用户名: 密码: 验证码:
一维半导体纳米材料的表面异质结构构建与性能调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维纳米材料由于其独特的物理、化学和机械性能,引起了研究人员的广泛关注。随着TiO2纳米线、纳米管及纳米带等合成和性能研究的开展,一维纳米二氧化钛在光催化、传感器、光电转化等领域展示了更广阔的应用前景。作为一种宽带隙半导体,TiO2光催化活性高,具有良好的化学稳定性和耐光腐蚀性,是比较理想的光催化剂,在新能源开发和环境保护等方面表现出了巨大的生命力。但是二氧化钛纳米带的活性相对较低,在一维TiO2纳米材料表面构建异质结构可以显著地提高其催化活性。构建异质结构主要机理包括能带匹配,P-N节,肖特基势垒和扩展光吸收窗口等。一维纳米材料表面异质结构概念同样也可以推广至其它一维纳米材料,比如在一维硫化镍纳米材料表面构建异质结构,可以获得加强的电致产氧和超级电容器等性能。
     本论文的主要内容如下:
     1.分别采用碱热法、酸热法和模板法水热合成单晶锐钛矿TiO2纳米带,多形貌单晶金红石纳米材料和多晶锐钛矿纳米管,获得了相应的紫外光催化活性,并探讨了合成机理。由于钛酸和TiO2(B)晶体结构的相似性和一维结构限制作用,钛酸纳米带到锐钛矿纳米带的相转变必须经过TiO2(B)中间相的过渡过程。由此构建的TiO2(B)/锐钛矿异质结构具有合适的能带匹配,获得了加强的光催化活性。同样,由于形貌限制效应和晶体结构差别性,TiO2纳米带具有非常好的热稳定性,直到1000℃才开始从锐钛矿转化为金红石相。接着,以钛酸纳米带为模板,利用氟化钛与钛酸之间的反应,构建多晶锐钛矿纳米管,其光催化活性明显优于TiO2纳米带。最后,采用简单的酸热法合成各种复杂结构的金红石相TiO2,如微米球,纳米花,纳米枝和纳米带等。在未添加任何表面活性剂和催化剂的情况下,只通过改变盐酸浓度,就可以得到上述不同形貌的纳米氧化钛。微球和纳米花都是由金红石纳米棒组成,纳米棒沿着(110)面生长。在金红石纳米树中,“树干”沿着(110)面生长,“树枝”在“树干”上成核生长。作者首次通过简单的水热法合成结晶完好的金红石纳米带。详细地讨论了合成机理,反应溶液中金红石的晶核数量和质量决定了不同的微观结构。
     2.通过酸腐蚀水热处理和紫外光还原法分别制备了单异质结构TiO2纳米颗粒/TiO2纳米带(TiO2NP/TiO2NB)和双异质结构Ag纳米颗粒/TiO2纳米颗粒/TiO2纳米带(Ag/TiO2NP/TiO2NB)。XRD和TEM结果表明TiO2NP/TiO2NB异质结构的形成是一种溶解再结晶过程。双异质结构明显地提高了TiO2纳米带的光催化活性,光催化反应30min,甲基橙降解率为100%。光催化性能的提高主要归因于异质结构的能带匹配和肖特基势垒。同时,这种二氧化钛异质结构纳米带具有良好的乙醇气敏特性。利用改进的造纸工艺,以TiO2异质结构纳米带为原料,制备了三维多孔纳米纸。纳米纸应用于液相和气相连续光催化,具有高效的催化效果,简化了光催化回收工艺。
     3.利用简单化学沉淀法在TiO2纳米带上负载Ag2O纳米颗粒,构成Ag2O/TiO2纳米带异质结构。Ag2O/TiO2纳米带异质结构具有高的紫外和可见光催化活性,分别是二氧化钛的5倍和9倍。在紫外光下,氧化银作为电子吸收剂捕获TiO2的光致电子,抑制光致电子空穴的复合,提高了光催化活性。因此,紫外光下,Ag2O/TiO2纳米带异质结构的光催化活性不稳定,会被逐渐还原成Ag/TiO2纳米带异质结构。在可见光下,氧化银纳米颗粒作为可见光敏化剂增加可见光吸收,提高二氧化钛纳米带光催化活性。同时,我们发现通过简单地物理混合氧化银纳米颗粒和二氧化钛纳米带,可以得到Ag2O/TiO2纳米带异质结构,光催化活性与化学法得到的异质结构相似。这主要是因为两种纳米材料带有相反的电荷,并且具有较高的表面活性,通过静电自组装形成有效的异质结构。最后,通过对Ag2O/TiO2纳米带异质结构表面进行简单地硫化处理,形成Ag2O@Ag2S2O7/TiO2纳米带核壳异质结构。虽然这种异质结构的紫外光催化活性有少许降低,但是催化稳定性显著提高,归因于Ag2S2O7层的保护和限制作用。在可见光下,由于Ag2O和Ag2S2O7之间的能带匹配,Ag2O@Ag2S2O7/TiO2纳米带核壳异质结构具有更高的可见光催化活性。
     4.通过化学沉淀法和还原法在TiO2纳米带表面构建了PdO/TiO2和Pd/TiO2纳米带异质结构,研究了半导体负载的能带匹配和贵金属负载的肖特基势垒对于TiO2纳米带光催化和气敏活性影响的差异性。合成的PdO和Pd纳米颗粒小于3nm,均匀分散在二氧化钛纳米带上。PdO/TiO2光催化活性高于Pd/TiO2,而气敏特性低于Pd/TiO2。PdO/TiO2紫外光催化活性是二氧化钛纳米带的大约3倍。因此,在光催化体系中,通过半导体构建的能带匹配比通过贵金属构建的肖特基势垒更为有效。在气敏测试中,结果正好相反。这是由于Pd纳米颗粒比PdO纳米颗粒对于酒精分子具有更高的活性,有利于酒精分子的吸附分散,调节了TiO2米带上的电荷分布。最后,PdO/TiO2和Pd/TiO2纳米带两种异质结构具有催化氧化苯醇成苯醛的较好的转化率和选择性。
     5.通过化学还原法,在TiO2纳米带上负载尺寸大约3.3nm的Pt纳米颗粒,构建Pt/TiO2纳米带异质结构。Pt纳米颗粒的氧化还原反应使Pt/TiO2纳米带异质结构在黑暗中能够部分降解甲基蓝分子,显著地提高总体催化活性。另外由于肖特基势垒作用,发现Pt/TiO2纳米带异质结构具有加强的紫外光催化活性。最后,通过压片工艺,制备了Pt/TiO2多孔片,具有高效的降解甲基蓝的性能,简化了催化剂回收工艺,具有潜在的应用价值。
     6.以酸腐蚀处理的TiO2纳米带为基体,采用水热法首次合成了MoS2纳米片/TiO2纳米带三维异质结构。MoS2纳米片非常薄,少于8层,厚度小于5nm。合成的MoS2纳米片/TiO2纳米带异质结构具有高效的光解水制氢效率和稳定性。当硫化钼负载量为50wt%时,得到最优的产氢量为1.6mmol h-1g-1,显著地高于二氧化钛纳米带和硫化钼纳米片产氢能力,同时光催化反应12h未见异质结构催化活性降低。另外,这种异质结构具有良好的吸附和光催化降解有机染料的能力。MoS2纳米片/TiO2纳米带三维异质结构对罗丹明B的吸附量为103mg/g,这主要归因于硫化钼的片状和层状结构。同时比较了异质结构对罗丹明B光催化降解活性的影响,MoS2和TiO2之间的能带匹配抑制了光致电子空穴的复合,从而提高了光催化降解有机物的效率,明显高于两者的混合物。
     7.采用水热法在泡沫镍电极上合成了Ni3S2纳米棒和Ni3S2纳米棒@Ni(OH)2纳米片核壳异质结构,并研究了其在电致产氧和超级电容器方面的应用。在泡沫镍上合成Ni3S2纳米棒复合电极具有很好的电解水产氧性能,产氧过电势仅为214mV(基于起始产氧电位),同时具有较好的稳定性,连续催化10h未见催化活性明显降低。另外通过简单的改变反应时间,可以得到Ni3S2纳米棒@Ni(OH)2纳米片/石墨烯3D电极异质结构,具有高的比电容(1277F/g at2mV/s和1037.5F/g at5.1A/g)和面积电容(4.7F/cm2at2mV/s和3.85F/cm2at19.1mA/cm2),并且具有很好的稳定性,循环2000圈后,电容值维持在初始值的99.1%。高性能归因于异质结构中三种组分的协调作用,3D石墨烯作为电极有效地收集并快速传输电荷,Ni3S2纳米棒能够有效地收集和传输来在Ni(OH)2纳米片的电荷,Ni(OH)2纳米片具有很高的比表面积和理论电容。
     综上所述,本毕业论文采用水热法合成一维TiO2和Ni3S2纳米材料,并构建表面异质结构,研究其在光催化,气敏,光解水和超级电容器等领域的应用。基于一维纳米材料的表面异质结构包括TiO2纳米颗粒/TiO2纳米带,TiO2(B)/TiO2纳米带,Ag/TiO2纳米带,Ag2O/TiO2纳米带,Ag2S2O7@Ag2O/TiO2纳米带,Pd/TiO2纳米带,PdO/TiO2纳米带,Pt/TiO2纳米带,MoS2纳米片/TiO2纳米带和Ni3S2纳米棒@Ni(OH)2纳米片,研究比较异质结构对于一维纳米材料性能的影响,并探讨相关机理。
One-dimensional titanium dioxide nanomaterials have shown many promising applications in photocatalysis, electrochemistry, solar cells and sensors. Among some of the unique properties, the movement of electrons and holes is primarily governed by the quantum confinement, while the transport properties related to electrons and photons are affected by their ID geometry. However, the photocatalytic activity of TiO2nanobelts is relatively low compared to the spherical TiO2nanoparticles, due to the fewer surface active sites and faster recombination of photogenerated electron-hole pairs. The growth of heterostructures with designed components and morphology is one of the most important strategies for the development of advanced nanomaterials. Formation of heterostructures can effectively modulate the charge transfer between the two phases, which is a critical factor that affects the efficiency of heterogeneous reactions. At last, the concept "surface heterostructure based on one dimensional nanomaterial" has been applied on the nickel sulfide nanorod obtained by simple hydrothermal treatment, which have enhanced performance in oxygen evolution reaction (OER) and supercapacitor.
