成对WHBPUAD热稳定性的影响,得到了分解各步的热分解动力学方程。另外,同时应用热重-红外光谱联用仪(TGA-FTIR)及热裂解气相色谱-质谱联用仪(Py-GC/MS)测试技术,对WHBPUAD的热裂解过程进行了研究,并给出了其可能的热裂解机理。结果表明:固化膜热稳定性良好,在170℃前无明显失重,不同组成样品有着相似的分解历程,都经历四个明显的分解阶段。应用Horowitz-Metzger法求得的各阶段热分解活化能很好的反映了WHBPUAD分子结构同本体热性能间的关系,结构中软段含量越高时,热分解活化能也越高,样品整体热稳定越好。WHBPUAD可能的热裂解历程是,第一阶段为外围酯键的断裂,裂解溢出的气体主要为CO2、MA及三乙胺(TEA);第二阶段为硬段的裂解,主要溢出为CO2和HEA;第三阶段为软段的断裂,溢出的气体主要为CO2、HEA、IPDI及小分子的不饱和醇、不饱和酸、酯等;第四阶段为分子内核,即B-H20的裂解,裂解产物比较复杂,主要由杂环类化合物、烯醛类化合物,烯醇类化合物,烯烃类化合物及丙烯酸(酯)类及衍生物组成。
The UV curable waterborne coating has both the advantages of waterborne coating andUV curable coating, such as environmental, wide applicability, good performance of film, etc.It becomes an inevitable trend of coating. At present, waterborne polyurethane-acrylate(WPUA) coating has attracted more and more attentions due to their good comprehensiveperformance. However, the shortcomings of common linear waterborne polyurethane-acrylate(LWPUA), including relatively high viscosity, low solid content and crosslinking density, aswell as insufficient hardness and thermal properties, limit its future applications.
     Hyperbranched polymer (HBP) has many attractive features, such as low viscosity, highsolubility and reactivity, good compatibility, owing to its possesses a kind of uniquespherical-multibranched structure. Therefore, HBP can be applied to prepare UV-curablewaterborne polyurethane-acrylate coatings in order to relieve the contradiction between thesolid content and viscosity of LWPUA. However, there are few references about HBP used asprepolymer in the system of UV-curable WPUA at present. In this work, a series ofUV-curable waterborne hyperbranched polyurethane acrylate dispersions (WHBPUAD) wereprepared by endcapping of the hyperbranched ester with different number of hydrophilic andacrylic groups by the special design of the polymer structure. The dispersion has good storagestability, higher solid content, relatively lower viscosity, and the UV cured film had excellentcomprehensive performance such as higher hardness, good flexibility and thermal stability.The main research contents and results are listed as following:
     Firstly, a series of UV-curable waterborne hyperbranched polyurethane acrylatedispersions were prepared by a three-step procedure based on isophorone diisocyanate (IPDI),hyperbranched polyester (HBP), maleic anhydride (MA) and2-hydroxyethyl acrylate (HEA).The structure of WHBPUADs was characterized by Fourier transform infrared spectroscopy(FTIR),1H nuclear magnetic resonance spectroscopy (1H-NMR), differential scanningcalorimeter (DSC) and gel permeation chromatography (GPC). The effects of the types ofcatalysts and their concentrations, reaction temperature and time on the conversion werestudied by FTIR and chemical titration. The results showed that the target production wasobtained successfully and the optimal condition was that the isocyanate adduct of IPDI/HEA(Prepolymer I) was prepared with0.5wt.%DBTDL as catalyst at5℃for150min;Prepolymer II was prepared by mono-esterification reaction from HPB and MA with4wt.%DMAP as catalyst at50℃for300min; and then the Prepolymer II reacted with Prepolymer Iat70℃for300min to prepare WHBPUA. The glass transition temperatures (Tg) of WHBPUAD with different raw materials' proportion were about30℃, which were close witheach other. The trend of relative molecular mass was agree with that of the theoretical valuebut all were lower in quantity, and the molecular weight distribution (MWD) became broadwith the hard segment content increase.
     Secondly, laser particle size analyzer and rotational rheometer were used to investigatethe stability, the dispersity and the steady rheological behaviors of WHBPUADs. The effectsof many factors including solid content, concentration of hydrophilic groups, and degree ofneutralization on the dispersity and rheological behaviors were studied. The flow curves ofWHBPUADs were fitted mathematically by using Cross model, Carreau model,Krieger-Dougherty (K-D) equation and so on. The maximum volume fraction (m) and themaster curve of the different solid content were obtained. It was found that WHBPUAD wasquite stable which could store for at least1year in the dark. Meanwhile, the system havegood dispersibility. Most of the particle diameters were less than100nm, and increased withthe concentration of hydrophilic groups and degree of neutralization. The WHBPUAD is anon-Newton pseudoplastic fluid with shear thinning characteristic. The shear thinningphenomenon becomes more obvious with the increase in solid content, concentration ofhydrophilic groups, and degree of neutralization. The viscosity of WHBPUAD was lower thanthat of the linear waterborne polyurethane acrylate (LWPUA). At the same shear rate, theviscosity of WHBPUAD increased with increasing solid content and degree of neutralizationbut decreased with increasing concentration of hydrophilic groups. The value of mwas0.71which was obtained by the K-D equation. The Cross model, Carreau model and Power modelequation all could be used to fit the rheological behavior of WHBPUAD, but the later was lessaccurate.
