用户名: 密码: 验证码:
利用动态共价键构筑刺激响应性凝胶
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凝胶是一类“软物质”,它是具有三维空间结构的聚合物交联网络,能够将溶剂分子固定在这种网络结构中,有着非常独特的物理化学性质。尤其是刺激响应性凝胶作为一种能够对外界的刺激,如:pH、温度、光、化合物、电磁场等在体积上(收缩溶胀)、相态上(溶胶-凝胶)、理化性质(颜色等)等方面发生做出响应变化的智能型材料,在最近几十年受到了有越来越多的关注,被广泛应用于可控的药物运输与释放、可控的催化、分离纯化、传感检测、组织工程、药物载体、液晶显示等领域。但在如何设计新型的刺激响应性凝胶,尤其是设计多重刺激响应和具有新的功能方面,仍然有许多工作需要开展。
     动态共价键作为一种共价键,但同时又具有超分子相互作用的可逆性,随着超分子化学的发展,最近十多年里又被重新审视,焕发了新的生机,被和超分子相互作用一起应用于构建刺激响应性材料。本论文就利用苯甲酰亚胺键这种具有pH响应能力的动态共价键设计构建了刺激响应性凝胶,并得到了以下研究结果:
     1)pH和光双重响应准聚轮烷水凝胶:设计了THPP-(PEG2000-BA)4聚合物,此聚合物能够和α-环糊精形成准聚轮烷水凝胶。由于苯甲醛能够和胺类化合物形成苯甲酰亚胺键动态共价键,可以通过pH的变化,对此聚合物进行封端与解封端,进而调节准聚轮烷水凝胶的形成与解散。此外,借助于光敏性的竞争性客体分子Azo-C1-N+,可以对水凝胶进行光调控实现凝胶-溶胶间相互转换。在二者的共同作用下,制备了能够对pH和光刺激双重响应但响应方式又不同的准聚轮烷水凝胶。
     2)分散碳纳米管的准聚轮烷水凝胶:卟啉作为一种共轭环能够通过π-π堆积相互作用,和碳纳米管形成J-聚集复合物,来分散碳纳米管。我们设计的THPP-(PEG2000-BA)4聚合物,其具有一个卟啉核,通过其对碳纳米管分散的研究,发现它具有很好地分散碳纳米管能力。同时,在分散碳纳米管之后,其仍然能够形成准聚轮烷水凝胶,成凝胶能力得到明显提高。另外,分散碳纳米管的准聚轮烷水凝胶仍然具有pH和光刺激双重响应能力。
     3)具有pH响应能力的自修复凝胶:设计了两种都修饰有氨基和苯甲醛但含量不同的聚合物P(AM25-co-EAM1-co-BA1)和P(AM50-co-EAM1-co-BA1),分别研究了它们的成凝胶能力、pH敏感性,并进行了pH刺激下的凝胶-溶胶转换实验。研究显示P(AM50-co-EAM1-co-BA1)展现了非常好的自修复功能。
Gel,as a kind of "soft matter", is a three-dimensional polymeric crosslinked network, whichabsorbs and retains large amounts of solvents. The gel has very unique physical and chemicalproperties. Gels have pervaded our everyday life in a variety of forms. Scientists have used thegel for tissue engineering, separation and purification, drug delivery, sensor and detection,chemical convertors, catalysis, etc..
     With the development of smart materials, the gel chemistry is more tending to the "smart"direction. A variety of smart gels, which is capable to responding to external stimuli, aredesigned and studied. These stimuli can be pH, temperature, light, chemicals, electromagnetic ormechanical field, strain, and so on, which can be single, duple, or mutiple. The response may beon the volume (contraction or swelling), also be on state (sol or gel), or physical properties (color,etc.) and so on. Such materials are usually more controllable and easy to be adjusted, so they areeasier to meet the needs of different situations, and are more attractive.
     After the recent thirty years of research, there has been a great development ofsupramolecular chemistry, but in some cases, the feature of "weak" of the supramolecularinteractions limits its application. The last ten years, some chemists fixated back to covalentbonds, and found that part of covalent bonds are similar to supramolecular interactions, whichwas ignored before. They are the dynamic covalent bonds, which are also thermodynamicallyreversible. But the essence of dynamic covalent bond is covalent bond, more stable than thesupramolecular interactions. Herein, we use the benzoic imine bond, one of dynamic covalentbonds, to build stimuli-responsive gels.1. Dual stimuli-responsive pseudopolyrotaxane hydrogels
     The medium of hydrogels is water, and the majority of the organisms are present in theaqueous medium, therefore, hydrogels generally have a better biocompatibility, and have verybroad applications as biomedical materials. There is a hydrogel which is formed byα-cyclodextrin and polyethylene glycol (PEG) chains. The PEG chain is an axis threadingα-cyclodextrin. The supramolecular inclusion complex, defined as pseudopolyrotaxane, can formhydrogel when the concentration is enough. Many chemists focused on the formation and structure of this hydrogel. A number of bio-pharmaceutical applications have been carried on.However, the stimulus of this hydrogel is primarily the thermal, mechanical, optical. All of thesestimulus is single-stimulus. The design of dual stimuli-responsive pseudopolyrotaxane hydrogelsis necessary.
     Herein, we designed the polymer of THPP-(PEG2000-BA)4, a four-branched molecule whichhas a core of porphyrin and is end-decorated with benzaldehyde. It can form physicalpseudopolyrotaxane hydrogels in the presence of α-cyclodextrins. Since benzaldehyde can reactwith amine to form a pH-responsive Schiff-base which possesses a dynamic covalent nature, theformation of gels can be modulated by pH. By means of a strongly competitive photoresponsiveguest,1-[p-(phenylazo)benzyl]-bromide (Azo-C1-N+), this hydrogel can be regulated to achievegel-sol transitions by alternation of visible and UV irradiation. Reversible cycles of sol-to-geland gel-to-sol transitions were achieved by means of the synergy of pH-adjustment andUV-visible irradiation. A dual stimuli-responsive pseudopolyrotaxane hydrogels was prepared.2. A pseudopolyrotaxane hydrogels dispersing carbon nanotube
     Carbon nanotube is a very attractive nanomaterial, which has a unique structure, mechanicaland electrical properties, including in high electronic and thermal conductivities, greatmechanical strength, and huge specific surface are. There are a wide range of applications in thephysics, materials and many other fields. However, bundled aggregates due to stronginter-tubular van der Waals interactions cause the poor solubility in many conventional solvents,which acts as an obstacle to both the purification and handling of the SWNTs. This seriouslylimits its application. Therefore, all the scientists are meeting and have to solve the problem howto improve its solubility.