     The main conclusions are as followings:
     1. The phase transformations among H2Ti3O7, TiO2(B), anatase and rutile nanobelts were carried out by heat-treating H2Ti3O7nanobelts at different temperatures. In this process, TiO2(B)/anatase interface heterostructure nanobelts were prepared by consecutive partial phase transformation processes, which have an enhanced photocatalytic ability comparing with pure TiO2(B) and anatase nanobelts. Anatase nanobelts have a good thermal stability for the crystal phase and nanostructures up to1000℃due to their monocrystal speciality. At the second part, the anatase nanotubes were obtained by hydrothermal method using H2Ti3O7nanobelts as template, which has enhanced photocatalytic activity. In the last part, rutile TiO2with complex nanostructures, such as microspheres, nanoflowers, nanotrees and nanobelts, can be successfully synthesized via a low-temperature acid-hydrothermal process without any structure-directing agents. The results demonstrate that the morphologies of rutile TiO2nanocrystals can be controlled by the hydrochloric acid concentration. The synthesis mechanism was discussed, which implied that the amount and quality of rutile TiO2crystal nucleus in the initial acid-hydrothermal solution play a key role in the formation different nanostructures. This synthesis method has demonstrated that it is possible to design complex and hierarchical nanostructures by a facile acid-hydrothermal approach, which is surely to have new applications in photocatalysis, photoelectricity and sensor fields.
     2. Single heterostructure Ti2nanobelts (TiO2P/TiO2B) and double heterostructure TiO2nanobelts (Ag/TiO2NP/TiO2NB) are prepared by the acid-assisted hydrothermal method and a photo-reduction method, respectively. The XRD and HRTEM results proved that the formation mechanism of TiO2NP/TiO2NB is a dissolution-recrystallization from H2Ti3O7nanobelts to TiO2nanoparticles on the surface of nanobelts. The photocatalytic results show that double heterostructure TiO2nanobelts exhibit a much higher photocatalytic activity than common variety TiO2nanobelts and single heterostructure TiO2nanobelts. The enhancement of photocatalytic activity is attributed to energy band matching and Schottky barrier effect. Continuous-flow photocatalysis based on paper-like nanosheet fabricated of TiO2nanobelt heterostructures is carried out, which has an effective photocatalytic performance. For Ag/TiO2NP/TiO2NB, the complete decomposition of100mL of25mg/L MO aqueous solution need only40min with a low-energy ultraviolet lamp (36W), which also eliminates the recovery processing. Finally, the TiO2nanobelts with different heterostructures have a high gas sensitive property and short respond time for ethanol gas.
     3. Ag2O/TiO2nanobelts heterostructure were prepared by chemical precipitating Ag2O nanoparticles on TiO2nanobelts, which with high activity driven by both UV and visible light for the degradation of MO. Under UV light irradiation, Ag2O nanoparticles as an electron absorbing agent scavenged the valence electrons of TiO2nanobelts to enhance electron-hole separation. Under visible light irradiation, Ag2O nanoparticles on TiO2nanobelts as visible light active component enhanced Ag2O/TiO2heterostructure photocatalytic activity At the same time, electrostatic self-assembly of Ag2O/TiO2heterostructures proceeded by physical mixing Ag2O nanoparticles with TiO2nanobelts. A direct evidence of the electrons produced from TiO2nanobelts flow to Ag2O nanoparticles was observed by XPS analysis. At last, the photocatalytic activity of Ag2O/TiO2heterostructure can be stabilized by surface vulcanization to form into Ag2O@Ag2S2O7/TiO2heterostructure, which has better photocatalytic stability under UV light irradiation and enhanced photocatalytic activity under visible light irradiation.
     4. PdO/TiO2and Pd/TiO2nanobelt heterostructures were constructed by modifying PdO and Pd nanoparticles with a small size of1.3±0.4nm and1.6±0.5nm on the surface of TiO2nanobelts, which had enhanced photocatalytic activity under UV light irradiation and gas sensitivity for ethanol gas. PdO/TiO2nanobelts exhibited the best photocatalytic activity in the decomposition of methyl orange aqueous solution under UV light irradiation. The corresponding decomposition ratio was100%in20min, which was more than about3-fold as fast as that of the common variety TiO2nanobelts. At the same time, the PdO/TiO2nanobelts exhibited the highest gas catalytic activity (86.1%) and selectivity (94.66%) in the oxidation of benzyl alcohol to benzaldehyde. The gas sensitive performance for ethanol vapor increased in the order of PdO/Corroded-TiO2nanobelts, TiO2nanobelts, Corroded-TiO2nanobelts and Pd/Corroded-TiO2nanobelt heterostructures. The enhanced photocatalytic activity of PdO/TiO2and Pd/TiO2nanobelt heterostructures were attributed to the energy band matching and P-N junction effect for PdO/TiO2nanobelt and the Schottky Barrier effect for Pd/TiO2nanobelt, respectively. The "electronic" and "chemical" mechanisms proposed the formation of the nano-Schottky barriers between Pd nanoparticles and TiO2nanobelts accompanying ethanol adsorption and desorption on the electrocatalytically active surface of Pd nanoparticles.
     5. PtNPs/TiO2NB heterostructures were constructed by modifying Pt NPs with size of3.3±0.8nm on the surface of TiO2nanobelts. The photocatalytic activity of PtNPs/TiO2NB heterostructures (0.033mg/min) is more than3-fold as fast as that of the TiO2nanobelts (0.011mg/min). The enhanced photocatalytic activity of PtNPs/TiO2NB heterostructure is attributed to not only the pre-catalytic reaction of Pt NPs in dark but also the Schottky Barrier effect between Pt NPs and TiO2nanobelts. In addition, the wafer composed of PtNPs/TiO2NB with hierarchical porous structure simplifies the recovery process of catalysts.
     6. TiO2nanobelts@MoS2nanosheets (TiO2@MoS2) heterostructure with3D hierarchical structure was prepared for the first time via the hydrothermal reaction by using the TiO2nanobelts with the rough surface as the template. The TiO2@MoS2heterostructure showed an excellent photocatalytic hydrogen production activity, giving the highest hydrogen production rate of1.6mmol h-1g-1when50wt%of MoS2nanaosheet was loaded on the TiO2nanobelts. In addition, the TiO2@MoS2 heterostructure showed the excellent performance in the adsorption and photocatalytic decomposition of organic dyes. It is believed that the matched energy band of TiO2@MoS2heterostructure facilitates the charge transfer and suppresses the photoelectron-hole recombination, leading to the enhanced photocatalytic hydrogen production and photocatalytic degradation activity of organic materials.
     7. The large-amount Ni3S2/Ni, i.e. the single-crystal Ni3S2nanorods grown on the surface of nickel foam, was synthesized by the simple hydrothermal reaction. The novel Ni3S2/Ni composite electrode exhibited excellent OER activity with a small
     overpotential of~214mV based on the onset of catalytic current and high stability with
     large anodic currents. At the same time, the large-amount Ni3S2@Ni(OH)2/3DGN, i.e. Ni(OH)2nanosheets coated on the single-crystal Ni3S2nanorods grown on the surface of3D graphene network, was synthesized by a simple one-step hydrothermal reaction. By controlling of the reaction time, the different composites and nanostructures are obtained, i.e., Ni3S2/3DGN, Ni3S2@Ni(OH)2/3DGN and Ni(OH)2/3DGN. The detailed electrochemical characterization shows that the Ni3S2@Ni(OH)2/3DGN exhibits high specific capacitance (1277F/g at2mV/s and1037.5F/g at5.1A/g) and areal capacitance (4.7F/cm2at2mV/s and3.85F/cm2at19.1mA/cm2) with good cycling performance (99.1%capacitance retention after2000cycles). The enhanced supercapacitor performance might arise from the synergetic effect among Ni(OH)2nanosheets, Ni3S2nanorods and3D graphene network.
     In conclusion, the concept of "surface heterostructure based on one dimensional nanomaterial" is proposed and put into effect. The all kinds of heterostructures based on TiO2nanobelt and N3S2nanorod can be synthesized, including TiO2nanoparticles/TiO2nanobelts, TiO2(B)/TiO2nanobelts, Ag/TiO2nanobelts, Ag2O/TiO2nanobelts, Ag2S/Ti02nanobelts, Pd/TiO2nanobelts, PdO/TiO2nanobelts, Pt/TiO2nanobelts, MoS2nanosheets/TiO2nanobelts, Ni3S2/Ni and Ni3S2@Ni(OH)2/3DGN. The obtained heterostructures have the enhanced photocatalytic activity, gas sensitivity and electrochemistry activity.
引文
[1]G. Wang, Q. Wang, W. Lu, J. H. Li, J. Phys. Chem. B 2006,110,22029.
    [2]A. R. Armstrong, G. Armstrong, J. Canales, R. Garcia, J. Canales, Angew. Chem. Int. Ed.2004,43,2286.
    [3]R. Beranek, H. Tsuchiya, T. Sugishima, J. M.. Macak, L. Taveira, S. Fujimoto, H. Kisch, P. Schmuki, Appl. Phys. Lett.2005,87,243114.
    [4]X. Rocquefelte, H. J. Koo, M. H. Whangbo, S. Jobic, Inorg. Chem.2007,43,2246.
    [5]D. W. Gong, C. A. Grimes., O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, E. C. Dickey. J. Mater. Res.2001,16,331.
    [6]Nageh K. Allam, Faisal Alamgir, Mostafa A. El-Sayed, ACS NANO 2010,4,5819.
    [7]A. Ghicov, H. Tsuchiya, J. M. Macak, P. Schmuki, Electrochem. Commun.2005,7, 505.
    [8]S. Bauer, S. Kleber, P. Schmuki, Electrochem. Commun.2006,8,1321.
    [9]Arash Mohammadpour, Prashant R. Waghmare, Sushanta K. Mitra, Karthik Shankar, ACS NANO 2010,4,7421.
    [10]S. P. Albu, A. Ghicov, J. M. Macak, R. Hahn, P. Schmuki. Nano Lett.2007,7, 1286.
    [11]Yoon-Chae Nah, Andrei Ghicov, Doohun Kim, Steffen Berger, Patrik Schmuki, J. Am. Chem. Soc.2008,130,16154.
    [12]Poulomi Roy, Chittaranjan Das, Kiyoung Lee, Robert Hahn, Tobias Ruff, Matthias Moll, Patrik Schmuki, J. Am. Chem. Soc.2011,133,5629.
    [13]Gopal K. Mor, Oomman K. Varghese, Rudeger H. T. Wilke, Sanjeev Sharma, Karthik Shankar, Thomas J. Latempa, Kyoung-Shin Choi, Craig A. Grimes Nano Lett. 2008,8,1906.
    [14]Andreas Greiner, Joachim H. Wendorff, Angew. Chem. Int. Ed.2007,46,5670.
    [15]V. Thavasi, G. Singh, S. Ramakrishna, Energy Environ. Sci.2008,1,205.
    [16]D. Li, Y. N. Xia, Nano Lett.2004,4,933.