     Thirdly, the photopolymerization kinetics of WHBPUAD was monitored by FTIR. Thedrying process and the influences of molecular structure on the photopolymerization kineticsand properties of WHBPUAD films were discussed. The results showed that most water ofthe wet film could be remove within2minutes at the temperature of80℃and theconcentration of hydrophilic groups could significantly prolong the drying time. Based on theproperties of the selected photoinitiator, the suitable drying condition was at50℃for2to10minutes under a vacuum. The results of FTIR showed that the double bond conversion (τ) andphotopolymerization rate (Rp) were affected by the concentration of double bond andviscosity of WHBPUADs. The UV-curable systems with higher double bond concentrationand lower viscosity led to higher τ and Rp. The maximum τ and Rpcould reach to93%and71 mmol·g-1s-1, respectively. UV-cured films were found to exhibit superior mechanicalproperties. It shows that all of the coating formulations passed the tests of adhesion with0grade, impact with50kg.cm, and flexibility tests with1mm mandrel, respectively. Thependulum harnesses were improved with the increase of double bond concentration.WHBPUAD12-4has the best mechanical properties with the maximum pendulum harnessesof0.70%.
     Fourth, the effect of different ingredient on the thermal stability of WHBPUAD filmswas studied by TG, and the kinetic parameters and dynamical equations of the thermaldecomposition of WHBPUAD were obtained. Then, the pyrolytic process of WHBPUAD wasstudied by TGA-FTIR and Py-GC/MS. The possible pyrolysis mechanism was studied. Theresults indicated that the WHBPUAD films had good thermal stability without obvious weightloss peaks before170℃. All the WHBPUAD films with different ingredient had similarprocesses of thermal decomposition, which appeared four obvious weight loss regions. Theresults of thermal decomposition activation energy which obtained by the Horowitz-Metzgerequation could well reflect the relationship between the intrinsic thermal stability and themolecular structure. The sample with higher proportion of soft segment in the structure wouldhave higher thermal decomposition activation energy and thermal stability. The possiblepyrolysis mechanism was as following: in the first step of degradation, the peripheral esterbonds of the WHBPUAD molecule were broken and the mainly evolved gases were CO2, MAand TEA. In the second step, its degradation was resulted from the hard segment and thedegradation products involved CO2and HEA; In the third step, the degradation was related tothe soft segment and the mainly degradation products were CO2, HEA, IPDI, unsaturatedalcohol, unsaturated acid, ester and so on; Finally, for the fourth degradation stage, a muchmore complex mixture of products was identified, including heterocyclic, olefinic aldehyde,enol, olefin, acrylic, acrylate and their derivatives, most probably originating from the core ofB-H20.
引文
[1] Lippemeier J, Sommer S, Nennemann A. Waterborne UV coatings for exterior woodapplication[J]. European Coatings Journal,2010(3):1-9
    [2] Zhang T, Wu W, Wang X, et al. Effect of average functionality on properties ofUV-curable waterborne polyurethane-acrylate[J]. Progress in Organic Coatings,2010,68(3):201-207
    [3] van B K, van V L, van H H. Development of waterborne UV-A curable clear coat for carrefinishes[J]. Progress in Organic Coatings,2008,61(2-4):110-118
    [4] Bai C Y, Zhang X Y, Dai J B, et al. A new UV curable waterborne polyurethane: Effect ofC=C content on the film properties[J]. Progress in Organic Coatings,2006,55(3):291-295
    [5] Otts D B, Heidenreich E, Urban M W. Novel waterborne UV-crosslinkable thiol-enepolyurethane dispersions: Synthesis and film formation[J]. Polymer,2005,46(19):8162-8168.
    [6]苏琳,姜浩,罗凯,等. UV固化水性高支化聚酯[J].热固性树脂,2004,19(02):17-22.
    [7]刑宏龙,黄岩峰.水性紫外光固环氧丙烯酸酯涂料[J].涂料工业,2000,30(5):18-19.
    [8]杨建文,曾兆华,陈用烈.丙烯酸树脂接枝聚氨酯光固化水性体系研究[J].材料研究学报,2000(01):109-112
    [9]湘云,钟慧,金养智. UV固化水性环氧丙烯酸酯的研究[J].信息记录材料,2000,1(3):17-19
    [10]林剑雄,王小妹,麦堪成.水性光固化涂料的研究进展[J].涂料工业,2002(10):32-36
    [11]韩仕甸,金养智. UV固化水性树脂的研究进展[J].信息记录材料,2001(02)
    [12]魏燕彦.水性紫外光固化聚氨酯丙烯酸酯[D].杭州:浙江大学,2005
    [13] Yen M S, Cheng K L. The effects of soft segments on the physical properties and watervapor permeability of H12MDI-PU cast films[J]. Journal of Applied Polymer Science,1994,52:1707-1717
    [14] Desai S, Thakore I M, Sarawade B D, et al. Effect of polyols and diisocyanates onthermo-mechanical and morphological properties of polyurethanes[J]. EuropeanPolymer Journal,2000,36:711-725
    [15]陈乐培,王海杰,武志明.光敏树脂及其紫外光固化涂料发展新动向[J].热固性树脂,2003(05):33-36
    [16]杨建文,曾兆华,王志明,等.紫外光固化水性涂料的发展概况[J].信息记录材料,2001(01):32-35
    [17] Liu D, Zeng S M, Yao C, et al. Synthesis and properties of hyperbranched aqueouspoly(urethane-urea) via A(2)+bB(2) approach[J]. POLYMER BULLETIN,2009,63(2):213-224
    [18] Gao C, Yan D. Hyperbranched polymers: from synthesis to applications[J]. Progress inPolymer Science,2004,29(3):183-275
    [19]杨建文,曾兆华,陈用烈.光固化涂料及应用[M].北京:化学工业出版社,2003.
    [20]白晨艳.基于PEDA的可UV固化水性聚氨酯分散体的合成及改性研究[D].合肥:中国科学技术大学,2008
    [21]王德海,江根.紫外光固化材料-理论与应用[M].北京:科学出版社,2001
    [22] Holman R. Radcure Chemistry: Radiation cured industrial processes[C]. London,1996.
