用户名: 密码: 验证码:
ZnO基光催化材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪,环境污染和能源危机以严重影响人类生存与社会发展,光催化氧化技术被认为是解决这一难题的最有效的途径之一。光催化技术由于耗能低、易操作、无二次污染等,已成为催化领域中的研究热点之一。ZnO作为一种高效、廉价、无毒、易制备的光催化剂,已受到国内外的广泛关注。本论文针对如何提高ZnO材料的光催化效率,有效利用太阳能以及对一些恶劣环境中的使用,分别制备了二元,三元ZnO基复合光催化剂以及一些InGaN纳米材料,对其结构、形貌、光吸收特性和表面物理化学性质进行了详细的表征,研究了其光催化行为,探讨了光催化效率提高的原因。取得的主要研究结果如下:
     1.采用微波辅助多元醇方法,制备出Ag纳米颗粒、纳米立方体、纳米线。掌握了添加剂Na2S和PVP的浓度、微波功率、反应时间对Ag纳米产物形貌影响规律。发现Na2S浓度是影响Ag纳米形貌的主要因素,当添加Na2S浓度为0.25mM时,得到的是Ag纳米颗粒;当Na2S浓度增加到0.25-1mM时,可以制备尺寸可控的Ag纳内米立方体;而当Na2S浓度增大到1.5mM时,可得到分布比较均匀的Ag纳米线。通过分析反应过程,建立了Ag纳米产物随着S2-浓度变化的生长模型。
     2:通过超声辅助方法,在醋酸锌的水溶液中添加TEA,成功制备了不同粒径的ZnO微米球。对不同反应时间所制备的ZnO相关产物的形貌、结构、光学及光催化性能进行了表征,结果表明:随着反应时间的增加,反应产物由层基醋酸锌(LABZ:Zn5(OH)8Ac2·2H2O)纳米片自组装而成的花状结构逐渐分解为六方纤锌矿结构的ZnO纳米球,纳米ZnO球自组装逐渐变成粒径较大的ZnO微米球。随着反应时间的增加,ZnO球的紫外可见吸收光谱吸收峰的峰位从422nm蓝移到364nm,而且吸收峰强逐渐增强;而PL发射峰则不随反应时间的增加而变化,都在364nm,只是峰强逐渐增强。随着ZnO粒径的增加,ZnO微米球对罗丹明B的催化效率依次减小,这主要是由于ZnO微米球粒径的增加,使比表面积逐渐减小,导致在催化过程中和有机染料的接触面减小,降低了催化效率。
     3:通过在醋酸锌和TEA的混合水溶液中添加Ag纳米线,然后在超声辐射的条件下,合成了蠕虫状的Ag/ZnO异质结。通过改变Ag纳米线的添加量来控制合成的异质结中的Ag含量。比较制得的Ag/ZnO的形貌、晶体结构、光学和光催化性能,结果表明:面心立方结构的Ag纳米线和六方纤锌矿结构的ZnO构成的Ag/ZnO异质结,随着Ag含量的增加,蠕虫状异质结的量不断增加,团聚的颗粒物质减少,而且,Ag/ZnO异质结的的荧光发光峰位于370nm处,光强先减小后增大。Ag/ZnO异质结对若丹明B的光催化效率随Ag含量先增大后减小,在Ag含量为2.8%时,Ag/ZnO异质结的光催化效率达到最大。
     4:通过选择性地在硝酸铟的水合三乙醇胺(TEA)混合溶液中添加醋酸锌和Ag纳米线乙醇溶液,利用水热法和退火处理制得到了In2O3/ZnO/Ag三元异质结。通过对产物的形貌、晶体结构、可见光催化性能进行了表征,结果表明:In2O3/ZnO/Ag三元异质结是以面心立方结构的Ag纳米线为轴、由六方纤锌矿结构ZnO和体心立方结构In2O3包覆形成。在可见光催化作用下,对罗丹明B的降解反应活性依次为:Ag     5:采用简单的APCVD法,成功制备了InGaN纳米材料。在Au催化作用下,InxGa1-xN形貌随In含量的增加由花状结构转变成塔形结构,晶体结构均为六方纤锌矿,其发光性能有所增强,而且同时出现了GaN和InxGa1-xN (x>0)两个本征峰。塔形结构的InGaN对有机染料酸性橙的降解效果最好,在pH值为3时,降解效率可达到95%。
In the21st century, the globle environmental pollution and energy crisis is becoming more and more serious, and they have been serious affected the survival and development to human being. Photocatalytic oxidation technology is considered to be one of the most effective ways to solve this difficult problem. Photocatalytic technology has become an international hot spot in the field of catalysis due to low consumption easy operation, no secondary pollution, etc. ZnO, as a kind of low efficient non-toxic easy preparation of photocatalyst, has received extensive attention in the world. In this thesis, we focus on how to improve photocatalytic efficiency and effectively utilize solar energy as well as the use of some of the bad environment for ZnO materials, then we fabricated ZnO-base binary, ternary composite photocatalyst and some InGaN nano materials.Finally, the morphology, crystal structure, surface physical chemistry properties and photocatalytic behavior were characterized, the causes of enhance photocatalytic efficiency were discussed. Some new and interesting results are as following:
     1. The silver nanoparticles, nanocubes and nanowires were synthesized via microwave condensing reflux method. The different morphologies of silver nano-products were obtained through changing the concentration of Na2S, heating power, reaction time, and surfactant concentration. The results show that the silver nanoproducts have gone through a spherical-cube-linear evolution in the morphology with gradually increasing Na2S concentration from0to1to1.5mM. In addition, the effect of S2" on the morphology and the formation mechanism of silver nanoproducts are further discussed in this study.
     2. Mono-dispersed ZnO microspheres were synthesized through ultrasonic irradiation using zinc acetate, and triethanolamine. The results indicate that the the products was changed from Zn5(OH)8Ac2·2H2O to ZnO nanoparticles, simultaneously, ZnO nanoparticles assemble into spherical structure under ultrasonic irradiation with the increase of reactin time. UV-vis absorption measurement of as-prepared products at different stages shows that the absorption peaks became sharper and blue-shifted from422to364nm with the change of composition and morphology. Photoluminescence (PL) measurement show that the intensity of the UV emission increased with the increase of reaction time. Photocatalytic tests show that photocatalytic activity will decrease with increasing for size of ZnO particles, which may be related to the size and crystallinity of ZnO particles.
     3. Novel worm-like Ag/ZnO core-shell heterostructural composites were fabricated using a two-step chemical method. As-prepared silver nanowires were soaked in a solution of zinc acetate and triethanolamine to form worm-like Ag/ZnO core-shell composites under ultrasonic irradiation. The results show that the core-shell composites are composed of single crystal Ag nanowires served as the core, on which dense ZnO particles grow as the shell. The PL intensity of Ag/ZnO heterostructural composites varies and appears the minimum intensity for the sample prepared with Ag of2.8at.%. Moreover, photocatalytic tests show that the Ag/ZnO composites exhibit higher photocatalytic activity compared to pure ZnO particles.
     4. One-dimensional In2O3/ZnO/Ag heteroarchitectures with high visible-light photocatalytic activity have been successfully obtained by a simple combination of solvothermal process and annealing. The results revealed that the Ag nanowires were encapsulated by In2O3and ZnO nanostructures. By compared with Ag, ZnO/Ag, In2O3/Ag and In2O3/ZnO, the obtained In2O3/ZnO/Ag heteroarchitectures showed strongest the visible-light photocatalytic activity to degrade rhodamine B (RB). With the increase of Ag nanowires, the PL intensity of In2O3/ZnO/Ag heteroarchitectures first decrease and then increase, however, for In2O3/ZnO/Ag heteroarchitectures with higher Ag content (3.8wt%), an even better performance in MB photodegradation was attained.
     5. Different morphologies of InxGa1-xN nanomaterials were prepared upon Si substrates by APCVD. The results shown that all samples were wurtzite structure, however, the morphology changed from flower to pagoda with the effect of Au catalyst; with the inceeaseing of In content, the intensity of PL for InxGa1-xN nano-crystals increases and blue light zone appears. The pagoda InxGa1-xN show best photocatalytic efficency to degrade acid orange, and has highest efficiency for pH at3.
引文
[1]王宝贞,王琳.水污染治理新技术一新工艺、新概念、新理论[M].北京:科学出版社,2004.
    [2]刘昌明,何希吾.中国二H世纪水问题方略[M].北京:科学出版社,1998.
    [3]http://zls.mep.gov.cn/hjtj/nb/2010tjnb/201201/t20120118_222727.htm[W](中华人名共和国环境保护部网页)
    [4]杨若明.环境中有毒有害化学物质的污染与检测[M].北京:中央民族大学出版社,2001.
    [5]http://baike.baidu.com/view/3427144.htm [W].
    [6]席胜伟.大气污染危害性分析及治理途径[J].科技情报开发与经济2006,12:34-38.
    [7]高志明,吴越,王学忠,等.活性炭作为载体和还原剂对NO的还原作用[J].催化学报,1996,77:117.
    [8]Huang L, Xiao C M, Chen B X, et al. A novel starch-based adsorbent for removing toxic Hg(Ⅱ) and Pb(Ⅱ) ions from aqueous solution[J].Journal of Hazardous Materials,2011, 192(2):832-836.