     Conjugated porphyrin macrocycle is capable of forming a J-aggregate composite withcarbon nanotubes through π-π stacking interaction, and can be used to disperse carbon nanotubes.Considering that the polymer of THPP-(PEG2000-BA)4which we previously designed has aporphyrin core, we studied its ability of dispersing carbon nanotubes. Indeed, it is found thatcarbon nanotubes can be dispersed. Meanwhile, after the dispersing carbon nanotubes, it is stillcapable of forming a pseudopolyrotaxane hydrogel. In addition, the pseudopolyrotaxanehydrogel dispersing carbon nanotubes still is dual (pH-and photo-) stimuli-response.3. A pH-responsive self-healing gel
     Self-healing is a fascinating property of living creatures, A living body can automaticallyrepair damage by activating the self-healing process and, thus, restore certain destroyedfunctions.Scientists have been simulating this process in the past decade and designed a variety of self-healing materials. They hope that it can improve the safe and prolong the life of thematerials through self-repairing process.
     Herein, we designed two polymer P(AM25-co-BocEAM1-co-BA1) and P(AM50-co-BocEAM1-co-BA1), which are both modified with amine and benzaldehyde, but with differentcontents. We investigated their ability to gel. We found that the former is capable of forming agel in the DMSO solvent, while the latter not. This is because benzaldehyde can react with amineto form a pH-responsive benzoic imine bond, which plays a role in cross-linking. The differencein the contents of amine and benzaldehyde results in the difference in the degree of cross-linking,further affects the ability to gel. But they are both pH-sensitive. They can maintain the gel orsolution state under weak acidic conditions, both formed the gel under alkaline condition, andboth converted into a sol under strong acid condition. We carried out the sol-gel conversionexperiments by pH-adjusting. In addition, we also found the gel by the latter under alkalinecondition has a good self-healing capability.
引文
1.何天白,胡汉杰.功能高分子与新技术(第一版).北京:化学工业出版社,2001:107.
    2.贡长生,张克立.新型功能材料(第一版).北京:化学工业出版社,2001:80.
    3. He, L. H.; Fullenkamp, D. E.; Rivera, J. G.; Messersmith, P. B. pH responsive self-healinghydrogels formed by boronate-catechol complexation. Chem. Commun.2011,47,7497-
    7499.
    4. Su, J.; Chen, F.; Cryns, V. L.; Messersmith, P. B. Catechol polymers for pH-responsive,targeted drug delivery to cancer cells. J. Am. Chem. Soc.2011,133,11850-11853.
    5. Hou, C. X.; Luo, Q.; Liu, J. L.; L. Miao, Zhang, C. Q.; Gao, Y. Z.; Zhang, X. Y.; Xu, J. Y.;Dong, Z. Y.; Liu, J. Q. Construction of GPx active centers on natural proteinnanodisk/nanotube: a new way to develop artificial nanoenzyme. ACS Nano2012,6,8692-
    8701.
    6. Suzuki, A.; Tanaka, T. Phase transition in polymer gels induced by visible light. Nature1990,346,345-347.
    7. Wang, C.; Chen, Q. S.; Xu, H. P.; Wang, Z. Q.; Zhang, X. Photoresponsive supramolecularamphiphiles for controlled self-assembly of nanofibers and vesicles. Adv. Mater.2010,22,2553-2555.
    8. Yamaguchi, S.; Yamahira, S.; Kikuchi, K.; Sumaru, K.; Kanamori, T.; Nagamune, T.Photocontrollable dynamic micropatterning of non-adherent mammalian cells using aphotocleavable poly(ethylene glycol) lipid. Angew. Chem. Int. Ed.2012,51,128-131.
    9. Kne evi, N..; Trewyn, B. G.; Lin, V. S. Y. Light-and pH-responsive release ofdoxorubicin from a mesoporous silica-based nanocarrier. Chem. Eur. J.2011,17,3338-3342.
    10. Yan, B.; Boyer, J. C.; Branda, N. R.; Zhao, Y. Near-infrared light-triggered dissociation ofblock copolymer micelles using upconverting nanoparticles. J. Am. Chem. Soc.,2011,133,19714-19717.
    11. Terao, F.; Morimoto, M.; Irie, M. Light-driven molecular-crystal actuators: rapid andreversible bending of rodlike mixed crystals of diarylethene derivatives. Angew. Chem. Int.Ed.2012,51,901-904.
    12. Han, M. X.; Michel, R.; He, B.; Chen, Y. S.; Stalke, D.; John, M.; Clever, G. H.Light-triggered guest uptake and release by a photochromic coordination cage. Angew. Chem.Int. Ed.2013,52,1319-1323.
    13. Kim, S.; Yoon, S. J.; Park, S. Y. Highly fluorescent chameleon nanoparticles and polymerfilms: multicomponent organic systems that combine fret and photochromic switching. J. Am.Chem. Soc.2012,134,12091-12097.
    14. Yagai, S.; Ohta, K.; Gushiken, M.; Iwai, K.; Asano, A.; Seki, S.; Kikkawa, Y.; Morimoto, M.;Kitamura, A.; Karatsu, T. Photoreversible supramolecular polymerisation and hierarchicalorganization of hydrogen-bonded supramolecular co-polymers composed of diarylethenesand oligothiophenes. Chem. Eur. J.2012,18,2244-2253
    15. Lee, H. Y.; Diehn, K. K.; Sun, K. S.; Chen,T. H.; Raghavan, S. R. Reversiblephotorheological fluids based on spiropyran-doped reverse micelles. J. Am. Chem. Soc.2011,133,8461-8463.
    16. Tong, R.; Hemmati, H. D.; Langer, R.; Kohane, D. S. Photoswitchable nanoparticles fortriggered tissue penetration and drug delivery. J. Am. Chem. Soc.,2012,134,8848-8855.
    17. Yildiz, I.; Impellizzeri, S.; Deniz, E.; McCaughan, B.; Callan, J. F.; Raymo, F. M.Supramolecular strategies to construct biocompatible and photoswitchable fluorescent. J. Am.Chem. Soc.2011,133,871-879.
    18. Zhang, M. H.; Hou, X.; Wang, J. T.; Tian, Y.; Fan, X.; Zhai, J.; Jiang, L. Light and pHcooperative nanofluidic diode using a spiropyran-functionalized single nanochannel. Adv.Mater.2012,24,2424-2428.