    [23]王建国,滕人瑞.辐射固化-面向21世纪的绿色工业的新技术[J].原子核物理评论,2000(12):243-247
    [24]郝才成,肖新颜,万彩霞.新型紫外光固化涂料的研究进展[J].化工新型材料,2008,34(01):4-6
    [25]洪啸吟,冯汉保.光固化体系与光固化粘合剂的发展[J].中国胶粘剂,1994,3(2):47-52
    [26] Stowe R W. Ultraviolet curing technology and recent advances: Radiation curedindustrial processes[C]. London,1996
    [27]武利民.涂装技术基础[M].北京:化学工业出版社,1999
    [28] R J, Seidel. Application Field and Growth of Radiation Curing in Europe gad: Tech. Asia95Conference Proceedings[C]. Guilin China,1995
    [29]居学成,哈鸿飞.辐射固化技术应用现状及发展趋势[J].精细与专用化学品,1999(6):10-14
    [30]金养智.水性光固化材料[J].热固性树脂,2006(21):25-30
    [31]徐培林,张淑琴.聚氨酯材料手册[M].北京:化学工业出版社,2002
    [32]许戈文.水性聚氨酯[M].北京:化学工业出版社,2006
    [33]丛树枫,喻露如.聚氨酯涂料[M].北京:化学工业出版社,2003
    [34] Lorenz O, Budde V, Reinm ller K H. W rige Dispersionen anionischer Polyurethanemit Sulfonatgruppen[J]. Die Angewandte Makromolekulare Chemie,1980,87(1):35-48
    [35] Lorenz O, Budde V, Wirtz W. Investigation of the particle surface of anionicpolyurethane dispersions with COO-groups[J]. Die Angewandte MakromolekulareChemie,1979,83(1):113-127
    [36] Lorenz O, Hick H. Einflu von L sungsmitteln auf den Partikeldurchmesser vonDispersionen anionischer Polyurethanionomerer[J]. Die Angewandte MakromolekulareChemie,1978,72(1):115-123
    [37] Lorenz V O, Haulena F, Kleborn D. Zum kautschukelastischen verhalten vonpolyurethan-ionomeren[J]. Die Angewandte Makromolekulare Chemie,1973,33(1):159-175
    [38] Noble K. Waterborne polyurethanes[J]. Progress in Organic Coatings,1997,32(1-4):131-136.
    [39]黎庆安,孙东成.鞋用水性聚氨酯胶粘剂的研究进展[J].中国胶粘剂,2005,14(9):46-49
    [40] Kim B K. Aqueous polyurethane dispersions[J]. Colloid and Polymer Science,1996,274:599-611
    [41] Chen Y, Chen Y. Aqueous dispersions of polyurethane anionomers: Effects ofcountercation[J].1992,46(3):435-443
    [42]李树英,段洪东,秦大伟,等.紫外光固化水性树脂的研究与应用[J].高分子通报,2007(07):45-49
    [43]张高文,熊臻力.紫外光固化聚氨酯丙烯酸酯涂料的研究进展[J].中国涂料,2008(04):29-33.
    [44]许戈文,鲍俊杰,钟达非.水性聚氨酯功能性研究进展[J].涂料技术与文摘,2007(03):1-5,8
    [45]杨小毛.光固化聚氨酯改性丙烯酸系乳液的研究[J].功能高分子学报,1999,12(3):285-288
    [46]刘晓暄,杨建文,黄劲涛,等.光固化聚氨酯丙烯酸酯涂层的固化动力学及其光稳定化研究[J].功能高分子学报,2001,14(04):387-392
    [47]杨建文,曾兆华,王志明,等.扩链型光固化聚氨酯丙烯酸酯水性体系研究[J].高分子材料科学与工程,2003(02):199-202
    [48] WANG Z, GAO D, YANG J, et al. Synthesis and characterization of W-curablewaterborne polyurethane-acrylate ionomers for coatings[J]. Journal of Applied PolymerScience,1999,73:2869-2876
    [49]杨建文,曾兆华,王志明,等.聚甲基丙烯酸酯改性聚氨酯光固化水性体系研究[J].应用化学,2001(08):631-635
    [50]袁慧雅,王志明,曾兆华,等.聚氨酯丙烯酸酯光固化反应动力学的研究[J].热固性树脂,2001(03):5-8
    [51]白湘云.水性感光树脂的合成与性能的研究[D].北京:北京化工大学,2000.
    [52]韩仕甸.紫外光固化水性聚氨酯丙烯酸酯的合成及性能研究[D].北京:北京化工大学,2001
    [53]韩仕甸,金养智.紫外光固化水性聚酯型聚氨酯丙烯酸酯的合成及性能[J].北京化工大学学报,2001,28(04):20-22
    [54]陈梦茹. UV固化水性超支化聚酯的合成及性能研究[D].北京:北京化工大学,2002
    [55]韩仕甸,金养智,王菲.水性紫外光固化体系中光固化速度的影响因素[J].北京化工大学学报,2002,29(01):30-32
    [56]魏燕彦.水性紫外光固化聚氨酯丙烯酸酯的干燥与固化过程[J].高分子材料科学与工程,2008(03):71-74
    [57] Wei Y, Luo Y, Li B, et al. Water-soluble UV curable urethane methyl acrylatecoating: preparation and properties[J]. Journal of Zhejiang University Science,2004,5(3):906-911
    [58]魏燕彦,罗英武,李宝芳,等.水稀释型UV固化聚氨酯丙烯酸酯齐聚物的合成和表征[A].2003全国高分子学术论文报告会论文集[C].杭州,2003:A474-A475.