    [17]R. Ostermann, D. Li, Y. D. Yin, J. T. McCann, Y. N. Xia, Nano Lett.2006,6,1297.
    [18]S. H. Zhan, D. R. Chen, X. L. Jiao, Y. Song, Chem. Commun.2007,20,2043.
    [19]N. X. Wang, C. H. Sun, Y. Zhao, S. Y. Zhou, P. Chen, L. Jiang, J. Mater. Chem. 2008,18,3909.
    [20]Meng Shang, Wenzhong Wang, Ling Zhang, Songmei Sun, Lu Wang, Lin Zhou, J. Phys. Chem. C 2009,113,14727.
    [21]Zhaoyang Liu, Darren Delai Sun, Peng Guo, James O. Leckie, Nano Lett.2007,7, 1081.
    [22]H. Y. Zhu, Y. Lan, X. P. Gao, S. P. Ringer, Z. F. Zheng, D. Y. Song, J. C. Zhao, J. Am. Chem. Soc.2005,127,6730.
    [23]T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 1998,14, 3160.
    [24]M. A. Khan, H.T. Jung, O. Yang, J. Phys. Chem. B.2006,110,6626.
    [25]L. Q. Weng, S. H. Song, S. Hodgson, J. Eur. Ceram. Soc.2006,26,1405.
    [26]X. M. Sun, X. Chen, Y. Li, Inorg. Chem.2002,41,4996.
    [27]E. Horvath, A. Kukovecz, Z. Konya, I. Kiricsi, Chem. Mater.2007,19,927.
    [28]V. Stengl, S. Bakardjieva, J. Subrt, E. Vecernikova, L. Szatmary, M. Klementova, V. Balek, Applied Catalysis B:Environmental.2006,63,20.
    [29]D. V. Bavykin, V. N. Parmon, A. A. Lapkin, F. C. Walsh, J. Mater. Chem.2004,14, 3370.
    [30]A. Elsanousi, E. M. Elssfah, J. Zhang, J. Lin, H. S. Song, C. Tang, J. Phys. Chem. C.2007,111,14353.
    [31]E. Morgado, M. A. S. de Abreu, G. T. Moure, B. A. Marinkovic, P. M. Jardim, A. S. Araujo, Chem. Mater.2007,19,665.
    [32]Z. Y. Yuan, B. L. Su, Colloids Surf. A.2004,241,173.
    [33]D. Wu, J. Liu, X. N. Zhao, A. D. Li, Y. F. Chen, N. B. Ming, Chem. Mater.2006, 18,547.
    [34]Zheng Wei Pan, Zu Rong Dai, Zhong Lin Wang, Science 2001,291,1947.
    [35]Z. L. Wang, Adv. Mater.2003,15,432.
    [36]B. Mattias Borg, Kimberly A. Dick, Bahram Ganjipour, Mats-Erik Pistol, Lars-Erik Wernersson, Claes Thelander, Nano Lett.2010,10,4080.
    [37]Nicholas J. Borys, Manfred J. Walter, Jing Huang, Dmitri V. Talapin, John M. Lupton, Science 2010,330 1371.
    [38]V. Idakiev, Z. Y. Yuan, T. Tabakova, B. L. Su, Appl. Catal. A.2005,281,149.
    [39]D. Guin, S. V. Manorama, J. N. L. Latha, S. Singh, J. Phys. Chem. C.2007,111, 13393.
    [40]Chengxiang Wang, Longwei Yin, Luyuan Zhang, Ningning Liu, Ning Lun, and Yongxin Qi, ACS Appl. Mater. Interfaces 2010,2,3373.
    [41]Andrei Honciuc, Mathias Laurin, Sergiu Albu, Max Amende, Marek Sobota, Robert Lynch, Patrik Schmuki, Joerg Libuda, J. Phys. Chem. C 2010,114,20146.
    [42]H. G. Yang, H. C. Zeng, J. Am. Chem. Soc.2005,127,270.
    [43]J. Cao, J. Z. Sun, H. Y. Li, J. Hong, M. Wang, J. Mater. Chem.2004,14,1203.
    [44]Y. G. Wang, Z. D. Wang, Y. Y. Xia, Electrochim. Acta.2005,50,5641.
    [45]Y. G. Wang, X. G. Zhang, Electrochim. Acta.2004,49,1957.
    [46]Yang Yang, Doohun Kim, Min Yang, Patrik Schmuki, Chem. Commun.2011,47, 7746.
    [47]R. Ma, T. Sasaki, Y Bando, J. Am. Chem. Soc.2004,126,10382.
    [48]D. A. Wang, F. Zhou, C. W. Wang, W. Liu, Microporous Mesoporous Mater.2008, 116,658.
    [49]S. V. Chong, N. Suresh, J. Xia, N. Al-Salim, H. Idriss, J. Phys. Chem. C.2007,111, 10389.
    [50]H. Y. Zhu, X. P. Gao, Y. Lan, D. Song, Y. Xi, J. Zhao, J. Am. Chem. Soc.2004,126, 8380.
    [51]Zhigang Xiong, Xiu Song Zhao, J. Am. Chem. Soc.2012,134,5754.
    [52]Q. Shen, K. Katayama, T. Q. S. Sawada, K. Katayama, T. Sawada, M. Yamaguchi, T. Toyoda, Jpn. J. Appl. Phys.2006,45,5569.
    [53]A. Kukovecz, M. Hodos, Z. Konya, I. Kiricsi, Chem. Phys. Lett.2005,411,445.
    [54]H. G. Yu, J. G. Yu, C. B. J. Molecular Catalysis A:Chemical.2006,253,99.
    [55]Pankaj Agarwal, Indhumati Paramasivam, Nabeen K. Shrestha, Patrik Schmuki, Chem. Asian J.2010,5,66.
    [56]Jincheng Liu, Hongwei Bai, Yinjie Wang, Zhaoyang Liu, Xiwang Zhang, Darren Delai Sun, Adv. Funct. Mater.2010,20,4175.
    [57]In Sun Cho, Zhebo Chen, Arnold J. Forman, Dong Rip Kim, Pratap M. Rao, Thomas F. Jaramillo, Xiaolin Zheng, Nano Lett.2011,11,4978.
    [58]Son Hoang, Sean P. Berglund, Nathan T. Hahn, Allen J. Bard, C. Buddie Mullins, J. Am. Chem. Soc.2012,134,3659.
    [59]Ming Xu, Peimei Da, Haoyu Wu, Dongyuan Zhao, Gengfeng Zheng, Nano Lett. 2012,12,1503.
    [60]James R. Jennings, Andrei Ghicov, Laurence M. Peter, Patrik Schmuki, Alison B. Walker, J. Am. Chem. Soc.2008,130,13364.
    [61]Yun-Yue Lin, Tsung-Hung Chu, Shao-Sian Li, Chia-Hao Chuang, Chia-Hao Chang, Wei-Fang Su, Ching-Pin Chang, Ming-Wen Chu, Chun-Wei Chen, J. Am. Chem. Soc. 2009,131,3644.
    [62]J. H. Carey, J. Lawrence, H. M. Tosine. Bull. Environ. Contam. Toxicol.1976,16, 697.
    [63]Hao Zhang, Xiaojun Lv, Yueming Li, Ying Wang, Jinghong Li, ACS NANO,2010, 4,380.
    [64]Gang Liu, Lianzhou Wang, Hua Gui Yang, Hui-Ming Cheng, Gao Qing (Max) Lu, J. Mater. Chem.2010,20,831.
    [65]Weijia Zhou, Guojun Du, Peiguang Hu, Guohong Li, Dongzhou Wang, Hong Liu, Jiyang Wang, Robert I. Boughton, Duo Liu, Huaidong Jiang, J. Mater. Chem.2011,21, 7937.
    [66]Wenbo Yue, Chamnan Random, Pierrot S. Attidekou, Zixue Su, John T. S. Irvine, Wuzong Zhou, Adv. Funct. Mater.2009,19,2826.
    [67]Jiang Du, Xiaoyong Lai, Nailiang Yang, Jin Zhai, David Kisailus, Fabing Su, Dan Wang, Lei Jiang, ACS NANO,2011,5,590.
    [68]Thomas R. Gordon, Matteo Cargnello, Taejong Paik, Filippo Mangolini, Ralph T. Weber, Paolo Fornasiero, Christopher B. Murray, J. Am. Chem. Soc.2012,134,6751.
    [69]Alberto Naldoni, Mattia Allieta, Saveria Santangelo, Marcello Marelli, Filippo Fabbri, Serena Cappelli, Claudia Letizia Bianchi, Rinaldo Psaro, Vladimiro Dal Santo, J. Am. Chem. Soc.2012,134,7600.
    [70]Qiao Zhang, Diana Q. Lima, Ilkeun Lee, Francisco Zaera, Miaofang Chi, Yadong Yin, Angew. Chem. Int. Ed.2011,50,7088.
    [71]Yanhui Zhang, Zi Rong Tang, Xianzhi Fu, Yi Jun Xu, ACS NANO,2010,4,7303.
    [72]Wei Li, Chang Liu, Yaxin Zhou, Yang Bai, Xin Feng, Zhuhong Yang, Linghong Lu, Xiaohua Lu, Kwong-Yu Chan, J. Phys. Chem. C 2008,112,20539.
    [73]Haifeng Lin, Liping Li, Minglei Zhao, Xinsong Huang, Xiaomei Chen, Guangshe Li, Richeng Yu, J. Am. Chem. Soc.2012,134,8328.
    [74]Xiguang Han, Qin Kuang, Mingshang Jin, Zhaoxiong Xie, Lansun Zheng, J. Am. Chem. Soc.2009,1319,3152.
    [75]Gang Liu, Hua Gui Yang, Xuewen Wang, Lina Cheng, Jian Pan, Gao Qing (Max) Lu, Hui-Ming Cheng, J. Am. Chem. Soc.2009,131,12868.
    [76]Hua Gui Yang, Gang Liu, Shi Zhang Qiao, Cheng Hua Sun, Yong Gang Jin, Sean Campbell Smith, Jin Zou, Hui Ming Cheng, Gao Qing (Max) Lu, J. Am. Chem. Soc. 2009,131,4078.
    [77]Nianqiang Wu, Jin Wang, De Nyago Tafen, Hong Wang, Jian-Guo Zheng, James P. Lewis, Xiaogang Liu, Stephen S. Leonard, Ayyakkannu Manivannan, J. Am. Chem. Soc. 2010,132,6679.
    [78]Wei Li, Yang Bai, Weijia Liu, Chang Liu, Zhuhong Yang, Xin Feng, Xiaohua Lu, Kwong-Yu Chan, J. Mater. Chem.,2011,21,6718.