    [9]Belmouden M, Assabbane A,Ichou Y A, et al. Adsorption characteristics of a phenoxy acetic acid herbicide on activated carbon[J]. J. Environ. Monit.,2000,2:257-260.
    [10]Fan J, Wang G, Sun Y, et al.Research on reactive adsorption desulfurization over Ni/ZnO-SiO2-Al2O3 adsorbent in a fixed-fluidized bed reactor [J]. Ind. Eng. Chem. Res., 2010,49(18):8450-8460.
    [11]Wang F Y, Wang H, Ma J W. Adsorption of cadmium (Ⅱ) ions from aqueous solution by a new low-cost adsorbent-Bamboo charcoal[J].Journal of Hazardous Materials,2010,177 (1-3):300-306.
    [12]DaghrirR, DroguiP, Ka I, et al. Photoelectrocatalytic degradation of chlortetracycline using Ti/TiO2 nanostructured electrodes deposited by means of a Pulsed laser deposition process [J] Journal of Hazardous Materials,2012,199-200(15):15-24.
    [13]Wang L, Hu Y, Li P, et al. Electrochemical treatment of industrial wastewater using a novel layer-upon-layer bipolar electrode system (nLBPEs)[J]. Chemical engineering Journal,2013,215-216:157-161.
    [14]Noked M, Avraham E, Soffer A, et al. The rate-determining step of electroadsorption processes into nanoporous carbon electrodesrelated to water desalination [J]. J. Phys. Chem. C,2009,113 (51):21319-21327.
    [15]Bortone G. Integrated anaerobic/aerobic biological treatment for intensive swine production [J].Bioresource Technology,2009,100 (22):5424-5430.
    [16]Trabelsi I, Sellami I, Dhifallah T, et al.Coupling of anoxic and aerobic biological treatment of landfill leachate [J]. Desalination,2009,246 (1-3):506-513.
    [17]ChanY J, ChongM F, Law C L, et al. A review on anaerobic-aerobic treatment of industrial and municipal wastewater[J].Chemical Engineering Journal,2009,155(1-2): 1-18.
    [18]Badis A, Ferradji F Z, Boucherit A, et al. Removal of natural humic acids by decolorizing actinomycetes isolated from different soils (Algeria) for application in water purificationdesalination[J].2010,259 (1-3):216-222.
    [19]Yang Q, Li C, Li H, et al.Degradation of synthetic reactive azo dyes and treatment of textile wastewater by a fungi consortium reactor [J].Biochemical Engineering Journal, 2009,43 (3):225-230.
    [20]Tholen J, Brand B, Schaick E V, et al.Membrane technology:Recovery of waste and water with membranes [J]. Filtration & Separation,2009,46 (2):28-29.
    [21]Gethard K, Sae-khow O, Mitra S, et al. Carbon nanotube enhanced membrane distillation for simultaneous generation of pure water and concentrating pharmaceutical waste [J]. Separation and Purification Technology,2012,90(27):239-245.
    [22]Badani Z, Ait-Amar H, Si-Salah A, et al. Treatment of textile waste water by membrane bioreactor and reuse [J]. Desalination,2005,185 (1-3):411-417.
    [23]Gondal M A, Seddigi Z. Laser-induced photo-catalytic removal of phenol using n-type WO3 semiconductor catalyst [J].Chemical Physics Letters,2006,417 (1-3):124-127.
    [24]Ravagnani M, Righetto A R, Marquini M F.Improving energetic performance and water usage in an industrial ethanol distilleryprocess [J]. Safety and Environmental Protection, 2007,85 (6):526-532.
    [25]Zheng Y, ChenC, Zhan Y, et al. Photocatalytic activity of Ag/ZnO heterostructure nanocatalystcorrelation between structure and property [J]. J. Phys. Chem. C,2008,112 (29):10773-10777.
    [26]Xiong Z, Dou H, Pan J, et al. Synthesis of mesoporous anatase TiO2 with a combined template method and photocatalysis[J]. CrystEngComm,2010,12:3455-3457.
    [27]Davide R, Dondi D, Fagnoni M, et al.Photocatalysis. A multi-faceted concept for green chemistry [J]. Chem. Soc. Rev.,2009,38:1999-2011.
    [28]FujishimaA. Electrochemical photolysis of water at a semiconductor electrode [J].Nature 1972,238:37-38.
    [29]Carey J, Lawrence J, Tosine H. Photodechlorination of PCBs in the presence of titanium dioxide in aqueous suspensions [J]. Bull. Environ. Contain. Toxicol.,1976,16:697-701
    [30]Frank S, Bard A. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions with TiO2 powder [J]. J. Am. Chem. Soc.,1977,99:303-304.
    [31]Wu C, Ng H. Photodegradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans:Direct photolysis and photocatalysis processes [J].Journal of Hazardous Materials,2008,151 (2-3):507-514.
    [32]Fuggieri F, D'Archivio A, Fanelli M, et al. Photocatalytic degradation of linuron in aqueous suspensions of TiO2 [J]. RSC Adv.,2011,1:611-618.
    [33]Parvulescu V, Garcia H. Photocatalysis in green chemistry and destruction of very toxic compounds [J].Catalysis,2011,23:204-252.
    [34]Herrmann J, Duchamp C, Karkmaz M, et al. Environmental green chemistry as defined by photocatalysis[J]. Journal of Hazardous Materials,2007,146 (3):624-629.
    [35]Cid L, Grande M, Acosta E, et al. Removal of Cr(VI) and humic acid by heterogeneous photocatalysis in a laboratory reactor and a pilot reactor[J]. Ind. Eng. Chem. Res.,2012, 51(28):9468-9474.
    [36]Zhang D, Li G, Jimmy CY.Inorganic materials for photocatalytic water disinfection [J].J. Mater. Chem.,2010,20:4529-4536.
    [37]Knor G, Monkowius U. Photosensitization and photocatalysis in bioinorganic, bio-organometallic and biomimetic systems [J]. Advances in Inorganic Chemistry,2011, 63:235-289.
    [38]Nakano R, Ishiguro H, Yao Y, et al. Photocatalytic inactivation of influenza virus by titanium dioxide thin film[J]. Photochem. Photobiol. Sci.,2012,11:1293-1298.
    [39]Robertson P KJ, Robertson J. Removal of microorganisms and their chemical metabolites from water using semiconductor photocatalysis[J]. Journal of Hazardous Materials,2012, 211-212:161-171.
    [40]Palmisano G, Augugliaro V, Pagliaro M.Photocatalysis:a promising route for 21st century organic chemistry [J]. Chem. Commun.,2007:3425-3437.
    [41]Hurtley A E, CismesiaM A, Ischay M A, et al. Visible light photocatalysis of radical anion Hetero-Diels-Alder cycloadditions[J].Tetrahedron,2011,67 (24):4442-4448.
    [42]Serpone N, EmelineA V. Semiconductor Photocatalysis-Past, Present, and future outlook [J]. J. Phys. Chem. Lett.,2012,3(5):673-677.
    [43]刘恩科,朱秉升,罗晋生.半导体物理学[M].电子工业出版社,2011.
    [44]Mills A, Davies R, Worsley D. Water purification by semiconductor photocatalysis [J]. Chem. Soc. Rev.,1993,22:417-425.
    [45]Qu Y, Duan X. Progress, challenge and perspective of heterogeneous photocatalysts [J]. Chem. Soc. Rev.,2013.
    [46]HerrmannJ M. Fundamentals and misconceptions in photocatalysis [J]. Journal of Photochemistry and Photobiology A:Chemistry,2010,216 (2-3):85-93.
    [47]Mohamed H H, Bahnemann D W. The role of electron transfer in photocatalysis:fact and fictions [J].Applied Catalysis B:Environmental,2012,128:91-104.
    [48]张金龙.光催化[M].华东理工大学出版社,2012.
    [49]王玉亲.功能性纳米ZnO的调控制备、表征及其光催化性能研究[D].大连理工大学,2008.
    [50]Chen H, Nanayakkara C E, Grassian V H. Titanium dioxide photocatalysis in atmospheric chemistry [J]. Chem. Rev.,2012,112(11):5919-5948.
    [51]Aarthi T, MadrasG. Photocatalytic reduction of metals in presence of combustion synthesized nano-TiO2 [J]. Catalysis Communications,2008,9 (5):630-634.
    [52]WangX L,PehkonenSO,Ray A K. Photocatalytic reduction of Hg(Ⅱ) on two commercial TiO2 catalysts[J]. ElectrochimicaActa,2004,49(9-10):1435-1444.
    [53]CruickshankA C, Tay S E R, IllyBN, et al. Electrodeposition of ZnO nanostructures on molecular thin films [J]. Chem. Mater,2011,23(17):3863-3870.
    [54]Yu J, Zhang J, Liu S. Lon-exchange synthsis and enhanced visble-light photoactivity of CuS/ZnSnanocomposite hollow spheres [J]. J. Phys. Chem. C,2010,114:13642-13649.
    [55]Kou J, Li Z, Guo Y, et al. Photocatalytic degradation of polycyclic aromatic hydrocarbons in GaN:ZnO solid solution-assisted process:Direct holeoxidation mechanism [J]. Journal of Molecular Catalysis A:Chemical,2010,325 (1-2):48-54.
    [56]Liu Y, Xie C S, Li H, et al. Improvement of gaseous pollutant photocatalysis with WO3/TiO2 heterojunctional-electrical layered system [J] Journal of Hazardous Materials, 2011,196:52-58.