    [59]杨小毛,杨建文,陈用烈,等.光固化氨酯改性丙烯酸系水性涂料[J].功能高分子学报,1999(03):285-288
    [60]袁慧雅,黄亮,曾兆华,等.烯丙基醚改性光固化聚氨酯丙烯酸酯[J].应用化学,2003(08):744-748
    [61]张玲,曾兆华,杨建文,等.盐酸含量对光固化聚氨酯丙烯酸酯/SiO_2杂化材料结构和性能的影响[J].功能高分子学报,2003(04):446-450
    [62]齐宇颂,曾兆华,杨建文,等.有机硅改性聚氨酯丙烯酸酯光-潮气双固化体系[J].应用化学,2004(09):918-922
    [63]张玲,曾兆华,杨建文,等.溶胶凝胶法制备光固化聚氨酯丙烯酸酯杂化材料的研究[J].功能高分子学报,2004(03):442-446
    [64]瞿启云. UV固化水性聚氨酯丙烯酸酯树脂[D].合肥:安徽大学,2007.
    [65]瞿启云,许戈文,周海峰,等. UV固化聚氨酯丙烯酸酯胶粘剂预聚体的合成及其反应动力学[J].安徽化工,2006,32(6):19-21
    [66]沈效峰,郁建华.光交联型水性聚氨酯乳液的研究[J].聚氨酯工业,1998,13(2):9-11
    [67] Pan H, Chen D. A strategy for preparation of anionic polyurethane/acrylate emulsions[J].Polymer-Plastics Technology and Engineering,2008,47(6):595-599
    [68] Bai C, Zhang X, Dai J. Synthesis and Characterization of a New UV Cross-linkableWaterborne Siloxane-polyurethane Dispersion[J].2007,44(11):1203-1208
    [69] Zafar F, Sharmin E. Polyurethane[M]. InTech,2012
    [70] Song M, Kim J, Suh K. Preparation of UV-curable emulsions using PEG-modifiedurethane acrylates: The effect of nonionic and anionic groups[J]. Journal of AppliedPolymer Science,1996,62(11):1775-1782
    [71] Song M, Kim J, Suh K. Preparation of UV-curable emulsions using PEG-modifiedurethane acrylates and their coating properties[J]. Journal of Coatings Technology,1996,68(862):43-50
    [72] Park N, Suh K, Kim J. Preparation of UV-curable PEG-modified urethane acrylateemulsions and their coating properties. II. Effect of chain length of polyoxyethylene[J].Journal of Applied Polymer Science,1997,64(13):2657-2664
    [73] Suh K, Chon Y, Kim J. Preparation of UV curable emulsions using PEG-modifiedurethane acrylates and their coating properties III: Effects of epoxy acrylate[J]. PolymerBulletin,1997,38(3):287-294
    [74] Kim J W, Suh K D. Amphiphilic urethane acrylate hydrogels having heterophasic gelstructure: swelling behaviors and mechanical properties[J]. Colloid&Polymer Science,1998,276(4):342-348
    [75] Kim J, Suh K. Solution behavior of urethane acrylate anionomer synthesized withdimethylolpropionic acid: Viscosity prediction through rheological equation of state[J].Journal of Applied Polymer Science,1998,69(6):1079-1088
    [76] Lee C, Kim J, Suh K. Water-soluble urethane acrylate ionomers: Effect of molecularstructure on ultraviolet coating properties[J]. Journal of Applied Polymer Science,2000,78(11):1853-1860
    [77] Danes W D, Hutchison I. Development and application of waterborne radiation curablecoatings[J]. ACS Symposium Series,1997,663:81-94
    [78] H R J, Y L C, W K J. Water-soluble urethane acrylate ionomers and their ultraviolet (uv)curing: prevention of moisture absorption[J]. Journal of Macromolecular Science, Part A:Pure and Applied Chemistry,1999,36(3):389-403
    [79] Lee M H, Choi H Y, Jeong K Y, et al. High performance UV cured polyurethanedispersion[J]. Polymer Degradation and Stability,2007,92:1677-1681
    [80] Yang Z, Wicks D A, Hoyle C E, et al. Newly UV-curable Polyurethane Coatings Preparedby Multifunctional Thiol-and Ene-terminated Polyurethane Aqueous DispersionsMixtures. I. Preparation and Characterization[J]. Polymer,2009,50(7):1717-1722
    [81] Lee M H, Jang M K, Kim B K. Surface modification of high heat resistant UV curedpolyurethane dispersions[J]. European Polymer Journal,2007,43:4271-4278
    [82] Ahn B U, Lee S K, Lee S K, et al. High performance UV Curable polyurethanedispersions by incorporating multifunctional externder[J]. Progress in Organic Coatings,2007,60(1):17-23
    [83] Kim B K, Ahn B U, Jeong H M, et al. Design and properties of UV cured polyurethanedispersions[J]. Progress in Organic Coatings,2006,55(2):194-200
    [84]谭惠民,罗运军.超支化聚合物[M].北京:化学工业出版社,2005
    [85] Kim Y H, Webster O W. Hyperbranched polyphenylenes[J]. Polymer Preparation,1988,29(2):310-311
    [86] Hult A, Johansson M, Malmstr m E. Hyperbranched Polymers[J]. Advances in polymerscience,1999,143:1-34
    [87]魏焕郁,施文芳.超支化聚合物的结构特征、合成及其应用[J].高等学校化学学报,2001,22(02):338-344
    [88]张传海,李化毅,张明革,等.超支化聚合物制备方法的研究进展[J].高分子通报,2008(02):16-26
    [89]罗运军,夏敏,王兴元.超支化聚酯[M].北京:化学工业出版社,2009
    [90] Hsieh T, Tiu C, Simon G P. Rheological behaviour of polymer blends containing onlyhyperbranched polyesters of varying generation number[J]. Polymer,2001,42(18):7635-7638
    [91] Mourey T H, Turner S R, Rubenstein M, et al. Unique behavior of dendriticmacromolecules: intrinsic viscosity of polyether dendrimers[J]. Macromolecules,1992,25(9):2401-2406
    [92]黄发荣,焦杨声,郑安呐.不饱和聚酯树脂[M].北京:化学工业出版社,2001.