    19. Beharry, A. A.; Woolley, G. A. Azobenzene photoswitches for biomolecules. Chem. Soc. Rev.2011,40,4422-4437.
    20. Liu, Y. J.; Si, G. Y.; Leong, E. S. P.; Xiang, N.; Danner, A. J.; Teng, J. H. Light-drivenplasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperturearrays. Adv. Mater.2012,24, OP131-OP135.
    21. Xiao, W.; Chen, W. H.; Xu, X. D.; Li, C.; Zhang, J.; Zhuo, R. X.; Zhang, X. Z. Design of acellular-uptake-shielding―plug and play‖template for photo controllable drug release. Adv.Mater.2011,23,3526-3530.
    22. Wu, P.; Xiao, R. Q.; Zhang, C. Q.; Zhou, L. P.; Luo, Q.; Xu, J. Y.; Liu, J. Q. Photoregulatingcatalytic activity of cyclodextrin-based artificial glutathione peroxidase by chargedazobenzene. Catal. Lett.2010,138,62-67.
    23. Moon, H. J.; Ko, D. Y.; Park, M. H.; Joo, M. K.; Jeong, B. Temperature-responsivecompounds as in situ gelling biomedical materials. Chem. Soc. Rev.,2012,41,4860-4883.
    24. Wei, H.; Cheng, S. X.; Zhang, X. Z.; Zhuo, R. X. Thermo-sensitive polymeric micelles basedon poly(N-isopropylacrylamide) as drug carriers. Prog. Polym. Sci.2009,34,893-910.
    25. Weber, C.; Hoogenboomd, R.; Schubert, U. S. Temperature responsive bio-compatiblepolymers based on poly(ethylene oxide) and poly(2-oxazoline)s. Prog. Polym. Sci.2012,37,686-714.
    26. Huang, X.; Yin, Y. Z.; Jiang, X.; Tang, Y.; Xu, J. Y.; Liu, J. Q.; Shen, J. C. Construction ofsmart glutathione peroxidase mimic based on hydrophilic block copolymer with temperatureresponsive activity. Macromol. Biosci.2009,9,1202-1210.
    27. Huang, X.; Yin, Y. Z.; Tang, Y.; Bai, X. L.; Zhang, Z, M.; Xu, J. Y.; Liu, J. Q.; Shen, J. C.Smart microgel catalyst with modulatory glutathione peroxidase activity. Soft Matter2009,5,1905-1911.
    28. Yin, Y. Z.; Wang, L.; Jin, H. Y.; Lv, C. Y.; Yu, S. J.; Huang, X.; Luo, Q.; Xu, J. Y.; Liu, J. Q.Construction of a smart glutathione peroxidase mimic with temperature responsive activitybased on block copolymer. Soft Matter2011,7,2521-2529.
    29. Yu, S. J.; Yin, Y. Z.; Junyan Zhu, Huang, X.; Luo, Q.; Xu, J. Y.; Shen, J. C.; Liu, J. Q. Amodulatory bifunctional artificial enzyme with both SOD and GPx activities based on a smartstar-shaped pseudo-block copolymer. Soft Matter2010,6,5342-5350.
    30. Yan, Q.; Zhou, R.; Fu, C. K.; Zhang, H. J.; Yin, Y. W.; Yuan, J. Y. CO2-responsivepolymeric vesicles that breathe. Angew. Chem. Int. Ed.2011,50,4923-4927.
    31. Quek, J. Y.; Davis, T. P.; Lowe, A. B. Amidine functionality as a stimulus-responsivebuilding block. Chem. Soc. Rev.2013,42,7326-7334.
    32. Ding, Y.; Chen, S. L.; Xu, H. P.; Wang, Z. Q.; Zhang, X.; Ngo, T. H.; Smet, M. Reversibledispersion of single-walled carbon nanotubes based on a CO2-responsive dispersant.Langmuir2010,26,16667-16671.
    33. Han, P.; Ma, N.; Ren, H. F.; Xu, H. P.; Li, Z. B.; Wang, Z. Q.; Zhang, X. Oxidation-responsive micelles based on a selenium-containing polymeric superamphiphile. Langmuir2010,26,14414-14418.
    34. Xu, C.; Ren, J. S.; Feng, L. Y.; Qu, X. G. H2O2triggered sol-gel transition used for visualdetection of glucose. Chem. Commun.2012,48,3739-3741.
    35. Qi, Z. H.; Wu, C. Z.; Molina, P. M. D.; Sun, H.; Schulz, A.; Griesinger, C.; Gradzielski, M.;Haag, R.; Ansorge-Schumacher, M. B.; Schalley, C. A. Fibrous networks with incorporatedmacrocycles: a chiral stimuli-responsive supramolecular supergelator and its application tobiocatalysis in organic media. Chem. Eur. J.2013,19,10150-10159.
    36. Wang, X. G.; Zhou, L. P.; Wang, H. Y.; Luo, Q.; Xu, J. Y.; Liu, J. Q. Reversible organogelstriggered by dynamic K+binding and release. J. Colloid Interface Sci.2011,353,412-419.
    37. Paulusse, J. M. J.; Sijbesma, R. P. Reversible mechanochemistry of a PdIIcoordinationpolymer. Angew. Chem., Int. Ed.2004,43,4460-4462.
    38. Dong, S. Y.; Zheng, B.; Xu, D. H.; Yan, X. Z.; Zhang, M. M.; Huang, F. H. A crown etherappended super gelator with multiple stimulus responsiveness. Adv. Mater.2012,24,3191-
    3195.
    39. Zhang, W.; Luo, Q.; Miao, L.; Hou, C. X.; Bai, Y. S.; Dong, Z. Y.; Xu, J. Y.; Liu, J. Q.Self-assembly of glutathione S-transferase into nanowires. Nanoscale2012,4,5847-5851.
    40. Ramkissoon-Ganorkar, C.; Liu, F.; Baudy, M.; Kim, S. W. Modulating insulin-releaseprofile from pH/thermosensitive polymeric beads through polymer molecular weight. JControl. Release1999,59,287-298.
    41. Traitel, T.; Cohen, Y.; Kost, J. Characterization of gluco-sesensitive insulin release systemsin simulated in vivo conditions. Biomaterials2000,21,1679-1687.
    42. You, L. C.; Lu, F. Z.; Li, Z. C.; Zhang, W.; Li, F. M. Glucose-sensitive aggregates formed bypoly(ethylene oxide)-block-poly(2-glucosyl-oxyethyl acrylate) with concanavalin A in diluteaqueous medium. Macromolecules2003,36,1-4.