    [57]Chen C, Ma W, Zhao J, et al. Semiconductor-mediated photodegradationo pollutants undervisible-lightirradiation [J].Chem. Soc. Rev.,2010,39:4206-4219.
    [58]Palmisano G, Addamo M, Augugliaro V, et al. Selectivity of hydroxyl radical in the partial oxidation of aromatic compounds in heterogeneous photocatalysis [J].Catalysis Today,2007,122 (1-2):118-127.
    [59]Song W, Yan S, Cooper W J, et al. Hydroxyl Radical Oxidation of cylindrospermopsin (cyanobacterial toxin) and its Role in the photochemical transformation [J]. Environ. Sci. Technol.,2012,46(22):12608-12615.
    [60]Lin J, Jiang H Y, Cheng K. Crystalline metallic Au nanoparticle-loaded α-Bi2O3 microrods for improved photocatalysis [J].Phys. Chem. Chem. Phys.,2012,14: 12114-12121.
    [61]CorazzariI, LivraghiS, FerreroS, et al. Inactivation of TiO2 nano-powders for the preparation of photo-stable sunscreens via carbon-based surface modification [J]. J. Mater. Chem.,2012,22:19105-19112.
    [62]Zhao X., Xu T.G, Yao W Q, et al. Photodegradation of dye pollutants catalyzed by γ-Bi2MoO6 nanoplate under visible light irradiation[J]. Appl. Sur. Sci.2009,255, 8036-8040.
    [63]Fu H B, Zhang L W, Zhang S C, et al. Electron spinresonance spin-trapping detection of radical intermediates in N-doped TiO2-assisted photodegradation of 4-Chlorophenol [J] J. Phys. Chem. B,2006,110,3061-3065.
    [64]Nisar J, Pathak B, Wang B, et al. Hole mediated coupling in Sr2Nb2O7 for visible light photocatalysis [J]. Phys. Chem. Chem. Phys.,2012,14:4891-4897.
    [65]Zhou X, Hu C, Hu X, et al. Plasmon-assisted degradation of toxic pollutants with Ag-AgBr/Al2O3 under visible-light irradiation [J]. J. Phys. Chem. C,2010,114(6): 2746-2750.
    [66]Li W J, Li D Z., Lin Y M, et al. Evidence for the Active Species Involved in the Photodegradation Process of Methyl Orange on TiO2[J] J. Phys. Chem. C 2012,116, 3552-3560.
    [67]刘守新,刘鸿.光催化及光电催化基础与应用[M].化学工业出版社,2007.
    [68]Yin J, Cao H.Synthesis and photocatalytic activity of single-crystalline hollow rh-In2O3 nanocrystals [J]. Inorg. Chem.,2012,51(12):6529-6536.
    [69]Wu S, Cao H, Yin S, et al. Amino Acid-Assisted hydrothermal synthesis and photocatalysis of SnO2 nanocrystals [J]. J. Phys. Chem. C,2009,113(41):17893-17898.
    [70]Iwashina K, Kudo A. Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation [J]. J. Am. Chem. Soc., 2011,133(34):13272-13275.
    [71]Ge S, Jia H, Zhao H, et al. First observation of visible light photocatalytic activity of carbon modified Nb2O5 nanostructures [J].J. Mater. Chem.,2010,20:3052-3058.
    [72]Jiang Z, ZhouF, Qin X, et al.Template-free synthesis of mesoporous N-doped SrTiO3 perovskite with high visible-light-driven photocatalytic activity [J]. Chem. Commun., 2012,48:8514-8516.
    [73]Huang Y, Sun F, Wu T, et al. Photochemical preparation of CdS hollow microspheres at room temperature and their use in visible-light photocatalysis[J].Journal of Solid State Chemistry,2011,184 (3):644-648.
    [74]Chen D G, Huang F, Ren G Q,et al. ZnS nano-architectures:photocatalysis, deactivation and regeneration [J]Nanoscale,2010,2:2062-2064.
    [75]Serpone N, Lawless D, Khairutdinov R, et al. Subnanosecond relaxation dynamics in TiO2colloidal sols (Particlesizes Rp=1.0-13.4 nm). Relevance to heterogeneous photocatalysis [J]. J. Phys. Chem.,1995,99 (45):16655-16661.
    [76]Pan J H, Dou H Q, Xiong Z G, et al. Porous photocatalysts for advanced water purifications [J].J. Mater. Chem.,2010,20:4512-4528.
    [77]Inumaru K, Yasui M, Kasahara T, et al.Nanocomposites of crystalline TiO2 particles and mesoporous silica:molecular selective photocatalysis tuned by controlling pore size and structure [J]. J. Mater. Chem.,2011,21:12117-12125.
    [78]Jiang X, Wang T. Influence of Preparation Method on Morphology and Photocatalysis Activity of Nanostructured TiO2 [J]. Environ. Sci. Technol.,2007,41 (12):4441-4446.
    [79]Xing Z J, Geng B Y, Li X L,et al. Self-assembly fabrication of 3D porous quasi-flower-like ZnO nanostrip clusters for photodegradation of an organic dye with high performance [J]. CrystEngComm,2011,13:2137-2142.
    [80]傅献彩,沈文霞,等.物理化学[M].北京高等教育出版社,1995:87—92.
    [81]Gerischer H. Photocatalysis in aqueous solution with small TiO2 particles and the dependence of the quantum yield on particle size and light intensity [J].ElectrochimicaActa,1995,40(10):1277-1281.
    [82]Ishiguro H, Nakano R, Yao Y, et al. Photocatalytic inactivation of bacteriophages by TiO2-coated glass plates under low-intensity, long-wavelength UV irradiation [J]. Photochem. Photobiol. Sci.,2011,10:1825-1829.
    [83]Sato S, White J M.Photodecomposition of water over Pt/TiO2 catalysts [J]. Chemical Physics Letters.1980,72(1):83-86.
    [84]Jing L Q, Wang D J, Wang B Q, et al.Effects of noble metal modification on surface oxygen composition, charge separation and photocatalytic activity of ZnO nanoparticles [J]. Journal of Molecular Catalysis A:Chemical,2006,244:193-200.
    [85]Zhou X M, Liu G, Yu J G, et aln. Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light [J] J. Mater. Chem.,2012,22: 21337-21354.
    [86]Zheng Z K, Huang B B, Qin X Y,et al. Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M=Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol [J]. J. Mater. Chem.,2011,21:9079-9087.
    [87]Lee J, Shim H S, Lee M, et al. Size-controlled electron transfer and photocatalytic activity of ZnO-Au nanoparticle composites [J]. J. Phys. Chem. Lett.,2011,2(22): 2840-2845.
    [88]Zhang N, Liu S Q, Xu YJ.Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst [J]. Nanoscale,2012,4: 2227-2238.
    [89]Yang W, Li S C, Hui S et al. Facile synthesis of p-type Cu2O/n-type ZnO nano-heterojunctions with novel photoluminescence properties, enhanced field emission and photocatalytic activities [J] Nanoscale,2012,4:7817-7824.
    [90]. Zou C W, Rao Y F, Alyamani A, et al. Heterogeneous lollipop-like V2O5/ZnO array:A promising composite nanostructure for visible light photocatalysis [J]. Langmuir,2010, 26(14):11615-11620.
    [91]Niu M T, Huang F, Cui L F, et al. Hydrothermal Synthesis, Structural Characteristics, and Enhanced Photocatalysis of SnO2/a-Fe2O3 Semiconductor Nanoheterostructures [J]. ACS Nano,2010,4(2):681-688.
    [92]Zhang Z Y, Shao C L, Li X H, et al. Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity [J]. ACS Appl. Mater. Interfaces, 2010,2 (10):2915-2923.
    [93]Zhang Z Y, Shao C L, Li X H, et al. Electrospun nanofibers of ZnO-SnO2 heterojunction with high photocatalytic activity[J]. J. Phys. Chem. C,2010,114(17):7920-7925.
    [94]Khanchandani S, Kundu S, Patra A, et al. Shell thickness dependent photocatalytic properties of ZnO/CdS core-shell nanorods[J]. J. Phys. Chem. C,2012,116 (44): 23653-23662.
    [95]Cho S, Jang J W, Kim J, et al. Three-dimensional type Ⅱ ZnO/ZnSe heterostructures and their visible light photocatalytic activities [J]. Langmuir,2011,27 (16):10243-10250.
    [96]Konta R, Ishii T, Kato H, et al. Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation [J]. J. Phys. Chem. B,2004,108(26):8992-8995.
    [97]Xing M Y, Wu Y M, Zhang J L, et al. Effect of synergy on the visible light activity of B, N and Fe co-doped TiO2 for the degradation of MO [J]. Nanoscale,2010,2:1233-1239.
    [98]Herrmann J M. Detrimental cationic doping of Titania in photocatalysis:why chromium Cr3+-doping is a catastrophe for photocatalysis, both under UV-and visible irradiations [J]. New J. Chem.,2012,36,883-890.
    [99]Qin W P, Zhang D S, Zhao D, et al. Near-infrared photocatalysis based on YF3:Yb3+, Tm3+/Ti02 core/shell nanoparticles [J]. Chem. Commun.,2010,46:2304-2306.
    [100]Choi W Y, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2:Correlation between photoreactivity and charge carrier recombination dynamics [J]. J. Phys. Chem.,1994,98(51):13669-13679.