    [93] Chattopadhyay D K, Raju K. Structural engineering of polyurethane coatings for highperformance applications[J]. PROGRESS IN POLYMER SCIENCE,2007,32(3):352-418
    [94] Asif A, Shi W. Synthesis and properties of UV curable waterborne hyperbranchedaliphatic polyester[J]. European Polymer Journal,2003,39(5):933-938
    [95] Asif A, Hu L H, Shi W F. Synthesis, rheological, and thermal properties of waterbornehyperbranched polyurethane acrylate dispersions for UV curable coatings[J]. Colloid andPolymer Science,2009,287(9):1041-1049
    [96]陈梦茹,龙宇,金养智.含光敏基团的光固化水性超支化聚酯的合成与性能研究[J].影像技术,2003(02):18-21
    [97] Malmstroem E, Johansson M, Hult A. Hyperbranched Aliphatic Polyesters[J].1995,28(5):1698-1703
    [98] MalmstrêmE, A H. Kinetics of formation of hyperbranched polyesters based on2,2-bis(methylol)propionic acid[J]. Macromolecules,29(4):1222-1228
    [99] Johansson M, Glauser T, Rospo G. Radiation curing of hyperbranched polyesterresins[J]. Journal of Applied Polymer Science,2000,75:612-618
    [100] Johansson M, Glauser T, Jansson A, et al. Design of coating resins by changing themacromolecular architecture: solid and liquid coating systems[J]. Progress in OrganicCoatings,2003,48(2-4):194-200
    [101] Samuelsson J, Sundell P E, Johansson M. Synthesis and polymerization of a radiationcurable hyperbranched resin based on epoxy functional fatty acids[J].Progress in Organic Coatings,2004,50(3):193-198
    [102] Florian P, Jena K K, Allauddin S, et al. Preparation and Characterization of WaterborneHyperbranched Polyurethane-Urea and Their Hybrid Coatings.[J]. Ind. Eng. Chem. Res.,2010,49(10):4517-4527
    [103] Schwalm R, Haubling L, Reich W, et al. Tuning the mechanical properties of UVcoatings towards hard and flexible systems[J]. Progress in Organic Coatings,1997,32(1-4):191-196
    [104] Asha S K, Thirumal M, Kavitha A, et al. Synthesis and curing studies of PPG basedtelechelic urethane methacrylic macromonomers[J]. European Polymer Journal,2005,41(1):23-33
    [105]吕维忠.脂肪族水性聚氨酯树脂的合成和性能研究[J].涂料工业,2003(2):35-37.
    [106] HG/T2409-92.聚氨酯预聚体中异氰酸酯基含量的测定[S].1992
    [107]潘敏琪.异佛尔酮二异氰酸酯在氨基甲酸酯反应中的选择性[J].化工新型材料,27(1):41-43
    [108] R B, A H, W P H. Ideally selective diisocyanate building blocks New perspectives fordendrimers and coating binders[J]. Progress in Organic Coatings,2003,48(2-4):164-176
    [109]李晓莉,张永宏,张晓丰.三氧化二钕催化合成对硝甲基苯甲酸乙酯[J].精细石油化工,2006,23(2):46-47
    [110]王旭珍,王玉宝,唐清华,等.脂肪酸酰胺磺基琥珀酸单酯盐的合成与性能[J].烟台师范学院学报(自然科学版),2003,19(2):96-101
    [111]陈珊珊,王强,陈晓博.邻苯二甲酸酐一缩二乙二醇酯的合成[J].工业催化,2008,16(2):45-48
    [112]杨超,王云普,刘汉功,等.甲基丙烯酸聚乙二醇单酯的合成与表征[J].化工中间体,2008(1):1-3,11
    [113]陈耀,杨义雄.高效酰化催化剂4-DMAP[J].海峡药学,2001,13(1):101
    [114] Huang J, Zhang L N. Effects of NCO/OH molar ratio on structure and properties ofgraft-interpenetrating polymer networks from polyurethane and nitrolignin[J].POLYMER,2002,43(8):2287-2294.
    [115] Hong C, You Y, Liu J, et al. Dendrimer-star polymer and block copolymer prepared byreversible addition-fragmentation chain transfer (RAFT) polymerization with dendriticchain transfer agent[J]. Journal of Polymer Science Part A: Polymer Chemistry,2005,43(24):6379-6393
    [116] Gao Q, Li H, Zeng X. Preparation and characterization of UV-curable hyperbranchedpolyurethane acrylate[J]. Journal of Coatings Technology and Research,2011,8(1):61-66
    [117] Zhang J, Hu C P. Synthesis, characterization and mechanical properties ofpolyester-based aliphatic polyurethane elastomers containing hyperbranched polyestersegments[J]. European Polymer Journal,2008,44(11):3708-3714
    [118]洪玲,王新灵,赵喜安,等.多检测凝胶渗透色谱技术在超支化聚氨酯表征中的应用[J].上海交通大学学报,2003,37(05):629-631,649
    [119] Czech P, Okrasa L, Boiteux G, et al. Polyurethane networks based on hyperbranchedpolyesters: Synthesis and molecular relaxations[J]. Journal of Non-crystalline Solids,2005,351(33-36):2735-2741
    [120] Kim Y H, Webster O W. Hyperbranched Polyphenylenest[J]. Macromolecules,1992,25(21):5561-5572
    [121] Kim B K, Lee J C. Waterborne polyurethanes and their properties[J]. Journal ofPolymer Science Part A: Polymer Chemistry,1996,34(6):1095-1104
    [122] Dieterich D. Aqueous emulsions, dispersions and solutions of polyurethanes; synthesisand properties[J]. Progress in Organic Coatings,1981,9(3):281-340
    [123] Jeon H T, Lee S K, Kim B K. Improved adhesion of waterborne polyurethanes byhybridizations[J]. The Journal of Adhesion,2008,84(1):1-14
    [124] Kim B K, Seo J W, Jeong H M. Morphology and properties of waterbornepolyurethane/clay nanocomposites[J]. European Polymer Journal,2003,39(1):85-91.