    43. Liu, H. L.; Li, Y. Y.; Sun, K.; Fan, J. B.; Zhang, P. C.; Meng, J. X.; Wang, S. T.; Jiang, L.Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush toreversibly capture and release cancer cells. J. Am. Chem. Soc.2013,135,7603-7609.
    44. Aznar, E.; Villalonga, R.; Giménez, C.; Sancenón, F.; Marcos, M. D.; Martínez-Má ez, R.;Díez, P.; Pingarrón, J. M.; Amorós, P. Glucose-triggered release using enzyme-gatedmesoporous silica nanoparticles. Chem. Commun.2013,49,6587-6589.
    45. Wu, Q.; Wang, L.; Yu, H. J.; Wang, J. J.; Chen, Z. F. Organization of glucose-responsivesystems and their properties. Chem. Rev.2011,111,7855-7875.
    46. Thornton, P. D.; Mart, R. J.; Ulijn, R. V. Enzyme-responsive polymer hydrogel particles forcontrolled release. Adv. Mater.2007,19,1252-1256.
    47. Hu, J. M.; Zhang, G. Q.; Liu, S. Y. Enzyme-responsive polymeric assemblies, nanoparticlesand hydrogels. Chem. Soc. Rev.2012,41,5933-5949.
    48. Wang, C.; Chen, Q. S.; Wang, Z. Q.; Zhang, X. An enzyme-responsive polymericsuperamphiphile. Angew. Chem., Int. Ed.2010,49,8612-8615.
    49. Guo, D. S.; Wang, K.; Wang, Y. X.; Liu, Y. Cholinesterase-responsive supramolecularvesicle. J. Am. Chem. Soc.2012,134,10244-10250.
    50. Wen, J.; Anderson, S. M.; Du, J. J.; Yan, M.; Wang, J.; Shen, M. Q.; Lu, Y. F.; Segura, T.Controlled protein delivery based on enzyme-responsive nanocapsules. Adv. Mater.2011,23,4549-4553.
    51. Siwy, Z. S.; Howorka, S. Engineered voltage-responsive nanopores. Chem. Soc. Rev.2010,39,1115-1132.
    52. Paleari, A.; Brovelli, S.; Lorenzi, R.; Giussani, M.; Lauria, A.; Mochenova, N.; Chiodini, N.Tunable dielectric function in electric-responsive glass with tree-like percolating pathways ofchargeable conductive nanoparticles. Adv. Funct. Mater.2010,20,3511-3518.
    53. Sutania, K.; Kaetsua, I.; Uchida, K. The synthesis and the electric-responsiveness ofhydrogels entrapping natural polyelectrolyte. Radiat. Phys. Chem.2001,61,49-54.
    54. Yan, Q.; Yuan, J. Y.; Cai, Z. N.; Xin, Y.; Kang, Y.; Yin, Y. W. Voltage-responsive vesiclesbased on orthogonal assembly of two homopolymers. J. Am. Chem. Soc.2010,132,9268-
    9270.
    55. Miyajima, D.; Araoka, F.; Takezoe, H.; Kim, J.; Kato, K.; Takata, M.; Aida, T. Electric-field-responsive handle for large-area orientation of discotic liquid-crystalline molecules inmillimeter-thick films. Angew. Chem. Int. Ed.2011,50,7865-7869.
    56. Xu, F.; Wu, C. A. M.; Rengarajan, V.; Finley, T. D.; Keles, H. O.; Sung, Y.; Li, B. Q.;Gurkan, U. A.; Demirci, U. Three-dimensional magnetic assembly of microscale hydrogels.Adv. Mater.2011,23,4254-4260.
    57. Dai, Q.; Nelson, A. Magnetically-responsive self assembled composites. Chem. Soc. Rev.2010,39,4057-4066.
    58. Zhou, Y. X.; Sharma, N.; Deshmukh, P.; Lakhman, R. K.; Jain, M.; Kasi, R. M.Hierarchically structured free-standing hydrogels with liquid crystalline domains andmagnetic nanoparticles as dual physical cross-linkers. J. Am. Chem.Soc.2012,134,1630-
    1641.
    59. Hu, Y. X.; He, L.; Yin, Y. D. Magnetically responsive photonic nanochains. Angew. Chem.Int. Ed.2011,50,3747-3750.
    60. Colombo, M.; Carregal-Romero, S.; Casula, M. F.; Gutiérrez, L.; Morales, M. P.; B hm, I. B.;Heverhagen, J. T.; Prosperi, D.; Parak, W. J. Biological applications of magneticnanoparticles. Chem. Soc. Rev.2012,41,4306-4334.
    61. Wang, Y.; Li, M. J.; Zhang, Y. M.; Yang, J.; Zhu, S. Y.; Sheng, L.; Wang, X. D.; Yang, B.;Zhang S. X. A. Stress acidulated amphoteric molecules and mechanochromism via reversibleintermolecular proton transfer. Chem. Commun.2013,49,6587-6589.
    62. Sagar, Y.; Kato, T. Mechanically induced luminescence changes in molecular assemblies.Nat. Chem.2009,1,605-610.
    63. Caruso, M. M.; Davis, D. A.; Shen, Q. L.; Odom, S. A.; Sottos, N. R.; White, S. R.; Moore, J.S. Mechanically-induced chemical changes in polymeric materials. Chem. Rev.2009,109,5755-5798.
    64. Katsuno, C.; Konda, A.; Urayama, K.; Takigawa, T.; Kidowaki, M.; Ito, K. Pressure-responsive polymer membranes of slide-ring gels with movable cross-links. Adv. Mater.2013,25,4636-4640.
    65. Chang, J.; Peng, X. F.; Hijji, K.; Cappello, J.; Ghandehari, H.; Solares, S. D.; Seog, J.Nanomechanical stimulus accelerates and directs the self-assembly of silk-elastin-likenanofibers. J. Am. Chem. Soc.2011,133,1745-1747.
    66. Davis, D. A.; Hamilton, A.; Yang, J. L.; Cremar, L. D.; Gough, D. V.; Potisek, S. L.; Ong,M.T.; Braun, P. V.; Martínez, T. J.; White, S. R.; Moore, J. S.; Sottos, N. R. Force-inducedactivation of covalent bonds in mechanoresponsive polymeric materials. Nature2009,459,68-72.
    67. Miralles, G.; Verdie, P.; Puget, K.; Maurras, A.; Martinez, J.; Subra, G. Microwave-mediatedreduction of disulfide bridges with supported (tris(2-carboxyethyl)phosphine) as resin-boundreducing agent. ACS Comb. Sci.2013,15,169-173.