    [101]Etacheri V, Roshan R, Kumar V. Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis [J]. ACS Appl. Mater. Interfaces,2012,4(5):2717-2725.
    [102]Xu J, Yang B F, Wu M, et al. Novel N-F-codoped TiO2inverse opal with a hierarchical meso-/macroporous structure:synthesis, characterization, and photocatalysis [J]. J. Phys. Chem. C,2010,114 (36):15251-15259.
    [103]Gai L G, Duan X Q, Jiang H H, et al. One-pot synthesis of nitrogen-doped TiO2 nanorods with anatase/brookite structures and enhanced photocatalytic activity[J]. CrystEngComm,2012,14:7662-767'1.
    [104]Cho S, Jang J W, Lee J S, et al. Carbon-doped ZnO nanostructures synthesized using vitamin C for visible light photocatalysis[J]. CrystEngComm,2010,12:3929-3935.
    [105]戴宝通,郑晃忠.太阳能电池技术手册/新能源及高效节能应用技术丛书[M]人民邮电出版社,第1版2012:54-68
    [106]Wang J L, Wang C, Lin W B. Metal-organic frameworks for light harvesting and photocatalysis[J]. ACS Catal.,2012,2 (12):2630-2640.
    [107]Kim W, Tachikawa T, Majima T, et al. Tin-porphyrin sensitized TiO2 for the production of H2 under visible light [J]. Energy Environ. Sci.,2010,3:1789-1795.
    [108]He H, Gurung A, Si L, et al. A simple acrylic acid functionalized zinc porphyrin for cost-effective dye-sensitized solar cells [J]. Chem. Commun.,2012,48:7619-7621.
    [109]Sayama K, Tsukagoshi S, Hara K. Photoelectrochemicalproperties of J aggregates of benzothiazolemerocyaninedyes on a nanostructured TiO2film [J]. J. Phys. Chem. B, 2002,106:1363-1371.
    [110]Lan C M, Wu H P, Pan T Y, et al. Enhanced photovoltaic performance with co-sensitization of porphyrin and an organic dye in dye-sensitized solar cells [J]. Energy Environ. Sci.,2012,5:6460-6464.
    [111]Li X, Reynal A, Barnes P, et al. Measured binding coefficients for iodine and ruthenium dyes implications for recombination in dye sensitised solar cells [J]. Phys. Chem. Chem. Phys.,2012,14:15421-15428.
    [112]O'Regan B, Gratzel M. A low-cost high efficiency solar cell based on dye-Sensitized colloidal TiO2 film [J]. Nature,1991,353:737-739.
    [113]高濂,郑珊,张青红,等.纳米氧化钛光催化材料及应用[M].北京化学工业出版社,2005:99—107.
    [114]Zhou H, Qu Y, Zeid T,et al. Towards highly efficient photocatalysts using semiconductor nanoarchitectures [J]. Energy Environ. Sci.,2012,5:6732-6743.
    [115]Herrnandez-Alonso M D, Fresno F, Suarez S, et al. Development of alternative photocatalysts to TiO2:Challenges and opportunities[J]. Energy Environ. Sci.,2009,2: 1231-1257.
    [1]Zhou X M, Liu G, Yu J G, et al. Surface plasmon resonance-mediated photocatalysis by noble metalbased composites under visible light [J]. J. Mater. Chem.,2012,22(40): 21337-21354.
    [2]Eguchi M, Mitsui D, Wu H L, et al. Simple reductant concentration-dependent shape control of polyhedral gold nanoparticles and their plasmonic properties[J]. Langmuir, 2012,28(24):9021-9026.
    [3]Chang S J, Chen K, Hua Q, et al. Evidence for the growth mechanisms of silver nanocubes and nanowires[J].J. Phys. Chem. C., 2011,115(16):7979-7986.
    [4]Tsuji M, Gomi S, Maeda Y, et al. Rapid transformation from spherical nanoparticles, nanorods, cubes, or bipyramids to triangular prisms of sliver with PVP, Citrate, and H2O2[J]. Langmuir,2012,28(24):8845-8861.
    [5]Coskun S, Aksoy B, Unalan H E. Polyol synthesis of silver nanowires:an extensive parametric study [J]. Cryst. Growth Des.,2011,11(11):4963-4969.
    [6]Murali S, Xu T, Bennett D M, et al. Lyotropic liquid crystalline self-assembly in dispersions of silver nanowires and nanoparticles[J]. Langmuir,2010,26(13): 11176-11183.
    [7]Wile B, Sun Y, Xia Y N. Synthesis of silver nanostructures with controlled shapes and properties [J]. Acv. Chem. Res.2007,40:1067-1076.
    [8]Panfilova E V, Khlebtsov B N, Burov A M, et al. Study of polyol synthesis reaction parameters controlling high yield of silver nanocubes [J]. Colloid J.,2012,74:99-109
    [9]陈昌.银纳米材料的形貌可控制备及其应用研究[D].浙江:浙江大学,2006.
    [10]Rycenga M, Cobley, C M. Zeng J, et al. Controlling the synthesis and assembly of silver nanostructures for Plasmonic applications [J]. Chem. Rev.2011,111:3669-3712.
    [11]Siekkinen A R, McLellan J M, Chen J, et al. Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide[J]. Chem Phys Lett.2006,432:491-496.
    [12]Hirasawa S, Nakagawa Y, Tomishige K. Selective oxidation of glycerol to dihydroxyacetone over a Pd-Ag catalyst [J]. Catal. Sci. Technol.,2012,2:1150-1152.
    [13]Xu P, Jeon S, Chen H, et al. Facile synthesis and electrical properties of sliver wires through chemical reduction by polyaniline[J]. J. Phys. Chem. C,2010,114(50): 22147-22154.
    [14]Moshe A B, Markovich G. Synthesis of single crystal hollow silver nanoparticles in a fast reaction-diffusion process [J]. Chem. Mater.,2011,23(5):1239-1245.
    [15]Stoermer R L, Sioss J A, Keating C D. Stablitization of silver metal in citrate buffer: barcoded nanowires and their bioconjugates[J]. Chem. Mater.,2005,17(17):4356-4361.
    [16]Mock J J, Barbic M, Smith D R, et al. Shape effects in plasmon resonance of individual colloidal silver nanoparticles[J].J. Chem. Phys.,2002,116(15):6755-6760.
    [17]Kou J, Varma R S. Speedy fabrication of diameter-controlled Ag nanowires using glycerol under microwave irradiation conditions [J]. Chem. Commun.,2013,49: 692-694.
    [18]Jin S, Shen P, Zhou D, et al. A Common regularity of stoichiometry-induced morphology evolution of transition metal carbides, nitrides, and diborides during self-propagating high-temperature synthesis[J]. Crystal Growth & Design,2012,12 (6):2814-2824.
    [19]Pramanik A, Das G. Precursory Ag-bipyridine 2D coordination polymer:a new and efficient route for the synthesis of Ag nanoparticles [J]. CrystEngComm,2010,12: 401-405.
    [20]Mazzucco S, Geuquet N, Ye J, et al. Ultralocal modification of surface plasmons properties in Silver nanocubes [J]. Nano Lett.,2012,12 (3):1288-1294.
    [21]Clayton D A, McPherson T E, Pan S, et al. Spatial and temporal variation of surface-enhanced Raman scattering at Ag nanowires in aqueous solution [J]. Phys. Chem. Chem. Phys.,2013,15:850-859.
    [22]Huang S, Pfeiffer C, Hollmann J, et al. Synthesis and characterization of colloidal fluorescent silver nanoclusters[J]. Langmuir,2012,28 (24):8915-8919.
    [23]Wongravee K, Parnklang T, Pienpinijtham P. Chemometric analysis of spectroscopic data on shape evolution of silver nanoparticles induced by hydrogen peroxide[J]. Phys. Chem. Chem. Phys.,2013,15:4183-4189.
    [24]Zhang W, Chen P, Gao Q, et al. High-concentration preparation of Silver nanowires: restraining in situ nitric acidic etching by steel-assisted polyol method [J]. Chem. Mater., 2008,20(5):1699-1704.
    [25]Gao Y, Jiang P, Song L, et al.Growth mechanism of silver nanowires synthesized by polyvinylpyrrolidone-assisted polyol reduction [J]. J. Phys. D:Appl. Phys.,2005,38(7): 1061-1067.
    [26]Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials [J]. Biotechnology Advances,2009,27(1):76-83.
    [27]Wang Y, Zheng Y, Huang C Z, et al. Synthesis of Ag nanocubes 18-32 nm in edge length:The effects of polyol on reduction kinetics, size control, and reproducibility [J].J. Am. Chem. Soc.2013,135(5):1941-1951.
    [28]Chen D, Qiao X, Qiu X, et al.Convenient, rapid synthesis of silver nanocubes and nanowires via a microwave-assisted polyol method [J]. Nanotechnology,2010,21(2): 1-7.
    [29]Liu X, Zhang F, Huang R, et al. Capping Modes in PVP-Directed Silver Nanocrystal Growth:Multi-Twinned Nanorods versus Single-Crystalline Nano-Hexapods[J]. Crystal Growth & Design,2008,8 (6):1916-1923.
    [30j Silvert P, Ronaldo H, Kamar T. Preparation of colloidal silver dispersions by the polyol process [J]. J. Mater. Chem.,1997,7:293-299.