    [125]吴其晔,巫静安.高分子材料流变学[M].北京:高等教育出版社,2002
    [126] Liu D, Zeng S M, Yao C, et al. Synthesis and properties of hyperbranched aqueouspoly(urethane-urea) via A(2)+bB(2) approach[J]. Polymer Bulletin,2009,63(2):213-224
    [127] Madbouly S A, Otaigbe J U, Nanda A K, et al. Rheological behavior of aqueouspolyurethane dispersions: effects of solid content, degree of neutralization, chainextension, and temperature[J]. Macromolecules,2005,38(9):4014-4023
    [128] Nanda A K, Wicks D A, Madbouly S A, et al. Effect of ionic content, solid content,degree of neutralization, and chain extension on aqueous polyurethane dispersionsprepared by prepolymer method[J]. Journal of Applied Polymer Science,2005,98(6):2514-2520
    [129] Kim B, Shin J. Modification of waterborne polyurethane by forming latexinterpenetrating polymer networks with acrylate rubber[J]. Colloid and Polymer Science,2002,280(8):716-724
    [130]叶代勇,周刘佳.纳米纤维素晶须用作水性聚氨酯的增稠流变剂[J].华南理工大学学报(自然科学版),2010,38(09):63-67,74
    [131]徐强,景浩,胡春圃,等.聚氨酯-丙烯酸酯水分散液的流变性能[J].华东理工大学学报,2001,27(01):56-59
    [132]张洁,张可达.紫外光固化聚氨酯丙烯酸酯树脂的流变行为[J].功能高分子学报,2000,13(02):199-203
    [133]周庆业,李涵,张邦华,等.聚氨酯乳液的的合成及流变性能[J].物理化学学报,1996,12(08):751-754
    [134]虞浩,袁荞龙,王得宁,等.紫外光固化水性聚氨酯丙烯酸酯分散液流变行为[J].合成橡胶工业,2004,27(03):168-171
    [135]石翔,徐冬梅,匡敏,等.紫外光固化聚氨酯丙烯酸酯树脂的合成及流变行为研究[J].高分子材料科学与工程,2003,19(01):124-127
    [136]王海花,沈一丁,费贵强,等.阳离子型自乳化端羟基硅油/聚氨酯微乳液的形态及流变性能[J].高分子学报,2007(04):321-326
    [137]袁荞龙,应圣康.硅溶胶在水性聚氨酯中的流变性能[J].功能高分子学报,1997,10(04):456-462
    [138] Yang Z L, Wicks D A, Hoyle C E, et al. Newly UV-curable polyurethane coatingsprepared by multifunctional thiol-and ene-terminated polyurethane aqueous dispersionsmixtures: Preparation and characterization[J]. Polymer,2009,50(7):1717-1722
    [139] Yin W, Zeng X, Li H, et al. Synthesis, photopolymerization kinetics, and thermalproperties of UV-curable waterborne hyperbranched polyurethane acrylate dispersions[J].Journal of Coatings Technology and Research,2011,8(5):577-584.
    [140]曾幸荣,尹文华,李红强,等.高固含量UV固化水性聚氨酯丙烯酸酯分散液及其制备方法[P].中国,2011-04-27
    [141]王武生.聚氨酯分散体粒径及粒径分布与粒径控制[J].涂料技术与文摘,2011(02):3-13.
    [142] Lee S K, Kim B K. High solid and high stability waterborne polyurethanes via ionicgroups in soft segments and chain termini[J]. Journal of Colloid and Interface Science,2009,336(1):208-214.
    [143] Cross M M. Rheology of non-Newtonian fluids: A new flow equation for pseudoplasticsystems[J]. Journal of Colloid Science,1965,20(5):417-437.
    [144] Einstein A. A new determination of molecular dimensions[J]. Annalen der Physik (ser.4),1906,19:289-306
    [145] Mooney M. The viscosity of a concentrated suspension of spherical particles[J]. Journalof Colloid Science,1951,6:162-170
    [146] Krieger I M, Dougherty T J. A mechanism for non-newtonian flow in suspensions ofrigid spheres[J]. Transactions of the Society of Rheology,1959,3(1):137-152
    [147] Madbouly S A, Otaigbe J U, Nanda A K, et al. Rheological Behavior ofPOSS/Polyurethane-urea Nanocomposite Films Prepared by Homogeneous SolutionPolymerization in Aqueous Dispersions[J]. Macromolecules,2007,40(14):4982-4991
    [148] Madbouly S A, Otaigbe J U. Rheokinetics of Thermal-Induced Gelation of WaterbornePolyurethane Dispersions[J]. Macromolecules,2005,38(24):10178-10184
    [149]邓锐,王智,英程琛,等.高固含量聚合物乳液流变性研究进展[J].高分子通报,2010(02):52-57
    [150] Jones D A R, Leary B, Boger D V. The rheology of a sterically stabilized suspension athigh concentration[J].1992,150(1):84-96
    [151]周持兴.聚合物流变实验与应用[M].上海:上海交通大学出版社,2003.
    [152]许元泽.高分子结构流变学[M].成都:四川教育出版社,1988
    [153] Decker C, Lorinczova I. UV-Radiation curing of waterborne acrylate coatings[J].Journal of Coatings Technology and Research,2004,1(4):247-256
    [154] Overbeek A. Polymer heterogeneity in waterborne coatings[J].2010,7(1):1-21.