    68. Nakatsuka, M. A.; Hsu, M. J.; Esener, S. C.; Cha, J. N.; Goodwin, A. P. DNA-coatedmicrobubbles with biochemically tunable ultrasound contrast activity. Adv. Mater.2011,23,4908-4912.
    69. Cao, W.; Zhang, X. L.; Miao, X. M.; Yang, Z. M.; Xu, H. P. γ-Ray-responsivesupramolecular hydrogel based on a diselenide-containing polymer and a peptide. Angew.Chem. Int. Ed.2013,52,6233-6237.
    70. Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev.1998,98,1743-1753.
    71. Schneider, H. J.; Hacket, F.; Rüdiger, V. NMR studies of cyclodextrins and cyclodextrincomplexes. Chem. Rev.1998,98,1755-1785.
    72. Rekharsky, M. V.; Inoue, Y. Complexation thermodynamics of cyclodextrins. Chem. Rev.1998,98,1875-1917.
    73. Dsouza, R. N.; Pischel, U.; Nau, W. M. Fluorescent dyes and their supramolecular host/guestcomplexes with macrocycles in aqueous solution. Chem. Rev.2011,111,7941-7980.
    74. Ravoo, B. J.; Jacquier, J. C.; Wenz, G. Molecular recognition of polymers by cyclodextrinvesicles. Angew. Chem.2003,115,2112-2116
    75. Harada, A.; Takashima, Y.; Yamaguchi H. Cyclodextrin-based supramolecular polymers.Chem. Soc. Rev.2009,38,875-882.
    76. Mellet, C. O.; Fernández, J. M. G.; Benito, J. M. Cyclodextrin-based gene delivery systems.Chem. Soc. Rev.2011,40,1586-1608.
    77. Chen, G. S.; Jiang, M. Cyclodextrin-based inclusion complexation bridging supramolecularchemistry and macromolecular self-assembly. Chem. Soc. Rev.2011,40,2254-2266.
    78. Qi, Z. H.; Molina, P. M. D.; Jiang, W.; Wang, Q.; Nowosinski, K.; Schulz, A.; Gradzielskib.M.; Schalley, C. A. Systems chemistry: logic gates based on the stimuli-responsive gel-soltransition of a crown ether-functionalized bis(urea) gelator. Chem. Sci.2012,3,2073-2082.
    79. Yan, X. Z.; Xu, D. H.; Chi, X. D.; Chen, J. Z.; Dong, S. Y.; Ding, X.; Yu, Y. H.; Huang, F. H.A multiresponsive, shape-persistent, and elastic supramolecular polymer network gelconstructed by orthogonal self-assembly. Adv. Mater.2012,24,362-369.
    80. Zheng, B.; Wang, F.; Dong, S.Y.; Huang, F. H. Supramolecular polymers constructed bycrown ether-based molecular recognition. Chem. Soc. Rev.,2012,41,1621-1636.
    81. Kim, H. J.; Lee, M. H.; Mutihac, L.; Vicens, J.; Kim, J. S. Host–guest sensing by calixareneson the surfaces. Chem. Soc. Rev.2012,41,1173-1190.
    82. Guo, D. S.; Liu, Y. Calixarene-based supramolecular polymerization in solution. Chem. Soc.Rev.2012,41,5907-5921.
    83. Kim, J. S.; Quang, D. T. Calixarene-derived fluorescent probes. Chem. Rev.2007,107,3780-
    3799.
    84. Rodik, R. V.; Klymchenko, A. S.; Jain, N.; Miroshnichenko, S. I.; Richert, L.; Kalchenko, V.I.; Mély, Y. Virus-sized DNA nanoparticles for gene delivery based on micelles of cationiccalixarenes. Chem. Eur. J.2011,17,5526-5538.
    85. Behrend, R.; Meyer, E.; Rusche, F. I. ueber condensationsproducte aus glycoluril undformaldehyd. Liebigs Ann. Chem.1905,339,1-37.
    86. Freeman, W.A.; Mock, W. L.; Shih, N. Y. Cucurbituril. J. Am. Chem. Soc.1981,103,7367-7368.
    87. Hou, C. X.; Li, J. X.; Zhao, L. L.; Zhang, W.; Luo, Q.; Dong, Z. Y.; Xu, J. Y.; Liu, J. Q.Construction of protein nanowires through cucurbit[8]uril-based highly specific host-guestinteractions: an approach to the assembly of functional proteins. Angew. Chem. Int. Ed.2013,52,5590-5593.
    88. Kim, H. J.; Jeon, W. S.; Ko, Y. H.; Kim, K. Inclusion of methylviologen in cucurbit[7]uril.Proc. Natl. Acad. Sci. U.S.A.2002,99,5007-5011.
    89. Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. The cucurbit[n]uril family. Angew.Chem. Int. Ed.2005,44,4844-4870.
    90. Liu, Y. L.; Liu, K.; Wang, Z. Q.; Zhang, X. Host-enhanced π-π interaction for water-solublesupramolecular polymerization. Chem. Eur. J.2011,17,9930-9935.
    91. Rauwald, U.; Scherman, O. A. Supramolecular block copolymers with cucurbit[8]uril inwater. Angew. Chem. Int. Ed.2008,47,3950-3953.
    92. Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T.; Nakamoto, Y. para-Bridged symmetricalpillar[5]arenes: their lewis acid catalyzed synthesis and host-guest property. J. Am. Chem.Soc.2008,130,5022-5023.
    93. Xue, M.; Yang, Y.; Chi, X. D.; Zhang, Z. B.; Huang, F. H. Pillararenes, a new class ofmacrocycles for supramolecular chemistry. Acc. Chem. Res.2012,45,1294-1308.
    94. Yao, Y.; Xue, M.; Chi, X. D.; Ma, Y. J.; He, J. M.; Ablizb, Z.; Huang, F. H. A newwater-soluble pillar[5]arene: synthesis and application in the preparation of goldnanoparticles. Chem. Commun.2012,48,6505-6507.
    95. Yao, Y.; Xue, M.; Chen, J. Z.; Zhang, M. M.; Huang, F. H. An amphiphilic pillar[5]arene:synthesis, controllable self-assembly in water, and application in calcein release and TNTadsorption. J. Am. Chem. Soc.2012,134,15712-15715.
    96. Yu, G. C.; Xue, M.; Zhang, Z. B.; Li, J. Y.; Han, C. Y.; Huang, F. H. A water-solublepillar[6]arene: synthesis, host guest chemistry,and its application in dispersion ofmultiwalled carbon nanotubes in water. J. Am. Chem. Soc.2012,134,13248-13251.