    [31]Bourret G R, Lennox R. B. Electrochemical synthesis of Ag(0)/Ag2S heterojunctions templated on pre-formed Ag2S nanowires [J]. Nanoscale,2011,3:1838-1844.
    [32]Siekkinen A R, McLellan J M.,Chen J Y, et al. Rapid synthesis of small silver nanocubes by mediating polyolreduction with a trace amount of sodium sulfide or sodium hydrosulfide[J]. Chemical Physics Letters,2006,432(4-6):491-496.
    [33]Chen D P, Qiao X L, Qiu X L, et al. Convenient synthesis of silver nanowires with adjustable diamters via a solvothermal method[J]. Journal of Colloid and Interface Science,2010,344(2):286-29l.
    [34]Liu H, Hu W. Ye F, et al. Growth mechanism of Ag2S nanocrystals in a nonpolar organic solvent [J]. RSC Adv.,2013,3:616-622.
    [35]Tsuji M, Gomi S, Maeda Y, et al. Rapid transformation from spherical nanoparticles, nanorods, cubes, or bipyramids to triangular prisms of Silver with PVP, citrate, and H2O2 [J]. Langmuir,2012,28 (24):8845-8861.
    [36]Yu D B, Yam V W W. Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction [J]. J. Phys. Chem. B,2005,109(12):5497-5503.
    [37]Sun Y G, Mayers B, Herricks T, et al. Polyol synthesis of uniform silver nanowires:a plausible growth mechanism and the supporting evidence [J]. Nano Lett.,2003,3(7): 955-960.
    [38]Nishioka M, Miyakawa M, Kataoka H, et al. Continuous synthesis of monodispersed silver nanoparticles using a homogeneous heating microwave reactor system [J]. Nanoscale,2011,3:2621-2626.
    [39]Chein Lin Kuo and Kuo Chu Hwang. Does morphology of a metal nanoparticle play a role in Ostwald Ripening processes?[J]. Chem. Mater.,2013,25:365-371.
    [40]Bonet F. Tekaia-Elhsissen K, Sarathy K V. Study of interaction of ethylene glycol/PVP phase on noble metal powders prepared by polyol process [J]. Bull. Mater. Sci., 2000, 23(3):165-168.
    [41邵桂雪,梁建,李天宝等.S2-控制剂对Ag纳米产物的形貌及光学性能的影响[J].无机化学学报.2012,28,55—61.
    [1]Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers[J]. Science,2001,292:1897-1899.
    [2]Wang X J, Zhang Q L, Wan Q, et al. Controllable ZnO architectures by ethanolamine-assisted hydrothermal reaction for enhanced photocatalytic activity [J]. J. Phys. Chem. C,2011,115(6):2769-2775.
    [3]Nguyen X S, Tay C B, Fitzgerald E A, et al. ZnO coaxial nanorod homojunction UV light-emitting diodes prepared by aqueous solution method [J]. Small,2012,8(8): 1204-1208.
    [4]Weintraub B, Wei Y G, Wang Z L. Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells [J]. Angew. Chem. Int. Ed.,2009,48(47): 8981-8985.
    [5]Seow Z L S, Wong A S W, Thavasi V,et al. Controlled synthesis and application of ZnO nanoparticles, nanorods and nanospheres in dye-sensitized solar cells[J]. Nanotechnology, 2009,20(4):045604.
    [6]Hieu H N, Vuong N M, Jung H, et al. Optimization of a zinc oxide urchin-like structure for high-performance gas sensing [J]. J. Mater. Chem.,2012,22:1127-1134.
    [7]Han X G, He H Z, Kuang Q, et al. Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites [J]. J. Phys. Chem. C,2009,113(2): 584-589.
    [8]Zhang H J, Wu R F,Chen Z W, et al. Self-assembly fabrication of 3D flower-like ZnO hierarchical nanostructures and their gas sening properties[J]. CrystEngComm,2012,14: 1775-1782.
    [9]Kuo C L, Kuo T J, Huang M H. Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures[J]. J. Phys. Chem. B, 2005,109(43):20115-20121.
    [10]Sun Y J, Wang L, Yu X G, et al. Faciile synthesis of flower-like 3D ZnO superstructures via solution route [J]. CrystEngComm,2012,14:3199-3204
    [11]Lian J B, Ding Z M, Kwong F L, et al. Template-free hydrothermal synthesis of hexagonal ZnO micro-cups and micro-rings assembled by nanoparticles[J]. CrystEngComm,2011,13:4820-4822.
    [12]Yan Z J, Ma Y W, Wang D L, et al. Surfactant-free fabrication of ZnO sphere and pseudospherical structures[J]. J. Phys. Chem. C,2008,112(25),9219-9222.
    [13]Kuo D H, Fang J F, Chen R S, et al. ZnO nanomaterials grown with Fe-Based Catalysts[J]. J. Phys. Chem. C,2011,115(25):12260-12268.
    [14]Nicholas N J, Franks G V, DuckerW A.The mechanism for hydrothermal growth of zinc oxide[J]. CrystEngComm,2012,14:1232-1240.
    [15]Wen B M, Huang Y Z, Boland J J. Controllable growth of ZnO nanostructures by a simple solvothermal process[J]. J. Phys. Chem. C,2008,112(1):106-111.
    [16]Cho S, Jung S H, Lee K H. Morphology-controlled growth of ZnO nanostruvtures using microwave irradiation:from basic to complex structures [J]. J. Phys. Chem. C,2008, 112(23):12769-12776.
    [17]Xu L H, Li X Y, Chen Y L, et al. Structural and optical properties of ZnO thin films prepared by sol-gel method with different thickness [J]. Applied Surface Science,2011, 257(9):4031-4037.
    [18]Pradhan D, Leung K T, Template-free single-step electrochemical sysnthesis of ZnO hollow nanospheres:self-assembly of hollow nanospheres from nanoparticales [J]. J. Mater. Chem.,2009,19:4902-4905.
    [19]Wan L J, Wang X Y, Yan S C, et al. ZnO plates synthesized from the ammonium zinc nitrate hydroxide precursor [J]. CrystEngComm,2012,14:154-159.
    [20]Cho S, Jung S H, Lee K H. Morphology-controlled growth of ZnO nanostructures using microwave irradiation:from basic to complex structures [J].J. Phys. Chem. C,2008, 112(33):12769-12776.
    [21]Yu S Y, Zhang H J, Peng Z P, et al. Template-free fabrication of hexagonal ZnO microprism with a interior space [J]. Inorg. Chem.,2007,46(19):8019-8023.
    [22]Makkar M, Bhatti H S. Inquisition of reaction parameters on the growth and optical properties of ZnO nanoparticles synthesized via low temperature reaction route [J]. Chem. Phys. Lett.,2011,507(1-3):122-127.
    [23]Jiang H, Hu J Q, Gu F, et al. Large-scaled, uniform, monodispersed ZnO colloidal microspheres[J]. J. Phys. Chem. C,2008,112(32):12138-12141.
    [24]Xu S, Li Z H, Wang Q, et al.A novel one-step method to synthesize nano/micron-sized ZnO sphere [J]. Journal of Alloys and Compounds,2008,465(1-2):56-60.
    [25]Becker J, Raghupathi K R, Pierre J S, et al.Tuning of the crystallite and particle sizes of ZnO nanocrystalline materials in solvothermal synthesis and their photocatalytic activity for dye degradation[J]. J. Phys. Chem. C,2011:115(28),13844-13850.
    [26]Grasset F, Lavastre O, Baudet C, et al. Synthesis of alcoholic ZnO nanocolloids in the presence of piperidine organic base:Nucleation-growth evidence of Zn5(OH)8Ac2·2H2O fine particles and ZnO nanocrystals[J]. Journal of Colloid and Interface Science,2008, 317(2):493-500.
    [27]Xia Z B, Sha J, Fang Y Y, et al. Purposed built ZnO/Zn5(OH)8Ac2·2H2O architectures by hydrothermal synthesis[J]. Cryst. Growth Des.,2010,10(6):2759-2765.
    [28]Vafaee M, Ghamsari M S. Preparation and characterization of ZnO nanoparticles by a novel sol-gel route [J]. Materials Letters,2007,61(14-15):3265-3268.
    [29]Zhang G K, Shen X, Yang Y Q. Facile synthesis of monodisperse porous ZnO spheres by a soluble starch-assisted method and their photocatalytic activity[J]. J. Phys. Chem. C, 2011,115(15):7145-7152.
    [30]Song R Q, Xu A W, Deng B, et al. From layered basic zinc acetate nanobelts to hierarchical zinc oxide nanostructures and porous zinc oxide nanobelts [J]. Adv. Funct. Mater.,2007,17(2):296-306.
    [31]Xia Z B, Wang Y W, Fang Y J, et al. Understanding the origin of ferromagnetism in ZnO porous microspheres by systematic investigations of the thermal decomposition of Zn5(OH)8Ac2-2H2O to ZnO[J]. J. Phys. Chem. C,2011,115(30):14576-14582.
    [32]Zhang Z H, Lu M H, Xu H, et al. Shape-controlled synthesis of Zinc oxide:asimple method for the preparation of metal oxide nanocrystals in non-aqueous medium[J]. Chem. Eur. J.,2007,13(2):632-638.