    [155]林金娜,曾幸荣,侯有军,等.可UV固化的超支化聚氨酯丙烯酸酯的合成与表征(英文)[J].材料科学与工程学报,2008,26(01):27-31,34
    [156]林榕,林金娜,曾幸荣.活性单体对超支化聚氨酯丙烯酸酯的影响[J].聚氨酯工业,2008,23(02):26-28
    [157] Yang Z L, Wicks D A, Hoyle C E, et al. Newly UV-curable polyurethane coatingsprepared by multifunctional thiol-and ene-terminated polyurethane aqueous dispersionsmixtures: Preparation and characterization[J]. POLYMER,2009,50(7):1717-1722
    [158] Asif A, Shi W F, Shen X F, et al. Physical and thermal properties of UV curablewaterborne polyurethane dispersions incorporating hyperbranched aliphatic polyester ofvarying generation number[J]. Polymer,2005,46(24):11066-11078
    [159] Tryson G R, Shultz A R. A calorimetric study of acrylate photopolymerization[J].Journal of Polymer Science: Polymer Physics Edition,1979,17(12):2059-2075
    [160] Pappas S P. Radiation curing: Science and technology[M]. New York: Plenum Press,1992
    [161] Scherzer T, Decker U. Real-time FTIR-ATR spectroscopy to study the kinetics ofultrafast photopolymerization reactions induced by monochromatic UV light[J].Vibrational Spectroscopy,1999,19(2):385-398
    [162] Scherzer T, Langguth H. The effect of temperature on the induction period in thephotoinitiated polymerization of tripropylene glycol diacrylate[J]. Nuclear Instrumentsand Methods in Physics Research Section B: Beam Interactions with Materials andAtoms,2001,185(1-4):276-282
    [163]邓朝霞.紫外光固化环氧改性水性聚氨酯的合成与性能研究[D].广州:华南理工大学,2007
    [164]尹文华,吴璧耀. TMPE/E-44阳离子光固化研究[J].石油化工高等学校学报,2008,21(01):30-33
    [165] Decker C. Photoinitiated crosslinking polymerisation[J]. Progress in Polymer Science,1996,21(4):593-650
    [166] Hwang H D, Moon J I, Choi J H, et al. Effect of water drying conditions on the surfaceproperty and morphology of waterborne UV-curable coatings for engineered flooring[J].Journal of Industrial and Engineering Chemistry,2009,15(3):381-387
    [167] Decker C, Masson F, Schwalm R. How to speed up the UV curing of water-basedacrylic coatings[J]. Journal of Coatings Technology and Research,2004,1(2):127-136
    [168] Kim Y B, Kim H K, Yoo J K, et al. UV-curable polyurethane dispersion for cationicelectrodeposition coating[J]. Surface and Coatings Technology,2002,157(1):40-46
    [169] Masson F, Decker C, Jaworek T, et al. UV-radiation curing of waterbasedurethane-acrylate coatings[J]. Progress in Organic Coatings,2000,39(2-4):115-126
    [170] Andrzejewska E, Andrzejewski M. Polymerization kinetics of photocurable acrylicresins[J]. Journal of Polymer Science Part A: Polymer Chemistry,1998,36(4):665-673
    [171] Anseth K S, Decker C, Bowman C N. Real-Time Infrared Characterization of ReactionDiffusion during Multifunctional Monomer Polymerizations[J]. Macromolecules,1995,28(11):4040-4043
    [172] Mehnert R. Degree of Cure—Measurement and Process Control: RadTech Europe2001[C]. Basle, Switzerland,2001
    [173] Decker C. Kinetic study of light-induced polymerization by real-time UV and IRspectroscopy[J]. Journal of Polymer Science Part A: Polymer Chemistry,1992,30(5):913-928
    [174] Kou H G, Asif A, Shi W F. Photopolymerization kinetics of hyperbranched acrylatedaromatic polyester[J]. Journal of Applied Polymer Science,2003,89(6):1500-1504
    [175] Decker C. The use of UV irradiation in polymerization[J]. Polymer International,1998,45(2):133-141
    [176] Scherzer T, Decker U. The effect of temperature on the kinetics of diacrylatephotopolymerizations studied by Real-time FTIR spectroscopy[J]. Polymer,2000,41(21):7681-7690
    [177] Fouassier J. Radiation curing in polymer science and technology[M]. London: Elsevier,1993
    [178] Shi J, Yang X, Han Q, et al. Synthesis and characterization of polyurethane-coatedpalygorskite[J]. Applied Clay Science,2009,46(3):333-335
    [179] Sabino M A, Feijoo J L, Müller A J. Crystallisation and morphology ofpoly(p-dioxanone)[J].Macromolecular, Chemistry and Physics,2000,201(18):2687-2698
    [180] Andjeli S, Fitz B D. Study of reorientational dynamics during real-time crystallizationof absorbable poly(p-dioxanone) by dielectric relaxation spectroscopy[J]. Journal ofPolymer Science Part B: Polymer Physics,2000,38(18):2436-2448
    [181] Andjeli S, Jamiolkowski D, Mcdivitt J, et al. Time-resolved crystallization study ofabsorbable polymers by synchrotron small-angle X-ray scattering [J]. Journal of PolymerScience Part B: Polymer Physics,2001,39(1):153-167
    [182] von Fraunhofer J A, Storey R S, Stone I K, et al. Tensile strength of suture materials[J].Journal of Biomedical Materials Research,1985,19(5):595-600
    [183] Coutinho F M B, Delpech M C. Degradation profile of films cast from aqueouspolyurethane dispersions[J].2000,70(1):49-57
    [184] Coutinho F M B, Delpech M C, Alves T L, et al. Degradation profiles of cast films ofpolyurethane and poly(urethane-urea) aqueous dispersions based on hydroxy-terminatedpolybutadiene and different diisocyanates[J]. Polymer Degradation and Stability,2003,81(1):19-27