    [79]W. Dong, A. Cogbill, T. Zhang, S. Ghosh, Z. R. Tian, J. Phys. Chem. B.2006,110, 16819.
    [80]Xiwang Zhang, Tong Zhang, Jiawei Ng, and Darren Delai Sun, Adv. Funct. Mater. 2009,19,3731-3736.
    [81]S. Chatterjee, K. Bhattacharyya, P. Ayyub, A. K. Tyagi, J. Phys. Chem. C 2010,114, 9424.
    [82]Bifen Gao, Yong Joo Kim, Ashok Kumar Chakraborty, Wan In Lee, Applied Catalysis B:Environmental 2008,83,202.
    [83]Xianhui Meng, Dong-Wook Shin, Seong Man Yu, Jae Hun Jung, Hong Ik Kim, Hyun Myuong Lee, Young-Ho Han, Vasant Bhoraskarac, Ji-Beom Yoo, CrystEngComm, 2011,13,3021.
    [84]Dongjiang Yang, Hongwei Liu, Zhanfeng Zheng, Yong Yuan, Jin-cai Zhao, Eric R. Waclawik, Xuebin Ke, Huaiyong Zhu, J. Am. Chem. Soc.2009,131,17885.
    [85]Xiaoqing Qiu, Masahiro Miyauchi, Kayano Sunada, Masafumi Minoshima, Min Liu, Yue Lu, Ding Li, Yoshiki Shimodaira, Yasuhiro Hosogi, Yasushi Kuroda, Kazuhito Hashimoto, ACS NANO,2012,6,1609.
    [86]Tieping Cao, Yuejun Li, Changhua Wang, Liming Wei, Changlu Shao, Yichun Liu, J Sol-Gel Sci Technol 2010,55,105.
    [87]Changhua Wang, Changlu Shao, Xintong Zhang, Yichun Liu, Inorg. Chem.2009, 48,7261.
    [88]Jiaguo Yu, Gaopeng Dai, Baibiao Huang, J. Phys. Chem. C 2009,113,16394.
    [89]Hui Ying Yang, Siu Fung Yu, Shu Ping Lau, Xiwang Zhang, Darren Delai Sun, Guo Jun, Small 2009,5,2260.
    [90]A. Fujishima, K. Honda. Nature 1972,238,35.
    [91]Quanjun Xiang, Jiaguo Yu, Mietek Jaroniec, J. Am. Chem. Soc.2012,134,6575.
    [92]Xiao Hua Yang, Zhen Li, Gang Liu, Jun Xing, Chenghua Sun, Hua Gui Yang, Chunzhong Li, CrystEngComm,2011,13,1378.
    [93]Fan Zuo, Le Wang, Tao Wu, Zhenyu Zhang, Dan Borchardt, Pingyun Feng, J. Am. Chem. Soc.2010,132,11856.
    [94]Jun Zhang, Jin Ho Bang, Cencun Tang, Prashant V. Kamat, ACS NANO,2010,4, 387.
    [95]Jason A. Seabold, Karthik Shankar, Rudeger H. T. Wilke, Maggie Paulose, Oomman K. Varghese, Craig A. Grimes, Kyoung-Shin Choi, Chem. Mater.2008,20, 5266.
    [96]In Sun Cho, Zhebo Chen, Arnold J. Forman, Dong Rip Kim, Pratap M. Rao, Thomas F. Jaramillo, Xiaolin Zheng, Nano Lett.2011,11,4978.
    [97]Gongming Wang, Hanyu Wang, Yichuan Ling, Yuechao Tang, Xunyu Yang, Robert C. Fitzmorris, Changchun Wang, Jin Z. Zhang, Yat Li, Nano Lett.2011,11,3026.
    [98]Son Hoang, Siwei Guo, Nathan T. Hahn, Allen J. Bard, C. Buddie Mullins, Nano Lett.2012,12,26.
    [99]Yongjing Lin, Sa Zhou, Xiaohua Liu, Stafford Sheehan, Dunwei Wang, J. Am. Chem. Soc.2009,131,2772.
    [100]Jian Shi, and Xudong Wang, Energy Environ. Sci.2012, Accepted Manuscript.
    [101]Brian O'Regan, Michael Gratzel, Nature,1991,353,737.
    [102]Hongqiang Wang, Masahiro Miyauchi, Yoshie Ishikawa, Alexander Pyatenko, Naoto Koshizaki,Yue Li, Liang Li, Xiangyou Li, Yoshio Bando, Dmitri Golberg, J. Am. Chem. Soc.2011,133,19102.
    [103]Xia Wu, Gao Qing (Max) Lu and Lianzhou Wang, Energy Environ. Sci.2011,4, 3565.
    [104]Doohun Kim, Kiyoung Lee, Poulomi Roy, Balaji I. Birajdar, Erdmann Spiecker, Patrik Schmuki, Angew. Chem. Int. Ed.2009,48,9326.
    [105]Gopal K. Mor, Karthik Shankar, Maggie Paulose, Oomman K. Varghese, Craig A. Grimes, Nano Lett.2006,6,2,215.
    [106]Jung-Chul Lee, Tae Geun Kim, Wonjoo Lee, Sung-Hwan Han, Yun-Mo Sung, Crystal Growth & Design 2009,9,4519.
    [107]Wenli Wang, Hong Lin, Jianbao Li, and Ning Wang, J. Am. Ceram. Soc.2008,91, 628.
    [108]Fang Shao, Jing Sun, Lian Gao, Songwang Yang, Jianqiang Luo, J. Phys. Chem. C 2011,115,1819.
    [109]M. Gratzel, Nature 2001,411,338.
    [110]Bin Liu and Eray S. Aydil, J. Am. Chem. Soc.2009,131,3985.
    [112]Jijun Qiu, Fuwei Zhuge, Xiaomin Li, Xiangdong Gao, Xiaoyan Gan, Lin Li, Binbin Weng, Zhisheng Shi, Yoon-Hwae Hwang, J. Mater. Chem.2012,22,3549.
    [113]Fuwei Zhuge, Jijun Qiu, Xiaomin Li, Xiangdong Gao, Xiaoyan Gan, Weidong Yu, Adv. Mater.2011,23,1330.
    [114]Wenxi Guo, Chen Xu, Xue Wang, Sihong Wang, Caofeng Pan, Changjian Lin, Zhong Lin Wang, J. Am. Chem. Soc.2012,134,4437.
    [115]Chia-Yu Lin, Jiang-Ging Chen, Wei-Yi Feng, Chii-Wann Lin, Ju-Wen Huang, James J. Tunney, Kuo-Chuan Ho, Sensors and Actuators B:Chemical 2011,157,361.
    [116]Chengxiang Wang, Longwei Yin, Luyuan Zhang, Yongxin Qi, Ning Lun and Ningning Liu, Langmuir,2010,26,12841.
    [117]Y. M. Wang, G. J. Du, H. Liu, D. Liu, S. B. Qin, N. Wang, C. G. Hu, X. T. Tao, J. Jiao, J. Y. Wang, Z. L. Wang. Adv. Func. Mater.2008,18,1131.
    [118]E. Sennik, Z. Colak, N. Kilmc, Z. Z. Ozturk. Int. J. Hydrogen Energy 2010,35, 4420.
    [119]Peng Si, Shujiang Ding, Jun Yuan, Xiong Wen (David) Lou, Dong-Hwan Kim, ACS NANO,2011,5,7617.
    [120]Jingjie Cui, Dehui Sun, Weijia Zhou, Hong Liu, Peiguang Hu, Na Ren, Haiming Qin, Zhen Huang, Jianjian Lin, Houyi Ma, Phys. Chem. Chem. Phys.2011,13,9232.
    [121]Chengxiang Wang, Longwei Yin, Luyuan Zhang, Rui Gao, J. Phys. Chem. C 2010, 114,4408.
    [122]Chunlan Cao, Chenguo Hua, Xue Wang, Shuxia Wang, Yongshu Tian, Hulin Zhang, Sensors and Actuators B 2011,156,114.
    [123]H. Tokudome, M. Miyauchi, Angew. Chem. Int. Ed.,2005,44,1974.
    [124]X. W. Wang, X. P. Gao, G. R. Li, J. Phys. Chem. C 2008,112,5384.
    [125]Q. Wang, Z. H. Wen, J. Li, Adv. Funct. Mater.2006,16,2141.
    [126]Xihong Lu, Gongming Wang, Teng Zhai, Minghao Yu, Jiayong Gan, Yexiang Tong, Yat Li, Nano Lett.2012,12,1690.
    [127]H. Zhang, G. R. Li, L. P. An, T. Y. Yan, X. P. Gao, H. Y. Zhu, J. Phys. Chem. C., 2007,111,6143.
    [128]Xiaoyan Liu, Weijia Zhou, Zhengmao Yin, Xiaopeng Hao, Yongzhong Wu, Xiangang Xu, J. Mater. Chem.,2012,22,3916.
    [129]W. Han, M. Y. Gao, Crystal Growth & Design 2008,8,1023.
    [133]T. Zhu, Z. Y. Wang, S. J. Ding, J. S. Chen, X. W. Lou, RSC Advances,2011,1, 397.
    [134]W. Zhou, W. M. Chen, J. W. Nai, P. G. Yin, C. P. Chen, L Guo, Adv. Funct. Mater. 2010,20,3678.
    [135]Y. H. Z. Zheng, H. M. Jia, Y. W. Tang, L. Z. Zhang, J. Phys. Chem. C 2008,112, 13037.
    [136]J. Wang, S.Y. Chew, D. Wexler, G.X. Wang, S.H. Ng, S. Zhong, H.K. Liu, Electrochem. Commun.2007,9,1877.
    [137]X. J. Zhu, Z. Y Wen, Z. H. Gu, S. H. Huang, J. Electrochem. Soc.2006,153, A504.
    [138]T. Takeuchi, H. Sakaebe, H. Kageyama, T. Sakai and K. Tatsumi, J. Electrochem. Soc.,2008,155, A679-A684.
    [139]J.Wang, S. Y. Chew, D.Wexler, G. X. Wang, S. H. Ng, S. Zhong, H. K. Liu, Electrochem. Commun.,2007,9,1877.
    [140]K. Aso, H. Kitaura, A. Hayashi, M. Tatsumisago, J. Mater. Chem.2011,21,2987.
    [141]Ali Ghezelbash, Brian A. Korgel, Langmuir 2005,21,9451.
    [142]C. H. Lai, K. W. Huang, J. H. Cheng, C. Y Lee, W. F. Lee, C. T. Huang, B. J. Hwang, L. J. Chen, J. Mater. Chem.,2009,19,7277.
    [143]L. Z. Zhang, J. C. Yu, M. Mo, L. Wu, Q. Li, K. W. Kwong, J. AM. CHEM. SOC. 2004,126,8116.