    [33]RaulaM, RashidM H, PairaT K, et al.Ascorbate-assisted growth of hierarchical ZnO nanostructures:sphere, spindle, and flower and their catalytic properties[J]. Langmuir, 2010,26(11):8769-8782.
    [34]Coozzoli P D, Curri M L, Agostiano A. ZnO nanocrystals by a non-hydrolytic route: synthesis and characterization [J]. J. Phys. Chem. B,2003,107(20):4756-4762.
    [35]Fleming D A, Williams M E. Size-controlled synthesis of gold nanoparticles via high-temperature reduction [J]. Langmuir,2004,20(8):3021-3023.
    [36]Kuo C L, Kuo T J, Huang M H. Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures [J]. J. Phys. Chem. B, 2005,109(43):20115-20121.
    [37]Chen Z T, Gao L. A new route toward ZnO hollow spheres by a base-erosion mechanism [J]. Cryst. Growth Des.,2008,8(2):460-464.
    [38]Zhang D F, Sun L D, Zhang J, et al. Hierarchical construction of ZnO architectures promoted by heterogeneous nucleationcryst[J]. Growth Des.,2008,8(10):3609-3615.
    [39]Liu Y M, Lv H, Li S Q, et al. Synthesis and characterization of ZnO with hexagonal dumbbell-like bipods microstructures[J]. Advanced Powder Technology,2011,22(6): 784-788.
    [40]Yuan G Q, Zhu J B, Li C H, et al. Morphology-controllable electrochemical synthesis and photoluminescence properties of ZnO nanocrystals with porous structures[J].CrystEngComm,2012,14(21):7450-7457.
    [41]Zhong H, Wei Z, Ye M, et al. Monodispersed ZnSe colloidal microspheres:preparation, characterization, and their 2D arrays [J]. Langmuir,2007,23(17):9008-9013.
    [42]Wu Q Z, Cao H Q, Zhang S C, et al. Generation and optical properties of monodisperse wurtzite-type ZnS microspheres[J]. Inorg. Chem.,2006,45(18):7316-7322.
    [43]Han Y F, Liu Z H, Yang Z P, et al. Preparation of Ni2+-Fe3+layered double hydroxide material with high crystallinity and well-defined hexagonal shapes [J], Chem. Mater., 2008,20(2):360-363.
    [44]Kim J H, Andeen D, Lange F F. Hydrothermal growth of periodic, single-crystal ZnO microrods and microtunnels [J]. Adv. Mater.,2006,18(18):2453-2457.
    [45]Sun Y J, Wang L, Yu X G, et al. Facile synthesis of flower-like 3D ZnO superstructures via solution route [J]. CrystEngComm,2012,14(9):3199-3204.
    [46]Wang X J, Zhang Q L, Wan Q, et al. Controllable ZnO architectures by ethanolamine-assisted hydrothermal reaction for enhanced photocatalytic activity [J]. J. Phys. Chem. C,2011,115(6):2769-2775.
    [1]Whitesides G M, Grzybowski B. Self-assembly at all scales [J]. Science,2002,295: 2418-2421.
    [2]Goesmann H, Feldmann C. Nanoparticulate functional materials [J]. Angew. Chem. Int. Ed,2010,49:1362-1395.
    [3]Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides [J]. Science,2001, 291(9):1947-1949.
    [4]Huang L M, Wang, H T, Wang, Z B, et al. Nanowire arrays electrodeposited from liquid crystalline phases [J]. Adv. Mater.2002,14(1),61-64.
    [5]Hochbaum A I, Yang P D. Semiconductor nanowires for energy conversion [J]. Chem. Rev.,2010,110(1):527-546.
    [6]Yu X L, Song J G, Fu Y S, et al. ZnS/ZnO heteronanostructure as photoanode to enhance the conversion efficiency of dye-sensitized solar cells [J]. J. Phys. Chem. C,2010,114(5): 2380-2384.
    [7]Guo Z, Chen X, Li J, et al. ZnO/CuO hetero-hierarchical nanotrees array:hydrothermal preparation and self-cleaning properties [J]. Langmuir,2011,27:6193-6200.
    [8]Lupan O, Chow L, Ono L K, et al. Synthesis and characterization of Ag- or Sb-doped ZnO nanorods by a facile hydrothermal route [J]. J. Phys. Chem. C,2010,114: 12401-12408.
    [9]Luo Q P, Lei B X, Yu X Y, et al. Hiearchical ZnO rod-in-tube nano-architecture arrays produced via a two-step hydrothermal and ultrasonication process [J]. J. Mater. Chem., 2011,21:8709-8714.
    [10]Kim Y S, Kang S H. Enhancement of UV emission in ZnO nanorods by growing additional ZnO layers on the surface [J]. Nanotechnology,2011,22:275707.
    [11]Chung Y A, Chang Y C, Lu M Y, et al. Synthesis and photocatalytic activity of small-diameter ZnO nanorods [J]. J. Electrochem. Soc.,2009,156(5):F75-F79.
    [12]Georgekutty R, Seery M K, Pillai S C. A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism [J]. J. Phys. Chem. C,2008,112:13563-13570.
    [13]Li P, Wei Z, Wu T, et al. Au-ZnO hybrid nanopyramids and their photocatalytic properties [J]. J. Am. Chem. Soc.,2011,133:5660-5663.
    [14]Chiou J W, Ray S C, Tsai H M, et al. Correlation between electronic structures and photocatalytic activities of nanocrystalline-(Au, Ag, and Pt) particles on the surface of ZnO nanorods[J]. J. Phys. Chem. C,2011,115:2650-2655.
    [15]Ghosh S, Goudar V S, Padmalekha K G, et al. ZnO/Ag nanohybrid:synthesis, characterization, synergistic antibacterial activity and its mechanism[J]. RSC Advances, 2012,2:930-940.
    [16]Lu W W, Liu G S, Gao S Y, et al. Tyrosine-assisted preparation of Ag/ZnO nanocomposites with enhanced photocatalytic performance and synergistic antibacterial activities[J]Nanotechnology,2008,19:445711-445720.
    [17]Chen C Q, Zheng Y H, Zhan Y Y, et al. Enhanced Raman scattering and photocatalytic activity of Ag/ZnO heteroj unction nanocrystals [J]. Dalton Trans.,2011,40:9566-9570.
    [18]Deng S, Fan H M, Zhang X, et al. An effective surface-enhanced Raman scattering template based on a Ag nanocluster-ZnO nanowire array [J]. Nanotechnology,2009,20: 175705.
    [19]Simon Q, Barreca, D, Gasparotto A, et al. Ag/ZnO nanomaterials as high performance sensors for flammable and toxic gases [J]. Nanotechnology,2012,23:025502.
    [20]Zhu G X, Liu Y J, Xu H, et al. Photochemical deposition of Ag nanocrystals on hierarchical ZnO microspheres and their enhanced gas-sensing properties [J]. CrystEngComm,2012,14:719-725.
    [21]Ren C. L, Yang B F, Wu M, et al. Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance [J]. Journal of Hazardous Materials,2010,182:123-129.
    [22]Song C X, Lin Y S, Wang D B, et al. Facile synthesis of Ag/ZnO microstructures with enhanced photocatalytic activity [J]. Materials Letters,2010,64:1595-1597.
    [23]Gu C D, Cheng C, Huang H Y, et al. Growth and photocatalytic activity of dendrite-like ZnO@Ag heterostructure nanocrystals[J]. Crystal Growth & Design,2009,9(7): 3278-3285.
    [24]Zheng Y H, Chen C Q, Zhan Y Y, et al. Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst:correlation between structure and property[J]. J. Phys. Chem. C,2008,112:10773-10777.
    [25]Lu W W, Gao S Y, Wang J J. One-pot synthesis of Ag/ZnO self-assembled 3D hollow microspheres with enhanced photocatalytic performance [J].J. Phys. Chem. C,2008,112: 16792-16800.
    [26]Ruan Q C, Zhu Y C, Zeng Y, et al. Ultrasonic-irradiation-assisted oriented assembly of ordered monetite nanosheets stacking [J]. J. Phys. Chem. B,2009,113(4):1100-1106.
    [27]Zheng Y H, Zheng L R, Zhan Y Y, et al. Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis[J]. Inorg. Chem.,2007,46(17): 6980-6986.
    [28]Zhang G K, Shen X, Yang Y Q. Facile synthesis of monodisperse porous ZnO spheres by a soluble starch-assisted method and their photocatalytic activity[J]. J. Phys. Chem. C, 2011,115(15):7145-7152.
    [29]Moudler J F, Stickle W F, Sobol P E, et al. Handbook of X-ray photoelectron spectroscopy[M] Perkin-Elmer:Eden Prairie, MN,1992.
    [30]Lin D D, Wu H, Zhang R, et al. Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers[J]. Chem. Mater.,2009,21(15):3479-3484.
    [31]Tang D M, Liu G, Li F, et al. Synthesis and photoelectrochemical property of urchin-like Zn/ZnO core-shell structures [J]. J. Phys. Chem. C,2009,113(25):11035-11040.
    [32]Ramgir, N. S.; Mulla, I. S.; Pillai, V. K. Micropencils and microhexagonal cones of ZnO [J]. J. Phys. Chem. B,2006,110:3995-4001.
    [33]Mu J B, Shao C L, Guo Z C, et al. In2O3 nanocubes/carbon nanofibers heterostructures with high visible light photocatalytic activity [J]. J. Mater. Chem.,2012,22:1786-1793.