    97. Seidel, R. S.; Stang, P. J. High-symmetry coordination cages via self-assembly. Acc. Chem.Res.2002,35,972-983.
    98.周灵德,阎玉华,戴红莲,胡鹏,余海湖.―生物分子自组装.‖生命的化学2006,26,9-11.
    99. Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Molecular self-assembly and nanochemistry: achemical strategy for the synthesis of nanostructures. Science1991,254,1312-1319.
    100. Lehn, J. M. Toward self-organization and complex matter. Science2002,295,2400-2403.
    101. Hamley, I. W. Nanotechnology with soft materials. Angew. Chem.Int. Ed.2003,42,1692-
    1712.
    102. Yan, D. Y.; Zhou, Y. F.; Hou, J. Supramolecular self-assembly of macroscopic tubes.Science2004,303,65-67.
    103. Corbett, P. T.; Leclaire, J.; Vial, L.; West, K. R.; Wietor, J. L.; Sanders, J. K. M.; Otto, S.Dynamic combinatorial chemistry. Chem. Rev.2006,106,3652-3711.
    104. Jin, Y. H.; Yu, C.; Denman, R. J.; Zhang, W. Recent advances in dynamic covalentchemistry. Chem. Soc. Rev.2013,42,6634-6654.
    105. Kloxina, C. J.; Bowman, C. N. Covalent adaptable networks: smart, reconfigurable andresponsive network systems. Chem. Soc. Rev.2013,42,7161-7173.
    106. Lehn, J. M. From supramolecular chemistry towards constitutional dynamic chemistry andadaptive chemistry. Chem. Soc. Rev.2007,36,151-160.
    107. Moulin, E.; Cormosw, G.; Giuseppone, N. Dynamic combinatorial chemistry as a tool forthe design of functional materials and devices. Chem. Soc. Rev.2012,41,1031-1049.
    108. Lehn, J. M. Dynamers: dynamic molecular and supramolecular polymers. Prog. Polym. Sci.2005,30,814-831.
    109. Lehn, J. M. Dynamers: dynamic molecular and upramolecular polymers. Aust. J. Chem.2010,63,611-623.
    110. Maeda, T.; Otsuka, H.; Takahara, A. Dynamic covalent polymers: reorganizable polymerswith dynamic covalent bonds. Prog. Polym. Sci.2009,34,581-604.
    111. Lehn, J. M.; Eliseev, A. V. Dynamic combinatorial chemistry. Science2001,291,2331-
    2332.
    112. Wojtecki, R. J.; Meador, M. A.; Rowan, S. J. Using the dynamic bond to accessmacroscopically responsive structurally dynamic polymers. Nat. Mater.2011,10,14-27.
    113. Rowan, S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.; Stoddart, J. F. Dynamiccovalent chemistry. Angew. Chem. Int. Ed.2002,41,898-952.
    114. Schiff, H. Mittheilungen aus dem universit tslaboratorium in pisa: eine neue reiheorganischer basen. Ann. Chem.1864,131,118-119.
    115. Meyer, C. D.; Joiner, C. S.; Stoddart, J. F. Template-directed synthesis employingreversible imine bond formation. Chem. Soc. Rev.2007,36,1705-1723.
    116. Belowich, M. E.; Stoddart, J. F. Dynamic imine chemistry. Chem. Soc. Rev.2012,41,2003-2024.
    117. Wang, C.; Wang, G. T.; Wang, Z. Q.; Zhang, X. A pH-responsive super-amphiphile basedon dynamic covalent bonds. Chem. Eur. J.2011,17,3322-3325.
    118. Delius, M. V.; Geertsema, E. M.; Leigh, D. A. A synthetic small molecule that can walkdown a track. Nat. Chem.2010,20,96-101.
    119. Delius, M. V.; Geertsema, E. M.; Leigh, D. A.; Tang, D. T. D. Design, synthesis, andoperation of small molecules that walk along tracks. J. Am. Chem. Soc.2010,132,16134-16145.
    120. Barrell, M. J.; Campa a, A. G.; Delius, M. V.; Geertsema, E. M.; Leigh, D. A. Light-driventransport of a molecular walker in either direction along a molecular track. Angew. Chem., Int.Ed.2011,50,285-290.
    121. Bull, S. D.; Davidson, M. G.; Elsen, J. M. H. V. D.; Fossey, J. S.; Jenkins, A. T. A.; Jiang,Y. B.; Kubo, Y.; Marken, F.; Sakurai, K.; Zhao, J. Z.; James, T. D. Exploiting the reversiblecovalent bonding of boronic acids: recognition, sensing, and assembly. Acc. Chem. Res.2013,46,312-326.
    122. Bapat,A. P.; Roy, D.; Ray, J. G.; Savin, D. A.; Sumerlin, B. S. Dynamic-covalentmacromolecular stars with boronic ester linkages. J. Am. Chem. Soc.2011,133,19832-19838.
    123. Chen, W. X.; Cheng, Y. F.; Wang, B. H. Dual-responsive boronate crosslinked micelles fortargeted drug delivery. Angew. Chem. Int. Ed.2012,51,5293-5295.
    124. Naito, M.; Ishii, T.; Matsumoto, A.; Miyata, K.; Miyahara, Y.; Kataoka, K. Aphenylboronate-functionalized polyion complex micelle for ATP triggered release of siRNA.Angew. Chem. Int. Ed.2012,51,10751-10755.
    125. Li, Y. P.; Xiao, W. W.; Xiao, K.; Berti, L.; Luo, J. T.; Tseng, H. P.; Fung, G.; Lam, K. S.Well-defined, reversible boronate crosslinked nanocarriers for targeted drug delivery inresponse to acidic pH values and cis-diols. Angew. Chem. Int. Ed.2012,51,2864-2869.
    126. Qiu,Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev.2001,53,321-339.
    127. Jeong, B.; Kim, S. W.; Bae, Y. H. Thermosensitive sol-gel reversible hydrogels. Adv. DrugDeliv. Rev.2002,54,37-51.
    128. Chaterjia, S.; Kwonb, K.; Park, K. Smart polymeric gels: redefining the limits ofbiomedical devices. Prog. Polym. Sci.2007,32,1083-1122.
    129. Noro, A.; Hayashi, M.; Matsushita, Y. Design and properties of supramolecular polymergels. Soft Matter2012,8,6416-6429.
    130. Díaz, D. D.; Kühbeck, D.; Koopmans, R. J. Stimuli-responsive gels as reaction vessels andreusable catalysts. Chem. Soc. Rev.2011,40,427-448.
    131. Ahn, S. K.; Kasi, R. M.; Kim, S. C.; Sharma, N.; Zhou, Y. X. Stimuli-responsive polymergels. Soft Matter2008,4,1151-1157.