    [144]A. Ghezelbash, M. B. Sigman, B. A. Korgel, Nano Lett.,4,2004,537.
    [145]V. Petrykin, K. Macounova, O. A. Shlyakhtin, Petr Krtil, Angew. Chem. Int. Ed. 2010,49,4813.
    [146]F. Li, B. B. Zhang, X. N. Li, Y. Jiang, L. Chen, Y. Q. Li, L. C. Sun, Angew. Chem. Int. Ed.2011,50,12276.
    [147]S. D. Tilley, M. Cornuz, K. Sivula, M. Gr€atzel, Angew. Chem. Int. Ed.2010,49, 6405.
    [148]Y. H. Fang, Z. P. Liu, J. Am. Chem. Soc.2010,132,18214-1822.
    [149]K. L. Pickrahn, S. W. Park, Y. Gorlin, H. B. R. Lee,T. F. Jaramillo, S. F. Bent, Adv. Energy Mater.2012, DOI:10.1002/aenm.201200230.
    [150]T. Takashima, K. Hashimoto, R. Nakamura, J. Am. Chem. Soc.2012,134,1519.
    [151]F. Jiao, H. Frei, Energy Environ. Sci.2010,3,1018.
    [152]T. L. Wee, B. D. Sherman, D. Gust, A. L. Moore, T. A. Moore, Y. Liu, J. C. Scaiano, J. Am. Chem. Soc.2011,133,16742.
    [153]A. J. Esswein, Y. Surendranath, S. Y. Reece, D. G. Nocera, Energy Environ. Sci. 2011,4,499.
    [154]Y. G. Li, P. Hasin, Y. Y. Wu, Adv. Mater.2010,22,1926.
    [155]H. C. Chien, W. Y. Cheng, Y. H. Wang, T. Y Wei, S. Y. Lu, J. Mater. Chem.2011, 27,18180.
    [156]J. P. Liu, J. Jiang, C. W. Cheng, H. X. Li, J. X. Zhang, H. Gong, H. J. Fan, Adv. Mater.2011,25,2076.
    [157]C. Guan, J. P. Liu, C. W. Cheng, H. X. Li, X. L. Li, W. W. Zhou, H. Zhang, H. J. Fan, Energy Environ. Sci.2011,4,4496.
    [158]J. P. Liu, J. Jiang, M. Bosmanc, H. J. Fan, J. Mater. Chem.2012,22,2419.
    [159]X. H. Cao, Y M. Shi, W. H. Shi, G. Lu, X. Huang, Q. Y. Yan, Q. C. Zhang, H. Zhang, Small 2011,7,3163.
    [160]Z. P. Chen, W. C. Ren, L. B. Gao, B. L. Liu, S. F. Pei, H. M. Cheng, Nat. Mater. 2011,70,424.
    [161]X. C. Dong, H. Xu, X. W. Wang, Y X. Huang, M. B. C. Park, H. Zhang, L. H. Wang, W. Huang, P. Chen, ACS Nano,2012,6,3206.
    [1]S. Iijima, Nature 1991,354,56.
    [2]Z. W. Pan, Z. R. Dai and Z. L. Wang, Science 2001,291,1947.
    [3]W. J. Zhou, H. Liu, R. I. Boughton, G. J. Du, J. J. Lin, J. Y. Wang and D. Liu, J. Mater. Chem.2010,20,5993.
    [4]J. M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Small 2007,3,300.
    [5]Jincheng Liu, Hongwei Bai, Yinjie Wang, Zhaoyang Liu, Xiwang Zhang, Darren Delai Sun, Adv. Funct. Mater.20:4175.
    [6]J. Wang, D. N. Tafen, J. P. Lewis, Z. L. Hong, A. Manivannan, M. J. Zhi, M. Li and N. Q. Wu, J. Am. Chem. Soc.2009,131,12290.
    [7]W. L. Wang, H. Lin, J. B. Li, and N. Wang, J. Am. Chem. Soc.,2008,91,628-631.
    [8]K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank, Nano Lett.2007,7,69. [9] P. G. Hu, G. J. Du, W. J. Zhou, J. J. Cui, J. J. Lin, H. Liu, D. Liu, J. Y. Wang and S. W. Chen, ACS Appl. Mater. Interf.2010,2,3263.
    [10]Rout, C.S.; Kulkarni, G.U.; Rao, C.N.R. J. Phys. D 2007,40,2777.
    [11]T. Kasuga, M. Hiramatsu, A.Hoson, M. Hirano, K. Oyamada, Adv. Mater.1999,11, 1307.
    [12]E. Horvath, A. Kukovecz, Z. Konya, I. Kiricsi, Chem. Mater.2007,19,927.
    [13]D. V Bavykin, J. M. Friedrich, F. C. Walsh, Adv. Mater.2006,18,2807.
    [14]T. Ohno, K. Sarukawa, M. Matsumura, J. Phys. Chem. B 2001,105,2417.
    [15]G. F. Ortiz, I. Hanzu, P. Lavela, J. L. Tirado, P. Knauthac, T. Djenizian, J. Mater. Chem.2010,20,4041.
    [16]D. J. Yang, H. W. Liu, Z. F. Zheng, Y. Yuan, J. C. Zhao, E. R. Waclawik, X. B. Ke, H. Y. Zhu, J. Am. Chem. Soc.2009,131,17885.
    [17]Lifang Cheng, Xingtang Zhang, Bin Liu, Hongzhe Wang, Yuncai Li, Yabin Huang, Zuliang Du, Nanotechnology 2005,161341.
    [18]H. G. Yu, J. G. Yu, B. Cheng, S. W. Liu, Nanotechnology 2007,18,065604.
    [19]Jijun Qiu, Fuwei Zhuge, Xiaomin Li, Xiangdong Gao, Xiaoyan Gan, Lin Li, Binbin Weng, Zhisheng Shi, Yoon-Hwae Hwang, J. Mater. Chem.2012,22,3549.
    [20]D. Wang, D. Choi, Z. Yang, V. V. Viswanathan, Z. Nie, C. Wang, Y. Song, J. Zhang, J. Liu, Chem. Mater.2008,20,3435.
    [21]S. Yurdakal, G. Palmisano, V. Loddo, V. Augugliaro, L. Palmisan, J. Am. Chem. Soc. 2008,130,1568.
    [22]N. Q. Wu, J. Wang, D. N. Tafen, H. Wang, J. G. Zheng, J. P. Lewis, X. G. Liu, S. S. Leonard, A. Manivannan, J. Am. Chem. Soc.2010,132,6679.
    [23]J. H. Park, S. Kim, A. J. Bard, Nano. Lett.2006,6,24.
    [24]T. H. Eun, S. H. Kim, W. J. Jeong, S. J. Jeon, S. H. Kim, S. M. Yang, Chem. Mater. 2009,21,201.
    [25]X. Y. Hu, T. C. Zhang, Z. Jin, S. Z. Huang, M. Fang, Y C. Wu and L. D. Zhang, Cryst. Growth Des.2009,9,2324.
    [26]C. Bae, Y. J. Yoon, H. Yoo, D. Han, J. H. Cho, B. H. Lee, M. M. Sung, M. G. Lee, J. Y Kim and H. Shin, Chem. Mater.2009,21,2574.
    [27]E. Hosono, S. Fujihara, K. Kakiuchi, H. Imai, J. Am. Chem. Soc.2004,126,7790.
    [28]J. K. Oh, J. K. Lee, H. S. Kim, S. B. Han, K. W. Park, Chem. Mater.2010,22, 1114.
    [29]Bin Liu, Eray S. Aydil, J. Am. Chem. Soc.2009,131,3985.
    [30]Akshay Kumar, Anuj R. Madaria, Chongwu Zhou, J. Phys. Chem. C 2010,114, 7787.
    [31]Gopal K. Mor, Karthik Shankar, Maggie Paulose, Oomman K. Varghese, Craig A. Grimes, Nano Lett.2006,6,215.
    [32]Sergiu P. Albu, Andrei Ghicov, Jan M. Macak, Robert Hahn, and Patrik Schmuki, Nano Lett.2007,7,1286.
    [33]In Sun Cho, Zhebo Chen, Arnold J. Forman, Dong Rip Kim, Pratap M. Rao, Thomas F. Jaramillo, Xiaolin Zheng, Nano Lett.2011,11,4978.
    [34]Son Hoang, Sean P. Berglund, Nathan T. Hahn, Allen J. Bard, C. Buddie Mullins, J. Am. Chem. Soc.2012,134,3659.
    [35]Ming Xu, Peimei Da, Haoyu Wu, Dongyuan Zhao, Gengfeng Zheng, Nano Lett. 2012,12,1503.
    [36]Xihong Lu, Gongming Wang, Teng Zhai, Minghao Yu, Jiayong Gan, Yexiang Tong, Yat Li, Nano Lett.2012,12,1690.
    [37]H. Z. Zhang, J. F. Banfield, J. Mater. Chem.1998,8,2073.
    [38]J. Zhang, Q. Xu, M. J. Li, Z. C. Feng, C. Li, J. Phys. Chem. C 2009,113,1698.
    [39]R. Yoshida, Y. Suzuki, S. Yoshikawa, J. Solid State Chem.2005,178,2179.
    [40]T. P. Feist, P. K. Daviest, J. Solid State Chem.1992,101,275.
    [41]V. Swamy, A. Kuznetsov, L. S. Dubrovinsky, R. A. Caruso, D. G. Shchukin, B. C. Muddle. Phys. Rev. B 2005,71,184302.
    [42]P. J. Huang, H. Chang, C. T. Yeh, C. W. Tsai. Thermochim. Acta,1997,297,85.
    [43]K. Yamamoto, K. Tomita, K. Fujita, M. Kobayashi, V. Petrykin, M. Kakihana. J. Cryst. Growth 2009,311,619.
    [44]M. Zukalova, M. Kalbac, L. Kavan, I. Exnar, M.Graetzel. Chem. Mater.2005,17, 1248.
    [45]J. Zhang, Q. Xu, Z. C. Feng, M. J. Li, C. Li, Angew. Chem. Int. Ed.2008,47,1766.
    [46]Y. I. Kim, S. J. Atherton, E. S. Brigham, T. E. Mallouk, J. Phys. Chem. B 1993,97, 11802.
    [47]S. Yin, Y. Fujishiro, J. Wu, M. Aki, H. Sato, J. Mater. Proc.Technol.2003,137, 45.
    [48]R. S. Yang, Y L. Chueh, J. R. Morber, R. Snyder, L. J. Chou, Z. L. Wang, Nano Lett.2007,7,269.
    [49]C. J. Howard, T. M. Sabine, F. Dickson, Acta Crystallogr. Sect. B 1991,47,462.