    [34]Raula M, Rashid M H, Paira T K, et al. Ascorbate-assisted growth of hierarchical ZnO nanostructures:sphere, spindle, and flower and their catalytic properties [J]. Langmuir, 2010,26(11):8769-8782.
    [35]Chen D P, Qiao X L, Qiu X L, et al. Convenient, rapid synthesis of silver nanocubes and nanowires via a microwave-assisted polyol method[J]. Nanotechnology,2010,21: 025607.
    [36]Li F, YuanY L, Luo J Y, et al. Synthesis and characterization of ZnO-Ag core-shell nanocomposites with uniform thin silver layers [J]. Applied Surface Science 2010, 256(20):6076-6082.
    [37]Lu Y C, Lin Y H, Wang D J, et al. Surface charge transfer properties of high-performance Ag-decorated ZnO photocatalysts [J]. J. Phys. D:Appl. Phys.2011,44, 315502.
    [38]Wang X, Kong X G, Yu Y, et al. Synthesis and characterization of water-soluble and bifunctional ZnO-Au nanocomposites [J]. J. Phys. Chem. C,2007,111(10):3836-3841.
    [39]Haldar K K, Sen T, Patra A. Au@ZnO core-shell nanoparticles are efficient energy acceptors with organic dye donors[J]. J. Phys. Chem. C,2008,112(31):11650-11656.
    [40]Sun T J, Qiu J S, Liang C H. Controllable fabrication and photocatalytic activity of ZnO nanobelt arrays [J]. J. Phys. Chem. C,2008,112(3):715-721.
    [41]Wan Q, Wang T H, Zhao J C. Enhanced photocatalytic activity of ZnO nanotetrapods [J]. Appl. Phys. Lett.2005,87,083105-083107.
    [42]Mu J B, Shao C L, Guo Z C, et al. In2O3 nanocubes/carbon nanofibers heterostructures with high visible light photocatalytic activity[J]. J. Mater. Chem.,2012,22:1786-1793.
    [43]Wang Y W, Zhang L Z, Deng K J, et.al. Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorod superstructures [J]. J. Phys. Chem. C,2007,111(6): 2709-2714.
    [44]Gao S Y, Jia X X, Yang S X, et al. Hierarchical Ag/ZnO micro/nanostructure:Green synthesis and enhanced photocatalytic performance [J]. Journal of Solid State Chemistry, 2011,184(4):764-769.
    [1]Fujishima, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238:37-38.
    [2]Wang C H, Shao C L, Liu Y C, et al. Water-dichloromethane interface controlled synthesis of hierarchical rutile TiO2 superstructures and their photocatalytic properties [J]. Inorg. Chem.,2009,48(3):1105-1113.
    [3]Ye C H, Bando Y, Shen G Z, et al. Thickness-dependent photocatalytic performance of ZnO nanoplatelets [J]. J. Phys. Chem. B,2006,110(31):15146-15151.
    [4]Qiu Y F, Yang M L, Fan H B, et al. Nanowires of α-and β-Bi2O3:phase-selective synthesis and application in photocatalysis[J]. CrystEngComm,2011,13,1843-1850.
    [5]Li L L, Chu Y, Liu Y, et al. Template-free synthesis and photocatalytic properties of novel Fe2O3 hollow spheres [J]. J. Phys. Chem. C,2007,111(5):2123-2127.
    [6]Liang X, Xiao J J, Chen B H, et al. Catalytically stable and active CeO2 mesoporous spheres [J]. Inorg. Chem.,2010,49 (18),8188-8190
    [7]Mu J B, Shao C L, Guo Z C, et al. High photocatalytic activity of ZnO-carbon nanofiber heteroarchitectures[J]. ACS Appl. Mater. Interfaces,2011,3(2):590-596.
    [8]Stroyuk A K, Shvalagin V V, Kuchmii S Y. Photochemical synthesis and optical properties of binary and ternary metal-semiconductor composites based on zinc oxide nanoparticles[J]. J. Photochem. Photobiol. A,2005,173(2):185-194.
    [9]Yu J G, Zhang L J, Cheng B, et al. Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous Titania [J]. J. Phys. Chem. C,2007, 111(28):10582-10589.
    [10]Usseglio S, Damin A, Scarano D, et al. (I2)n encapsulation inside TiO2:A way to tune photoactivity in the visible region[J]. J. Am. Chem. Soc.,2007,129(10):2822-2828.
    [11]Linsebigler A, Lu G Q, Yates J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results [J]. Chem. Rev.,1995,95(3):735-758.
    [12]Anpo M, Takeuchi M. The design and development of highly reactive Titanium oxide photocatalysts operating under visible light irradiation [J]. J. Catal.,2003,216(1-2): 505-516.
    [13]Wang J W, Mao B D, Gole G L, et al. Visible-light-driven reversible and switchable hydrophobic to hydrophilic nitrogen-doped Titania surfaces:correlation with photocatalysis [J]. Nanoscale,2010,2:2257-2261.
    [14]In S, Orlov A, Berg R, et al. Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts [J]. J. Am. Chem. Soc.,2007,129(45):13790-13791.
    [15]Valentin C D, Pacchioni G, Selloni A. Theory of carbon doping of titanium dioxide[J]. Chem. Mater.,2005,17(26):6656-6665.
    [16]Jiang J, Zhang X, Sun P B, et al. ZnO/BiOI heterostructures:photoinduced charge-transfer property and enhanced visible-light photocatalytic activity [J]. J. Phys. Chem. C,2011,115:20555-20564.
    [17]Zhong J, Chen F, Zhang J L. Carbon-deposited TiO2:synthesis, characterization, and visible photocatalytic performance [J]. J. Phys. Chem. C,2010,114(2):933-939.
    [18]Zhang L W, Fu H B, Zhu Y F. Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon[J]. Adv. Funct. Mater.,2008,18(15): 2180-2189.
    [19]Cho S, Jang J W, Lee J S, et al. Carbon-doped ZnO nanostructures synthesized using vitamin C for visible light photocatalysis [J]. CrystEngComm,2010,12:3929-3935.
    [20]Dong F, Guo S, Wang H Q, et al. Enhancement of the visible light photocatalytic activity of C-doped TiO2 nanomaterials prepared by a green synthetic approach[J]. J. Phys. Chem. C,2011,115(27):13285-13292.
    [21]Mitoraj D, Kisch H. The nature of nitrogen-modified Titanium dioxide photocatalysts active in visible light [J]. Angew. Chem., Int. Ed.,2008,47(51):9975-9978.
    [22]Zhao L, Chen X F, Wang X C, et al. One-step solvothermal synthesis of a carbon@TiO2 dyade structure effectively promoting visible-light photocatalysis [J]. Adv. Mater.,2010, 22(30):3317-3321.
    [23]Asahi R, Morikawa T, Ohwaki T, et al. Visible-Light photocatalysis in nitrogen-doped Titanium oxides [J]. Science,2001,293:269-271.
    [24]Walsh A, Silva J L F D, Wei S H, et al. Nature of the band gap of In2O3 revealed by first-principles calculations and X-ray spectroscopy [J]. Phys. Rev. Lett.,2008,100(16): 167402.
    [25]Lv J, Kako T, Li Z S, et al. Synthesis and photocatalytic activities of NaNbO3 rods modified by In2O3 nanoparticles[J]. J. Phys. Chem. C,2010,114(13):6157-6162.
    [26]Chang W K, Rao K K, Kuo H C, et al. A novel core-shell like composite In2O3@Caln2O4 for efficient degradation of Methylene Blue by visible light [J]. Appl. Catal., A,2007, 321(1):1-6.
    [27]Zheng Y H, Chen C Q, Zhan Y Y, et al. Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst:Correlation between structure and property[J]. J. Phys. Chem. C,2008, 112(29),10773-10777.
    [28]Sung Y H, Frolov V D, Pimenov S M, et al. Investigation of charge transfer in Au nanoparticle-ZnO nanosheet composite photocatalysts [J]. Phys. Chem. Chem. Phys., 2012,14,14492-14494
    [29]Chen Y C, Pu Y C, Hsu Y J, et al. Interfacial charge carrier dynamics of the three-component In2O3-TiO2-Pt heterojunction system[J]. J. Phys. Chem. C 2012,116(4): 2967-2975.
    [30]Wang Z Y, Huang B B, Dai Y, et.al. Highly photocatalytic ZnO/In2O3 hetero-nanostructures synthesized by a coprecipitation method [J]. J. Phys. Chem. C, 2009,113(11):4612-4617.
    [31]Wang B, Jin X, Ouyang Z B. Synthesis, characterization and cathodoluminescence of self-assembled 1D ZnO/In2O3 nano-heterostructures [J]. CrystEngComm,2012,14: 6888-6903.
    [32]Du J M, Huang L, Chen Z Q, et al. A Controlled method to Synthesize hybrid In2O3/Ag nanochains and nanoparticles:Surface-enhanced Raman scattering [J]. J. Phys. Chem. C, 2009,113 (23):9998-10004.
    [33]Zhao Y B, Zhang Z J, Wu Z S, et al. Synthesis and characterization of single-crystalline In2O3 nanocrystals via solution dispersion[J]. Langmuir,2004,20 (1):27-29.