    132. Miao, X. M.; Cao, W.; Zheng, W. T.; Wang, J. Y.; Zhang, X. L.; Gao, J.; Yang, C. B.;Kong, D. L.; Xu, H. P.; Wang, L.; Yang, Z. M. Switchable catalytic activity: selenium-containing peptides with redox-controllable self-assembly properties. Angew. Chem. Int. Ed.2013,52,7781-7785.
    133. Peters, O.; Ritter, H. Supramolecular controlled water uptake of macroscopic materials by acyclodextrin-induced hydrophobic-to-hydrophilic transition. Angew. Chem. Int. Ed.2013,52,8961-8963.
    
    134. Boekhoven, J.; Koot, M.; Wezendonk, T. A.; Eelkema, R.; Esch, J. H. V. A self-assembleddelivery platform with post-production tunable release rate. J. Am. Chem. Soc.2012,134,12908-12911.
    
    135. Zang, L. B.; Shang,H. X.; Wei, D. Y.; Jiang, S. M. A multi-stimuli-responsive organogelbased on salicylidene schiff base. Sens. Actuators, B2013,185,389-397.
    
    136. Deng, G. H.; Tang, C. M.; Li, F. Y.; Jiang, H. F.; Chen, Y. M. Covalent cross-linkedpolymer gels with reversible sol-gel transition and self-healing properties. Macromolecules2010,43,1191-1194.
    1. Drury, J. L.; Mooney, D. J. Hydrogels for tissue engineering: scaffold design variables andapplications. Biomaterials2003,24,4337-4351.
    2. Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. Hydrogels in biology andmedicine: from molecular principles to bionanotechnology. Adv. Mater.2006,18,1345-
    1360.
    3. Lee, K. Y.; Mooney, D. J. Hydrogels for tissue engineering. Chem. Rev.2001,101,1969-1979.
    4. Vermonden, T.; Censi, R.; Hennink, W. E. Hydrogels for protein delivery. Chem. Rev.2012,112,2853-2888.
    5. Rao, K. V.; Datta, K. K. R.; Eswaramoorthy, M.; George, S. J. Light-harvesting hybridhydrogels: energy-transfer-induced amplified fluorescence in noncovalently assembledchromophore-organoclay composites. Angew. Chem. Int. Ed.2011,50,1179-1184.
    6. Arunbabu, D.; Sannigrahi, A.; Jana, T. Photonic crystal hydrogel material for the sensing oftoxic mercury ions (Hg2+) in water. Soft Matter2011,7,2592-2599.
    7. Ozay, O.; Ekici, S.; Baran, Y.; Aktas, N.; Sahiner, N. Removal of toxic metal ions withmagnetic hydrogels. Water Res.2009,43,4403-4411.
    8. Deligkaris, K.; Tadele, T. S.; Olthuis, W.; Berg, A. V. D. Hydrogel-based devices forbiomedical applications. Sens. Actuators, B2010,147,765-774.
    9. Huang, X.; Yin, Y. Z.; Tang, Y.; Bai, X. L.; Zhang, Z. M.; Xu, J. X.; Liu, J. Q.; Shen, J. C.Smart microgel catalyst with modulatory glutathione peroxidase activity. Soft Matter2009,5,1905-1911.
    10. Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Advanced DrugDelivery Reviews2001,53,321-339.
    11. Jeonga, B.; Kimb, S. W.; Bae, Y. H. Thermosensitive sol-gel reversible hydrogels AdvancedDrug Delivery Reviews2002,54,37-51.
    12. Moon, H. J.; Ko, D. Y.; Park, M. H.; Joo, M. K.; Jeong, B. Temperature-responsivecompounds as in situ gelling biomedical materials. Chem. Soc. Rev.2012,41,4860-4883.
    13. Wood, D. M.; Greenland, B. W.; Acton, A. L.; Rodríguez-Llansola, F.; Murray, C. A.;Cardin, C. J.; Miravet, J. F.; Escuder, B.; Hamley, I. W.; Hayes, W. pH-tunable hydrogelatorsfor water purification: structural optimisation and evaluation. Chem. Eur. J.2012,18,2692-2699.
    14. Thornton, P. D.; Mart, R. J.; Ulijn, R. V. Enzyme-responsive polymer hydrogel particles forcontrolled release. Adv. Mater.2007,19,1252-1256.
    15. Xu, C.;Ren, J. S.;Feng, L. Y.; Qu, X. G. H2O2triggered sol-gel transition used for visualdetection of glucose. Chem. Commun.2012,48,3739-3741.
    16. Nakahata, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Redox-responsive self-healingmaterials formed from host-guest polymers. Nat. Commun.2011,2,511.
    17. Ahn, Y.; Kim, E.; Hyon, J.; Kang, C.; Kang, Y. Photoresponsive block copolymer photonicgels with widely tunable photosensitivity by counter-ions. Adv. Mater.2012,24, OP127-OP130.
    18. Suzuki, A.; Tanaka, T. Phase transition in polymer gels induced by visible light. Nature1990,346,345-347.
    19. Xu, F.; Wu, C. A. M.; Rengarajan, V.; Finley, T. D.; Keles, H. O.; Sung, Y.; Li, B. Q.;Gurkan, U. A.; Demirci, U. Three-dimensional magnetic assembly of microscale hydrogels.Adv. Mater.2011,23,4254-4260.
    20. Zhou, Y. X.; Sharma, N.; Deshmukh, P.; Lakhman, R. K.; Jain, M.; Kasi, R. M.Hierarchically structured free-standing hydrogels with liquid crystalline domains andmagnetic nanoparticles as dual physical cross-linkers. J. Am. Chem.Soc.2012,134,1630-
    1641.
    21. Sutania, K.; Kaetsua, I.; Uchida, K. The synthesis and the electric-responsiveness ofhydrogels entrapping natural polyelectrolyte. Radiat. Phys. Chem.,2001,61,49-54.
    22. Cheng, Y.; Luo, X. L.; Betz, J.; Payne, G. F.; Bentley, W. E.; Rubloff, G. W. Mechanism ofanodic electrodeposition of calcium alginate. Soft Matter,2011,7,5677-5684.
    23. Shin, J.;Han, S. G.; Lee, W. Dually tunable inverse opal hydrogel colorimetric sensor withfast and reversible color changes. Sensors and Actuators B2012,168,20-26.
    24. Hennink, W. E.; Nostrum, C. F. V. Novel crosslinking methods to design hydrogels.Advanced Drug Delivery Reviews2002,54,13-36.