    [50]M. Abd-Lefdil, R. Diaz, H. Bihri, M. A. Aouaj, F. Rueda, Eur. Phys. J. Appl. Phys 2007,38,217.
    [51]M. Law, L. E. Greene, J. C. Johnson, R. J. Saykally, Yang, P. D. Nat. Mater.2005,4, 455.
    [52]K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank, Nano Lett.2007,7,69.
    [1]J. M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Small 2007,3,300.
    [2]W. L. Wang, H. Lin, J. B. Li, N. Wang, J. Am. Chem. Soc.2008,91,628.
    [3]D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin, M. Gratzel, ACS Nano 2008,2,1113.
    [4]K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank, Nano Lett.2007,7,69.
    [5]H. F. Lu, F. Li, G. Liu, Z. G. Chen, D. W. Wang, H. T. Fang, G. Q. Lu, Z. H. Jiang, H. M. Cheng, Nanotechnology 2008,19,405504.
    [6]L. Francioso, A.M. Taurino, A. Forleo, P. Siciliano, Sens. Actuators B 2008,130,70.
    [7]Y. Wang, G. Du, H. Liu, D. Liu, S. Qin, N.Wang, C. Hu, X. Tao, J. Jiao, J. Wang, Z. L. Wong, Adv. Fund. Mater.2008,18,1131.
    [8]I. D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo, H. L. Tuller, Nano Lett. 2006,6,2009.
    [9]Y. F. Wang, M. Y. Wu,W. F. Zhang, Electrochimica Acta 2008,53,7863.
    [10]G. F. Ortiz, I. Hanzu, P. Lavela, J. L. Tirado, P. Knauthac, T. Djenizian, J. Mater. Chem.2010,20,4041.
    [11]H. Zhang, G. R. Li, L. P. An, T. Y. Yan, X. P. Gao, H. Y. Zhu, J. Phys. Chem. C 2007,111,6143.
    [12]J. Wang, D. N. Tafen, J. P. Lewis, Z. L. Hong, A. Manivannan, M. J. Zhi, M. Li, N. Q. Wu, J. Am. Chem. Soc.2009,131,12290.
    [13]X. B. Chen, S. S. Mao, Chem. Rev.2007,107,2891.
    [14]Z. Y. Tang, N. A. Kotov, M. Giersig, Science 2002,297,237.
    [15]Z. Y. Liu, D. D. Sun, P. Guo, J. O. Leckie, Nano lett.2007,7,1081.
    [16]H. Y. Zhu, X. P. Gao, Y. Lan, D. Y. Song, Y. X. Xi, J. C. Zhao, J. Am. Chem. Soc. 2004,126,8380.
    [17]H. Y. Zhu, Y. Lan, X. P. Gao, S. P. Ringer, Z. F. Zheng, D. Y. Song, J. C. Zhao, J. Am. Chem. Soc.2005,127,6730.
    [18]I. J. Ochuma, O. O. Osibo, R. P. Fishwick, S. Pollington, A. Wagland, J. Wood, J. M. Winterbottom, Catal. Today 2007,128,100.
    [19]K. Hofstadler, R. Bauer, S. Novalic, G. Heisler, Environ. Sci. Technol.1994,28, 670.
    [20]E. Portjanskaja, M. Krichevskaya, S. Preis, J. Kallas, Environ Chem Lett.2004,2, 123.
    [21]B. Herbig, P. Lobmann, J. Photochem. PhotobioL. A 2004,163,359.
    [22]W. J. Dong, A. Cogbill, T. R. Zhang, S. Ghosh, Z. R. Tian, J. Phys. Chem. B 2006, 110,16819.
    [23]Y. M. Wang, G. J. Du, H. Liu, D. Liu, S. B. Qin, N. Wang, C. G. Hu, X. T. Tao, J. Jiao, J. Y. Wang, Z. L. Wang, Adv. Funct. Mater.2008,18,1.
    [24]X. W. Zhang, J. H. Du, P. Lee, D. D. Suna, J. O. Leckie, J. Membr. Sci.2008,313, 44.
    [25]M. Yin, C. K.Wu, Y. Lou, C. B. Burda, J. T. Koberstein, Y. Zhu, J. Am. Chem. Soc. 2005,127,9506.
    [26]V. M. Huxter, T. Mirkovic, P. S. Nair, G.D. Scholes, Adv. Mater.2008,20,2439.
    [27]H. G. Yang, G. Liu, S. Z. Qiao, C. H. Sun, Y. G. Jin, S. C. Smith, J. Zou, H. M. Cheng, G. Q. Lu, J. Am. Chem. Soc.2009,131,4078.
    [28]H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, G. Q. Lu, Nature 2008,453,638.
    [29]H. Einaga, S. Futamura, T. Ibusuki, Appl. Catal. B 2002,38,215.
    [30]J. Arana, A. Pena Alonso, J.M. Dona Rodriguez, J.A. Herrera Melian, O. Gonzalez Diaz, J. Perez Pena, Appl. Catal. B 2008,78,355.
    [31]F. B. Li, X. Z. Li, C. H. Ao, M. F. Hou, S. C. Lee, Appl. Catal. B 2004,54,275.
    [32]A. J. Maira, K. L. Yeung, J. Soria, J. M. Coronado, C. Belver, C. Y. Lee, V. Augugliaro, Appl. Catal. B 2001,29,327.
    [33]I. Sondi, B. Salopek-Sondi, J. Colloid Interface Sci.2004,275,177.
    [34]L. M. Chen, L. Zheng, Y. H. Lv, H. Liu, G. C. Wang, N. Ren, D. Liu, J. Y. Wang, R. I. Boughton, Surf. Coat. Technol.2010,204,3871.
    [35]A. Pal, S. O. Pehkonen, L. E. Yu, M. B. Ray, Ind. Eng. Chem. Res.2008,47,7580.
    [36]R. V. Grieken, J. Marugan, C. Sordo, P. Martinez, C. Pablos, Appl. Catal. B 2009, 93,112.
    [1]M. Muruganandham, M. Swaminathan, Dyes Pigm.2006,68,133.
    [2]L. K. Tan, M. K. Kumar, W. W. An, H. Gao, ACS Appl. Mater. Interfaces 2010,2, 498.
    [3]H. L. Fei, Y. P. Liu, Y. P. Li, P. C. Sun, Z. Z. Yuan, B. H. Li, D. T. Ding, T. H. Chen, Micropor. Mesopor. Mater.2007,102,318.
    [4]J. H. Park, S. Kim, A. Bard, Nano Lett.2006,6,24.
    [5]E. Formo, E. Lee, D. Campbell, Y. Xia, Nano lett.2008,8,668.
    [6]S. H. Chien, Y. C. Liou, M. Kuo, Synthetic Metals,2005,152,333.
    [7]W. S. Tung, W. A. Daoud, ACS Appl. Mater. Interfaces,2009,1,2453.
    [8]L. Huang, F. Peng, H. J. Wang, H. Yu, Z. Li, Catal. Commun.2009,10,1839.
    [9]Q. Li, M. A. Page, B. J. Marinas, J. K. Shang, Environ. Sci. Technol.2008,42,6148.
    [10]S. G Yang, Y. Z. Liu, C. Sun, Appl. Catal. A 2006,301,284.
    [11]J. Wang, D. N. Tafen, J. P. Lewis, Z. L. Hong, A. Manivannan, M. J. Zhi, M. Li, N. QWu, J. Am. Chem. Soc.2009,131,12290.
    [12]K. Maeda, Y. Shimodaira, B. Lee, K. Teramura, D. Lu, H. Kobayashi, K. Domen, J. Phys. Chem. C 2007,111,18264.
    [13]V. Stengl, V. Houskova, S. Bakardjieva, N. Murafa, ACS Appl. Mater. Interfaces 2010,2,575.
    [14]J. Zhang, C. X. Pan, P. F. Fang, J. H. Wei, R. Xiong, ACS Appl. Mater. Interfaces 2010,2,1173.
    [15]W. Zhao, C. Chen, X. Li, J. Zhao, J. Phys. Chem. B 2002,106,5022.
    [16]E. Bae, W. Coi, Environ. Sci. Technol.2003,37,147.
    [17]C. Hu, X. X. Hu, L. S. Wang, J. H. Qu, A. M. Wang, Environ. Sci. Technol.2006, 40,7903.
    [18]C. Hu, Y. Q. Lan, J. H. Qu, X. X. Hu, A. M. Wang, J. Phys. Chem. B 2006,110, 4066.
    [19]J. Moon, C. Y. Yun, K. W. Chung, M. S. Kang, J. Yi, Catal. Today 2003,87,77.
    [20]Y. G. Zhang, L. L. Ma, J. L. Li, Y Yu, Environ. Sci. Technol.2007,41,6264.
    [21]X. Zhang, H. Yang, F. Zhang, K. Y. Chan, Mater. Lett.2006,61,2231.
    [22]I. M. Arabatzis, T. Stergiopoulos, D. Andreeva, S Kitova, S. G. Neophytides, P. Falaras, J. Catal.2003,220,127.
    [23]Q. Li, R. C. Xie, E. A. Mintz, J. K. Shang, J. Am. Ceram. Soc.2007,90,3863.
    [24]L. Korosi, S. Papp, J. Menesi, E. Illes, V. Zollmer, A. Richardt, I. Dekany, Colloids Surf. A 2008,319,136.
    [25]F. Zhang, R. Jin, J. Chen, C. Shao, W. Gao, L. Li, N. Guan, J. Catal.2005,232, 424.
    [26]N. Sobana, M. Muruganadhaml, M. Swaminathan, J. Mol. Catal. A 2006,258,124.
    [27]B. F. Xin, L. Q. Jing, Z. Y. Ren, B. Q. Wang, H. G. Fu, J. Phys. Chem. B 2005,109, 2805.
    [28]J. L. Hu, L. Wang, W. P. Cai, Y. Li, H. B. Zeng, L. Q. Zhao, P. S. Liu, J. Phys. Chem. C 2009,113,19039.
    [29]H. Deng, D. Yang, B. Chen, C. W. Lin, Sens. Actuators B 2008,134,502.
    [30]D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L. W. Wang, A. P. Alivisatos, Nature 430,2004,190.
    [31]L. Ouyang, K. N. Maher, C. L. Yu, J. McCarty, H. Park, J. Am. Chem. Soc.2007, 129,133.
    [32]K. L. Niece, J. D. Hartgerink, J. J. J. M. Donners, S. I. Stupp, J. Am. Chem. Soc. 2003,125.
    [33]E. J. Calvo, A. Wolosiuk, ChemPhysChem 2004,5,235.