    [185]张彤,吴文健,胡碧茹.高官能度水性聚氨酯丙烯酸酯/纳米SiO_2杂化材料的制备及性能[J].国防科技大学学报,2010(01):51-56
    [186] Cakic S M, Stamenkovic J V, Djordjevic D M, et al. Synthesis and degradation profileof cast films of PPG-DMPA-IPDI aqueous polyurethane dispersions based on selectivecatalysts.[J]. Polym. Degrad. Stab.,2009,94(11):2015-2022
    [187] Ccaron E G, Cacute I B, Rek V. Thermal stability of polyurethane elastomers before andafter UV irradiation[J]. Journal of Applied Polymer Science,2001,79(5):864-873
    [188] Doyle C D. Estimating Thermal Stability of Experimental Polymers by EmpiricalThermogravimetric Analysis[J]. Analytical Chemistry,1961,33(1):77-79
    [189] Park S, Cho M. Thermal stability of carbon-MoSi2-carbon composites bythermogravimetric analysis[J]. Journal of Materials Science,2000,35(14):3525-3527
    [190] Park S, Kim H, Lee H, et al. Thermal Stability of Imidized Epoxy Blends Initiated byN-Benzylpyrazinium Hexafluoroantimonate Salt[J]. Macromolecules,2001,34(22):7573-7575
    [191] Wu C S, Liu Y L, Chiu Y C, et al. Thermal stability of epoxy resins containing flameretardant components: an evaluation with thermogravimetric analysis[J]. PolymerDegradation and Stability,2002,78(1):41-48
    [192] Kumar M N S, Siddaramaiah. Thermo gravimetric analysis and morphological behaviorof castor oil based polyurethane–polyester nonwoven fabric composites[J].2007,106(5):3521-3528
    [193] Cacute Z S P, Zavargo Z, Flyn J H, et al. Thermal degradation of segmentedpolyurethanes[J]. Journal of Applied Polymer Science,1994,51(6):1087-1095
    [194] Lee H K, Ko S W. Structure and thermal properties of polyether polyurethaneureaelastomers[J]. Journal of Applied Polymer Science,1993,50(7):1269-1280
    [195]陆昌伟,奚同庚.热分析质谱法[M].上海:上海科学技术文献出版社,2002
    [196] Horowitz H H, Metzger G. A New Analysis of Thermogravimetric Traces.[J]. AnalyticalChemistry,1963,35(10):1464-1468
    [197] Jong W, Pirone A, Ojtowicz M A W. Pyrolysis of miscanthus giganteus and woodpellets: TG-FTIR analysis and reaction kinetics[J]. Fuel,2003(82):1139-1147
    [198] Bassilakis R, Carangelo R M, Ojtowicz M A W. TG-FTIR analysis of biomasspyrolysis[J]. Fuel,2001(80):1765-1786
    [199] Herrera M, Wilhelm M, Matuschek G, et al. Thermoanalytical and pyrolysis studies ofnitrogen containing polymers[J]. Journal of Analytical and Applied Pyrolysis,2001,58–59:173-188
    [200] Fernández-Berridi M J, González N, Mugica A, et al. Pyrolysis-FTIR and TGAtechniques as tools in the characterization of blends of natural rubber and SBR[J].Thermochimica Acta,2006,444(1):65-70
    [201] Marcilla A, Gómez A, Menargues S. TG/FTIR study of the thermal pyrolysis of EVAcopolymers[J].2005,74(1-2):224-230
    [202] Cervantes-Uc J M, Espinosa J I M, Cauich-Rodriguez J V, et al. TGA/FTIR studies ofsegmented aliphatic polyurethanes and their nanocomposites prepared with commercialmontmorillonites[J].2009,94(10):1666-1677
    [203] Kulesza K, Pielichowski K, German K. Thermal decomposition of bisphenol A-basedpolyetherurethanes blown with pentane: Part I--Thermal and pyrolytical studies[J].Journal of Analytical and Applied Pyrolysis,2006,76(1-2):243-248
    [204] Lunghi A, Gigante L, Cardillo P, et al. Hazard assessment of substances produced fromthe accidental heating of chemical compounds[J]. Journal of Hazardous Materials,2004,116(1–2):11-21
    [205] Berbenni V, Marini A, Bruni G, et al. TG/FT-IR: an analysis of the conditions affectingthe combined TG/spectral response[J]. Thermochimica Acta,1995,258:125-133
    [206] Marini A, Berbenni V, Capsoni D, et al. Factors affecting the spectral response in aTG/FTIR experiments[J]. Applied Spectroscopy,1994(48):1468-1471
    [207] Pramoda K, Chung T, Liu S, et al. Characterization and thermal degradation ofpolyimide and polyamide liquid crystalline polymers[J]. Polymer Degradation AndStability,2000,67(2):356-374
    [208] Robert M. Silverstein Francis X. Webster David.有机化合物的波谱解析[M].上海:华东理工大学出版社,2007
    [209] Saunders J H. The Reactions of Isocyanates and Isocyanate Derivatives at ElevatedTemperatures[J]. Rubber Chemistry and Technology,1959,32(2):337-345
    [210] Saunders J H, Backus J K. Thermal Degradation and Flammability of UrethanPolymers[J]. Rubber Chemistry and Technology,1966,39(2):461-480
    [211] Dyer E, Wright G C. Thermal Degradation of Alkyl N-Phenylcarbamates[J]. Journal ofthe American Chemical Society,1959,81(9):2138-2143
    [212] Dyer E, Newborn G E. Thermal Degradation of Carbamates of Methylenebis-(4-phenylIsocyanate)1[J]. Journal of the American Chemical Society,1958,80(20):5495-5498.
    [213] Ohtani H, Kimura T, Okamoto K, et al. Characterization of polyurethanes byhigh-resolution pyrolysis-capillary gas chromatography[J]. Journal of Analytical andApplied Pyrolysis,1987,12(2):115-133

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700