    [34]Tang D M, Liu G, Li F, et al. Synthesis and photoelectrochemical property of urchin-like Zn/ZnO core-shell structures [J]. J. Phys. Chem. C 2009,113(25):11035-11040.
    [35]Du J M, Huang L, Chen Z Q. A controlled method to synthesize hybrid nanochains and nanoparticles:surface-enhanced Raman scattering [J]. J. Phys. Chem. C, 2009,113(23):9998-10004.
    [36]Ramgir N S, Mulla I S, Pillai V K. Micropencils and microhexagonal cones of ZnO [J]. J. Phys. Chem. B,2006,110(9):3995-4001.
    [37]Mu J B, Shao C L, Guo Z C, et al. In2O3 nanocubes/carbon nanofibers heterostructures with high visible light photocatalytic activity [J]. J. Mater. Chem.,2012,22:1786-1793.
    [38]LuW W, Gao S Y, Wang J J. One-pot synthesis of Ag/ZnO self-assembled 3D hollow microspheres with enhanced photocatalytic performance [J]. J. Phys. Chem. C 2008, 112(43):16792-16800.
    [39]Moudler J F, Stickle W F, Sobol P E, et al. Handbook of X-ray photoelectron spectroscopy[M]. Perkin-Elmer:Eden Prairie, MN,1992.
    [40]Lin D D, Wu H, Zhang R, et al. Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers[J]. Chem. Mater.,2009,21(15):3479-3484.
    [41]Deng Q, Duan X W,. Ng D H L, et al. Ag nanoparticle decorated nanoporous ZnO microrods and their enhanced photocatalytic activities [J]. ACS Appl. Mater. Interfaces 2012,4(11):6030-6037.
    [42]Wang S L, Qian H H, Hu Y, et al. Facile one-pot synthesis of uniform TiO2-Ag hybrid hollow spheres with enhanced photocatalytic activit [J]. Dalton. Trans.,2013,42: 1122-1128.
    [43]Turchi C S, Ollis D F, Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack [J]. J. Catal.,1990,122(1):178-192.
    [44]Lee M, Park S, Lee G, et al. Photocatalytic activity of metalloporphyrin-titanium mixtures in microemulsions [J]. Catal. Today,2005,101:283.
    [45]Seung H C, Ji W J, Jung W K, et al. Three-dimensional type Ⅱ ZnO/ZnSe heterostructures and their visible light photocatalytic activities [J]. Langmuir,2011,27: 10243-10250.
    [46]Liu H R, Shao G X, Zhao J F, et al. Worm-like Ag/ZnO core-shell heterostructural composites:fabrication, characterization, and photocatalysis [J]. J. Phys. Chem. C,2012, 116(30):16182-16190.
    [47]Sen T J, Y C H. Growth mechanism and photoluminescence properties of nanotowers [J]. Crystal Growth & Design,2010,10:2104-2110.
    [48]Yu H, Ming H, Zhang H C, et al. Au/ZnO nanocomposites:Facile fabrication and enhanced photocatalytic activity for degradation of benzene[J]. Materials Chemistry and Physics,2012,137:113-117.
    [1]Deb P, Kim H Y, Qin Y X, et al. GaN nanorod schottky and p-n junction diodes[J]. Nano Lett.,2006,6(12):2893-2898.
    [2]Liu N, Wu Q, He C Y, et al. Patterned growth and field-emission properties of AlN nanocones [J]. Appl. Mater. Interfaces,2009,1(9):1927-1930.
    [3]Chen J, Cheng G S, Stern E, et al. Electrically excited infrared emission from InN nanowire transistors[J]. Nano Lett.,2007,7(8):2276-2280.
    [4]Mei Y F, Thurmer D J, Deneke C, et al. Fabrication self-Assembly, and properties of ultrathin AIN/GaN porous crystalline nanomembranes:tubes, spirals, and curved sheets [J]. Nano.,2009,3(7):1663-1668.
    [5]Chin A H, Ahn T S, Li H W, et al. Photoluminescence of GaN nanowires of different crystallographic orientations [J]. Nano Lett.,2007,7(3):626-631.
    [6]Seong H K, Kim J Y, Kim J J, et al. Theoretical study on the ferromagnetism of Cr-doped In2O3[J]. Nano Lett.,2007,7(11):3366-3371.
    [7]Hwang J D, Yang G H. Activation of Mg-doped P-GaN by using two-step annealing [J]. Applied Surface Science,2007,253(10):4694-4697.
    [8]Radovanovic P V, Barrelet C J, Gradecak S, et al. General synthesis of manganese-doped II-VI and III-V semiconductor nanowires [J]. Nano Lett.,2005,5 (7): 1407-1411.
    [9]Song S F, Chen W D, Su F H, et al. Structure and photoluminescence studies of Pr-implanted GaN [J]. Journal of Crystal Growth,2004,267(3-4):400-404.
    [10]Carvajal J J, Aguilo M, Diaz F, et al. Green and red emissions at room temperature on Er-doped GaN submicrometer rods synthesized by a simple chemical vapor deposition technique [J]. J. Chem. Mater.,2007,19(26):6543-6547.
    [11]Cimalla V, Pezoldt J, Ecke G, et al. Synthesis and electrical properties of aligned ZnO nanocolumns [J]. Appl. Phys. Lett.,2003,83:3468-3470.
    [12]Kuykendall T, Ulrich P, Aloni S, Y, et al. Complete composition tunability of InGaN nanowires using a combinatorial approach [J]. Nature Materials,2007,6:951-956.
    [13]Wu J, Walukiewicz W, Yu K M, et al Finite element simulations of compositionally graded InGaN solar cells[J]. J. Appl. Phys.,2003,94:6477-6482.
    [14]Yang J, Elim H L, Zhang Q B, et al. Rational Synthesis, Self-Assembly, and Optical Properties of PbS Au Heterogeneous Nanostructures via Preferential Deposition [J] J. Am. Chem. Soc.,2006,128(36):11921-11926.
    [15]Wang X, Kong X G,Yu, Y,et al. Synthesis and Characterization of Water-Soluble and Bifunctional ZnO-Au Nanocomposites[J] J. Phys. Chem. C,2007,111(10):3836-3841.
    [16]Chen P, Chua S J, Wang Y D,et al. InGaN nanorings and nanodots by selective area epitaxy [J]. Appl. Phys. Lett.,2005,87:143111.
    [17]Cai X M, Ye F, Jing S Y, et al. CVD growth of InGaN nanowires [J]. Journal of Alloys and Compounds,2009,467:472-476.
    [18]Hou W. C, Chen L. Y, Tang W. C, Control of seed detachment in Au-assisted GaN nanowire growths[J]. Crystal Growth & Design,2011,11(4):990-994.
    [19]Kumar M, Bhat T N, Rajpalke M K,et al. Self-assembled flower-like nanostructures of InN and GaN grown by plasma-assisted molecular beam epitaxy [J]. Bull. Mater. Sci., 2010,33(3):221-226.
    [20]Xue S. B, Zhang X, Huang R, et al. A Study on Self-Assembled GaN Nanobelts by a New Method:Structure, Morphology, Composition, and Luminescence[J]. Crystal Growth & Design,2008,8(7):2177-2181.
    [21]Nishida T, Kobayashi N. Ten-Milliwatt operation of an AlGaN-Based light emitting diode grown on GaN substrate [J]. Physica Status Solidi(a),2001,188(1):113-116.
    [22]Westover T, Jones R, Huang J. Y, et al. Photoluminescence, Thermal transport, and breakdown in Joule-Heated GaN nanowires[J]. Nano Lett.,2009,9(1):257-263.
    [23]Ye F, Cai X M, Wang X M, et al. The growth and field electron emission of InGaN nanowires [J]. Journal of Crystal Growth,2007,304:333-337.
    [24]Cai X M, Leung Y H; Cheung K Y, et al. Straight and helical InGaN core-shell nanowires with a high In core content [J] Nanotechnology,2006,17:2330-2333.
    [25]Mohammad S. N. Analysis of the vapor-liquid-solid mechanism for nanowire growth and a model for this mechanism [J]. Nano Lett.,2008,8, (5):1532-1538.
    [26]Li J Y, Yang Z, Li H, et al. Electrical and optical performance of sublimation-grown long GaN nanowires [J].J. Phys. Chem. C 2010,114(41):17263-17266.
    [27]Li J Y; Liu J; Wang L. S, et al. Physical and electrical properties of chemical vapor grown GaN nano/microstructures[J]. Inorganic Chemistry,2008,47(22):10325-10329.
    [28]He C Y, Wu Q, Wang X. Z, et al. Growth and Characterization of Ternary AlGaN Alloy Nanocones across the Entire Composition Range[J]. ACS Nano.,2011,5(2):1291-1296.
    [29]Bierman M J, Albert L Y K, Song Jin. Hyperbranched PbS and PbSe nanowires and the effect of hydrogen gas on their synthesis[J]. Nano Lett.,2007,7(9):2907-2912.
    [30]Jung H S, Hong Y J, Li Y R,et al. Photocatalysis using GaN nanowires[J]. ACS Nano, 2008,4(2):637-642.
    [31]Wang L, Z W, H Z B,et al. Photocatalysis of InGaN Nanodots Responsive to Visible Light [J] CHIN. PHYS. LETT.,2011,28(5):057301.
    [32]Fox M A, Dulay M T. Heterogeneous Photocatalysis[J]. Chem. Rev.1993,93:341-357.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700