    [34]F. Hinterholzinger, C. Scherb, T. Ahnfeldt, N. Stock, T. Bein, Phys. Chem. Chem. Phys.2010,12,4515.
    [35]V. Antochshuk, M. Jaroniec, Chem. Mater.2000,12,2496.
    [36]K. M. Coakley, Y. Liu, M. D. McGehee, K. L. Frindell, G. D. Stucky, Adv. Funct. Mater.2003,13,301.
    [37]J. Zou, Y. Xu, B. Hou, D. Wu, Y. H. Sun, Powder Technol.2008,183,122.
    [38]Xuefei Wang, Shufen Li, Huogen Yu, Jiaguo Yu, Shengwei Liu, Chem. Eur. J.2011, 17,7777.
    [39]Dongjiang Yang, Hongwei Liu, Zhanfeng Zheng, Yong Yuan, Jincai Zhao, Eric R. Waclawik, Xuebin Ke, Huaiyong Zhu, J. Am. Chem. Soc.2009,131,17885.
    [40]Jun Zhang, Jiaguo Yu, Yimin Zhang, Qin Li, Jian Ru Gong, Nano Lett.2011,11, 4774.
    [41]L. Korosi, S. Papp, J. Menesi, E. Illes, V. Zollmer, A. Richardt, I. Dekany Colloids Surf. A 2008,319,136.
    [42]I. M. Arabatzis, T. Stergiopoulos, M. C. Bernard, D. Labou, S. G. Neophytides, P. Falaras, Appl. Catal. B 2003,42,187.
    [43]J. W. Park, M. Kang, Int J Hydrogen Energy 2007,32,4840.
    [44]Mingshan Zhu, Penglei Chen, Minghua Liu, ACS Nano 2011,5,4529.
    [45]Weiwei Zhou, Jixin Zhu, Chuanwei Cheng, Jinping Liu, Huanping Yang, Chunxiao Cong, Cao Guan, Xingtao Jia, Hong Jin Fan, Qingyu Yan, Chang Ming Li, Ting Yu, Energy Environ. Sci.2011,4,4954.
    [46]X. D. Feng, D. C. Sayle, Z. L. Wang, M. S. Paras, B. Santora, A. C. Sutorik, T. X. T. Sayle, Y. Yang, Y. Ding, X. D. Wang, Y. S. Her, Science 2006,312,1504.
    [47]Weijia Zhou, Hong Liu, Jiyang Wang, Duo Liu, Guojun Du, Shujuan Han, Jianjian Lin, Ruijun Wang, Phys. Chem. Chem. Phys.2010,12,15119.
    [48]Yi Xie, Sung Hwan Heo, Yong Nam Kim, Seung Hwa Yoo, Sung Oh Cho, Nanotechnology 2010,21,015703.
    [49]Tsutomu Hirakawa, Prashant V. Kamat, J. Am. Chem. Soc.2005,127,3928.
    [50]Q. Li, Y. W. Li, P. G. Wu, R. C. Xie, J. K. Shang, Adv. Mater.2008,20,3717.
    [51]Adriana Paracchino, Vincent Laporte, Kevin Sivula, Michael Gratzel, Elijah Thimsen, Nature Mater.2011,10,456.
    [52]Kathryn E. deKrafft, Cheng Wang, Wenbin Lin, Adv. Mater.2012,24,2014
    [1]Z. Y. Liu, D. D. Sun, P. Guo, J. O. Leckie, Nano lett.2007,7,1081.
    [2]H. G. Yang, H. C. Zeng, J. Am. Chem. Soc.2005,127,270.
    [3]J. Cao, J. Z. Sun, H. Y. Li, J. Hong, M. Wang, J. Mater. Chem.2004,14,1203.
    [4]W. J. Zhou, G. J. Du, P. G. Hu, G. H. Li, D. Z. Wang, H. Liu, J. Y. Wang, R. I. Boughton, D. Liu, H. D. Jiang, J. Mater. Chem.2011,21,7937.
    [5]V. Idakiev, Z. Y. Yuan, T. Tabakova, B. L. Su, Appl. Catal. A 2005,281,149.
    [6]A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Nano lett.2005, 5,667.
    [7]E. Formo, E. Lee, D. Campbell, Y. N. Xia, Nano lett.2008,8,668.
    [8]A. F. Lee, C. V. Ellis, J. N. Naughton, M. A. Newton, C. M. A. Parlett, K. Wilson, J. Am. Chem. Soc.2011,133,5724.
    [9]A. Abad, P. Concepcion, A. Corma, H. Garcia, Angew. Chem. Int. Ed.2005,44, 4066.
    [10]K. Mori, T. Hara, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem. Soc.2004, 126,10657.
    [11]C. M. A. Parlett, D. W. Bruce, N. S. Hondow, A. F. Lee, K. Wilson, ACS Catal. 2011,1,636.
    [12]D. L. Feldheim, Science 2007,316,699.
    [13]B. C. Ranu, L. Adak, K. Chattopadhyay, J. Org. Chem.2008,73,5609.
    [14]S. Biella, M. Rossi, Chem. Commun.2003,378.
    [15]D.Q Han, T T. Xu, J. X. Su, X. D. Xu, Y. Ding, ChemCatChem 2010,2,383.
    [16]K. C. Hass, A. E. Carlsson, Phys. Rev. B 1992,46,4246.
    [17]E. Rey, M. R. Kamal, R. B. Miles, B. S. H. Royce, J. Mater. Sci.1978,13,812.
    [18]Q. Li, Y. W. Li, P. G. Wu, R. C. Xie, J. K. Shang, Adv. Mater.2008,20,3717.
    [19]Q. Li, W. Liang, J. K. Shang, Appl. Phys. Lett.2007,90,063109.
    [1]Taekyung Yu, Do Youb Kim, Hui Zhang, Younan Xia, Angew. Chem. Int. Ed.2011,50,2773-2777.
    [2]A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Nano lett.2005, 5,667.
    [3]E. Formo, E. Lee, D. Campbell, Y. N. Xia, Nano lett.2008,8,668.
    [4]Z. X. Yang R. Q. Wu, Phys. Rev. B 2000,61,14066.
    [5]J. A. van Bokhoven, C. Louis, J. T. Miller, M. Tromp, O. V. Safonava, P. Glatzel, Angew. Chem. Int. Ed.2006,45,4651.
    [6]S. Carrettin, P. Concepcion, A. Corma, J. M. Lopez Nieto, V. F. Puntes, Angew. Chem. Int. Ed.2004,43,2538.
    [7]N. R. Jana, Z. L. Wang, T. Pal, Langmuir 2000,16,2457.
    [8]B. Hvolbask, T. V. W. Janssens, B. S. Clausen, H. Falsig, C. H. Christensen, J. K. N(?)rskov, Nano Today 2007,2(4),14.
    [1]A. Fujishima, K. Honda, Nature 1972,238,37.
    [2]M. S. Dresselhaus, I. L. Thomas, Nature 2001,414,332.
    [3]M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, M. G. Walter, Chem. Rev.2010,110,6446.
    [4]Q. Li, B. D. Guo, J. G. Yu, J. R. Ran, B. H. Zhang, H. J. Yan, J. R. Gong, J. Am. Chem. Soc.2011,133,10878.
    [5]J. H. Park, S. Kim, A. J. Bard, Nano Lett.2006,6,24.
    [6]W. J. Zhou, G. J. Du, P. G. Hu, G. H. Li, D. Z. Wang, H. Liu, J. Y. Wang, R. I. Boughton, D. Liu, H. D. Jiang, J. Mater. Chem.2011,21,1931.
    [7]W. J. Zhou, G. J. Du, P. G. Hu, Y. Q. Yin, J. H. Li, J. H. Yu, G. C. Wang, J. X. Wang, H. Liu, J. Y. Wang, H. Zhang, J. Hazard. Mater.2011,197,19.
    [8]X. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science 2011,331,746.
    [9]J. Wang, D. N. Tafen, J. P. Lewis, Z. L. Hong, A. Manivannan, M. J. Zhi, M. Li, N. Q. Wu,J.Am. Chem. Soc.2009,131,12290.
    [10]Y. Q. Gai, J. B. Li, S. S. Li, J. B. Xia, S. H. Wei, Phys. Rev. Lett.2009,102, 036402.
    [11]A. Kudo, Y. Miseki, Chem. Soc. Rev.2009,38,253.
    [12]W. J. Zhou, H. Liu, J. Y. Wang, D. Liu, G. J. Du, J. J. Cui, ACS Appl. Mater. Interfaces 2010,2,2385.
    [13]Y. J. Hwang, A. Boukai, P. D. Yang, Nano Lett.2009,9,410.[14] J. Zhang, J. G Yu, Y. M. Zhang, Q. Li, J. R. Gong, Nano Lett.2011,11,4774.
    [15]X. Zong, H. J. Yan, G. P. Wu, G. J. Ma, F. Y. Wen, L. Wang, C. Li, J. Am. Chem. Soc.2008,130,7176.
    [16]Z. B. Chen, D. Cummins, B. N. Reinecke, E. Clark, M. K. Sunkara, T. F. Jaramillo, Nano Lett.2011,11,4168.
    [17]W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc.1958,80,1339.
    [18]S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006,442,282.
    [19]Z. Y. Yin, S. Sun, T. Salim, S. X. Wu, X. Huang, Q. Y. He, Y. M. Lam, H. Zhang, ACS Nano 2010,4,5263.
    [20]H. L. Wang, Y. Yang, Y. Y. Liang, L. F. Cui, H. S. Casalongue, Y. G. Li, G. S. Hong, Y. Cui, H. Dai, J. Angewandte Chemie 2011,123,7502.
    [21]X. Huang, X. Y. Qi, F. Boey, H. Zhang, Chem. Soc. Rev.2012,41,666.
    [22]C. Schliehe, B. H. Juarez, M. Pelletier, S. Jander, D. Greshnykh, M. Nagel, A. Meyer, S. Foerster, A. Kornowski, C. Klinke, H. Weller, Science 2010,329,550.
    [23]Z. Y. Zeng, Z. Y. Tin, X. Huang, H. Li, Q. Y. He, G. Lu, F. Boey, H. Zhang, Angew. Chem. Int. Ed.2011,50,11093.
    [24]J. S. Son, X. D. Wen, J. Joo, J. Chae, S. Baek, K. Park, J. H. Kim, K. An, J. H. Yu, S. G. Kwon, et al. Angew. Chem. Int. Ed.2009,48,6861.
    [25]D. D. Vaughn Ⅱ, I. Su-Ⅱ, R. E. Schaak, ACS Nano,2011,5,8852.
    [26]H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, C. N. R. Rao, Angew. Chem. Int. Ed.2010,49,4059.
    [27]J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, et al. Science 2011,331,568.
    [28]H. Li, Z. Y. Yin, Q. Y. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. I. Y.Tok, Q. Zhang, H. Zhang, Small 2012,8,63.
    [29]J. Cho, H. Hwang, H. Kim, Nano Lett.2011,11,4826.
    [30]Z. Y. Yin, H. Li, H. Li, L. Y. Jiang, M. Y. Shi, H. Sun, G Lu, Q. Zhang, X. D. Chen, H. Zhang, ACS Nano 2012,6,74.
    [31]Y. G. Li, H. L. Wang, L. M. Xie, Y. Y. Liang, G. S. Hong, H. J. Dai, J. Am. Chem. Soc.2011,133,7296.
    [32]F. A. Frame, F. E. Osterloh, J. Phys. Chem. C 2010,114,10628.
    [33]W. Ho, J. C. Yu, J. Lin, J. G. Yu, P. S. Li, Langmuir 2004,20,5865.
    [34]K. Chang, W. X. Chen, ACS Nano 2011,5,4720.
    [35]K. Chang, W. X. Chen, J. Mater. Chem.2011,21,17175.
    [36]N. Q. Wu, J. Wang, D. N. Tafen, H. Wang, J. G Zheng, J. P. Lewis, X. G. Liu, S. S.
    Leonard, A. Manivannan, J. Am. Chem. Soc.2010,132,6679.
    [37]J. P. Wilcoxon, J. Phys. Chem. B 2000,104,7334.
    [38]J. M. Huang, R. A. Laitinen, D. F. Kelley, Phys. Rev. B 2000,62,10995.
    [39]S. M. Paek, H. Jung, M. Park, J. K. Lee, J. H. Choy, Chem. Mater.2005,17,3492.
    [40]B. Wang, H. B. Wu, L. Yu, R. Xu, T. T. Lim, X. W. Lou, Adv. Mater.2012,24, 1111.
    [41]F. Liu, S. Y. Chung, G. Oh, T. S. Seo, ACSAppl. Mater. Interfaces 2012,4,922.
    [1]N. Armaroli, V. Balzani, Angew. Chem. Int. Ed.2006,46,52.
    [2]M. W. Kanan, D. G. Nocera, Science 2008,321,1072.
    [3]J. B. Gerken, J. G. McAlpin, J. Y. C. Chen, M. L. Rigsby, W. H. Casey, R. D. Britt, S. S. Stahl, J. Am. Chem. Soc.2011,133,14431.
    [4]F. M. Toma, A. Sartorel, M. Iurlo, M. Carraro, P. Parisse, C. Maccato, S. Rapino, B. R. Gonzalez, H. Amenitsch, T. D. Ros, L. Casalis, A. Goldoni, M. Marcaccio, G. Scorrano, G. Scoles, F. Paolucci, M. Prato, M. Bonchio, Nature Chem.2011,2,826.
    [5]V. Petrykin, K. Macounova, O. A. Shlyakhtin, and Petr Krtil, Angew. Chem.2010, 122,4923-4925; Angew. Chem. Int. Ed. 2010,49,4813.
    [6]F. Li, B. B. Zhang, X. N. Li, Y. Jiang, L. Chen, Y. Q. Li, L. C. Sun, Angew. Chem. 2011,123,12484-12487; Angew. Chem. Int. Ed.2011,50,12276.
    [7]S. D. Tilley, M. Cornuz, K. Sivula, M. Gr€atzel, Angew. Chem.2011,122, 6549-6552; Angew. Chem. Int. Ed. 2010,49,6405.
    [8]Y. H. Fang, Z. P. Liu, J. Am. Chem. Soc.2010,132,18214-1822.
    [9]K. L. Pickrahn, S. W. Park, Y. Gorlin, H. B. R. Lee,T. F. Jaramillo, S. F. Bent, Adv. Energy Mater.2012, DOI:10.1002/aenm.201200230.
    [10]T. Takashima, K. Hashimoto, R. Nakamura, J. Am. Chem. Soc.2012,134,1519.
    [11]F. Jiao, H. Frei, Energy Environ. Sci.2010,3,1018.
    [12]T. L. Wee, B. D. Sherman, D. Gust, A. L. Moore, T. A. Moore, Y. Liu, J. C. Scaiano, J. Am. Chem. Soc.2011,133,16742.
    [13]A. J. Esswein, Y. Surendranath, S. Y. Reece, D. G. Nocera, Energy Environ. Sci. 2011,4,499.
    [14]Y. G. Li, P. Hasin, Y. Y. Wu, Adv. Mater.2010,22,1926.
    [15]H. C. Chien, W. Y. Cheng, Y. H. Wang, T. Y. Wei, S. Y. Lu, J. Mater. Chem.2011, 21,18180.
    [16]G. P. Gardner, Y. B. Go, D. M. Robinson, P. F. Smith, J. Hadermann, A. Abakumov, M. Greenblatt, G. C. Dismukes, Angew. Chem. Int. Ed.2012,51,1616.
    [17]F. Jiao, H. Frei, Angew. Chem.2009,121,1873-1876; Angew. Chem. Int. Ed.2009, 48,1841.
    [18]A. K. M. F. Kibria, S. A. Tarafdar, Int. J. Hydrogen Energy 2002,27,879.
    [19]B. S. Yeo, A. T. Bell, J. Am. Chem. Soc.2011,133,5587.
    [20]M. R. Gao, Y F. Xu, J. Jiang, Y. R. Zheng, S. H. Yu, J. Am. Chem. Soc.2012,134, 2930.
    [21]Y Y. Liang, Y. G. Li, H. L.Wang, J. G. Zhou, J. Wang, T. Regier, H. J. Dai, Nature Mater.2011,10,780.
    [22]Y Matsumoto, E. Sato, Mater. Chem. Phys.1986,14,397.
    [23]Y. Gorlin, T. F. Jaramillo, J. Am. Chem. Soc.2010,132,13612.
    [24]L. Z. Zhang, J. C. Yu, M. S. Mo, L. Wu, Q. Li, K. W. Kwong, J. Am. Chem. Soc. 2004,126,8116.
    [25]W. Zhou, W. M. Chen, J. W. Nai, P. G. Yin, C. P. Chen, L. Guo, Adv. Funct. Mater. 2010,20,3678.
    [26]C. H. Lai, K. W. Huang, J. H. Cheng, C. Y. Lee, W. F. Lee, C. T. Huang, B. J. Hwang, L. J. Chen, J. Mater. Chem.2009,19,7277.
    [27]T. Zhu, Z. Y. Wang, S. J. Ding, J. S. Chen, X. W. Lou, RSC Advances 2011,1,397.
    [28]J. R. Miller, P. Simon, Science 2008,321,651.
    [29]P. Simon, Y. Gogotsi, Nat. Mater.2008,7,845.
    [30]J. Jiang, J. P. Liu, W. W. Zhou, J. H. Zhu, X. T. Huang, X. Y. Qi, H. Zhang, T. Yu, Energy Environ. Sci.2011,4,5000.
    [31]S. Chen, J. W. Zhu, X. D. Wu, Q. F. Han, X. Wang, ACS Nano 2010,4,2822.
    [32]K. Xie, J. Li, Y. Q. Lai, W. Lu, Z. Zhang, Y. X. Liu, L. Zhou, H. T. Huang, Electrochem. Commun.2011,13,657.
    [33]J. P. Liu, J. Jiang, C. W. Cheng, H. X. Li, J. X. Zhang, H. Gong, H. J. Fan, Adv. Mater.2011,23,2076.
    [34]H. L. Wang, H. S. Casalongue, Y. Y. Liang, H. J. Dai, J. Am. Chem. Soc.2010,132, 7472.
    [35]C. C. Hu, K. H. Chang, M. C. Lin, Y. T. Wu, Nano Lett.2006,6,2690.
    [36]C. Guan, J. P. Liu, C. W. Cheng, H. X. Li, X. L. Li, W. W. Zhou, H. Zhang, H. J. Fan, Energy Environ. Sci.2011,4,4496.
    [37]F. S. Cai, G.Y. Zhang, J. Chen, X. L. Gou, H. K. Liu, S. X. Dou, Angew. Chem. Int. Ed.2004,43,4212.
    [38]S. B. Yang, X. L. Wu, C. L. Chen, H. L. Dong, W. P. Hu, X. K. Wang, Chem. Commun.,2012,48,2773.
    [39]M. Jayalakshmi, M. M. Rao, J. Power Sources 2006,157,624.
    [40]F. Tao, Y. Q. Zhao, G. Q. Zhang, H. L. Li, Electrochem. Commun.2007,9,1282.
    [41]S. J. Bao, C. M. Li, C. X. Guo, Y. Qiao, J. Power Sources,2006,159,287.
    [42]T. Zhu, Z. Y. Wang, S. J. Ding, J. S. Chen, X. W. Lou, RSC Adv.2011,1,397.
    [43]J. P. Liu, J. Jiang, M. Bosmanc, H. J. Fan, J. Mater. Chem.2012,22,2419.
    [44]X. H. Cao, Y M. Shi, W. H. Shi, G Lu, X. Huang, Q. Y. Yan, Q. C. Zhang, H. Zhang, Small 2011,7,3163.
    [45]Z. P. Chen, W. C. Ren, L. B. Gao, B. L. Liu, S. F. Pei, H. M. Cheng, Nat. Mater. 2011,10,424.
    [46]X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, M. B. C. Park, H. Zhang, L. H. Wang, W. Huang, P. Chen, ACS Nano,2012,6,3206.
    [47]T. H. Han, Y. K. Huang, A. T. L. Tan, V. P. Dravid, J. X. Huang, J. Am. Chem. Soc. 2011,133,15264.
    [48]C. H. Lai, K. W. Huang, J. H. Cheng, C. Y Lee, W. F. Lee, C. T. Huang, B. J. Hwang, L. J. Chen, J. Mater. Chem.2009,19,7277.
    [49]M. D. Stoller, R. S. Ruoff, Energy Environ. Sci.2010,3,1294.
    [50]G. H. Yu, L. B. Hu, M. Vosgueritchian, H. L. Wang, X. Xie, J. R. McDonough, X. Cui, Y Cui, Z. N. Bao, Nano Lett.2011,11,2905.
    [51]L. B. Hu, W. Chen, X. Xie, N. Liu, Y Yang, H. Wu, Y Yao, M. Pasta, H. N. Alshareef, Y Cui, ACS Nano,2011,5,8904.
    [52]X. H. Xia, J. P. Tu, Y Q. Zhang, X. L. Wang, C. D. Gu, X. B. Zhao, H. J. Fan, ACS Nano,2012,6,5531.
    [53]G. W. Yang, C. L. Xu, H. L. Li, Chem. Commun.,2008,6537-6539.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700