    25. Bergera, J.; Reista, M.; Mayera, J. M.; Feltb, O.; Peppasc, N. A.; Gurny, R. Structure andinteractions in covalently and ionically crosslinked chitosan hydrogels for biomedicalapplications. European Journal of Pharmaceutics and Biopharmaceutics2004,57,19-34.
    26. Harada, A.; Kamachi, M. Complex formation between poly(ethy1ene glycol) andα-cyclodextrin. Macromolecules1990,23,2821-2823.
    27. Li, J.; Harada, A.; Kamachi, M. Sol-gel transition during inclusion complex formationbetween α-cyclodextrin and high molecular weight poly(ethylene glycol)s in aqueoussolution. Polym. J.1994,26,1019-1026.
    28. Harada, A.; Li, J.; Kamachi, M. Double-stranded inclusion complexes of cyclodextrinthreaded on poly(ethylene glycol). Nature1994,370,126-128.
    29. Araki, J.; Ito, K. Recent advances in the preparation of cyclodextrin-based polyrotaxanes andtheir applications to soft materials. Soft Matter,2007,3,1456-1473.
    30. Kataoka, T.; Kidowaki, M.; Zhao, C. M.; Minamikawa, H.; Shimizu, T.; Ito, K. Local andnetwork structure of thermoreversible polyrotaxane hydrogels based on poly(ethylene glycol)and methylated α-cyclodextrins. J. Phys. Chem. B2006,110,24377-24383.
    31. Li, J.; Ni, X. P.; Leong, K. W. Injectable drug-delivery systems based on supramolecularhydrogels formed by poly(ethylene oxide)s and α-cyclodextrin. J. Biomed. Mater. Res.2003,65,196-202.
    32. Liu, K. L.; Zhu, J. L.; Li, J. Elucidating rheological property enhancements in supramolecularhydrogels of short poly[(R,S)-3-hydroxybutyrate]-based amphiphilic triblock copolymer andα-cyclodextrin for injectable hydrogel applications. Soft Matter2010,6,2300-2311.
    33. Li, J. Self-assembled supramolecular hydrogels based on polymer–cyclodextrin inclusioncomplexes for drug delivery. NPG Asia Mater.2010,2,112-118.
    34. Liu, K. L.; Zhang, Z. X.; Li, J. Supramolecular hydrogels based on cyclodextrin-polymerpolypseudorotaxanes: materials design and hydrogel properties. Soft Matter2011,7,11290-11297.
    35. Ren, L. X.; He, L. H.; Sun, T. C.; Dong, X.; Chen, Y. M.; Huang, J.; Wang, C. Dual-Responsive supramolecular hydrogels from water-soluble PEG-grafted copolymers andcyclodextrin. Macromol. Biosci.2009,9,902-910.
    36. Guo, M. Y.; Jiang, M.; Pispas, S.; Yu, W.; Zhou, C. X. Supramolecular hydrogels made ofend-functionalized low-molecular-weight PEG and α-Cyclodextrin and their hybridizationwith SiO2nanoparticles through host-guest interaction. Macromolecules2008,41,9744-
    9749.
    37. Liao, X. J.; Chen, G. S.; Liu, X. X.; Chen, W. X.; Chen, F. E.; Jiang, M. Photoresponsivepseudopolyrotaxane hydrogels based on competition of host-guest inte ractions. Angew.Chem. Int. Ed.2010,49,4409-4413.
    38. Liao, X. J.; Chen, G. S.; Jiang, M. Pseudopolyrotaxanes on inorganic nanoplatelets and theirsupramolecular hydrogels. Langmuir2011,27,12650-12656.
    39. Esch, J. H. van; Feiters, M. C.; Peters, A. M.; Nolte, R. J. M. UV-Vis, fluorescence, and EPRstudies of porphyrins in bilayers of dioctadecyldimethyl-ammonium surfactants. J. Phys.Chem1994,98,5541-5551.
    40. Griesbeck, A. G.; Sch fer, M.; Uhliga, J. Photooxygenation catalysis with a polyol-decorateddisc-shaped porphyrin sensitizer: shell-recognition effects. Adv. Synth. Catal.2008,350,2104-2108.
    41. Liu, Y. Y.; Fan, X. D.; Gao, L. Synthesis and characterization of β-cyclodextrin basedfunctional monomers and its copolymers with N-isopropylacrylamide. Macromol. Biosci.2003,3,715-719.
    1. Iijima, S. Helical microtubules of graphitic carbon. Nature1991,354,56-58.
    2. Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P.(Eds.) Carbon nanotubes: synthesis,structure, properties, and applications. Springer: Berlin, Germany,2001.
    3. Reich, S.; Thomsen, C.; Maultzsch, J. Carbon nanotubes: basic concepts and physicalproperties. VCH: Weinheim, Germany,2004.
    4. Special issue on Carbon Nanotubes. Acc. Chem. Res.2002,35,997-1113.
    5. Lu, X. B.; Dai, J. Y. Memory effects of carbon nanotubes as charge storage nodes for floatinggate memory applications. Appl. Phys. Lett.2006,88,113104.
    6. Fan, Z. J.; Yan, J.; Zhi, L. J.; Zhang, Q.; Wei, T.; Feng, J.; Zhang, M. L.; Qian, W. Z.; Wei, F.A three-dimensional carbon nanotube/graphene sandwich and its application as electrodeinsupercapacitors. Adv. Mater.2010,22,3723-3728.
    7. Langa, F.; Gomez-Escalonilla, M. J.; Cruz, P. D. L. Carbon nanotubes and porphyrins: anexciting combination for optoelectronic devices. J. Porphyr. Phthalocya.2007,11,348-358.
    8. Guldi, D. M. Nanometer scale carbon structures for charge-transfer systems and photovoltaicapplications. Phys. Chem. Chem. Phys.2007,9,1400-1420.
    9. Guldi, D. M.; Rahman, G. M. A.; Zerbetto, F.; Prato, M. Carbon nanotubes in electron donor-acceptor nanocomposites. Acc. Chem. Res.2005,38,871-878.
    10. Silva, J. F.; Griveau, S.; Richard, C.; Zagal, J. H.; Bedioui, F. Glassy carbon electrodesmodified with single walled carbon nanotubes and cobalt phthalocyanine and nickeltetrasulfonated phthalocyanine: highly stable new hybrids with enhanced electrocatalyticperformances. Electrochem. Commun.2007,9,1629-1634.
    11. Qu, J. Y.; Shen, Y.; Qu, X. H.; Dong, S. J. Electrocatalytic reduction of oxygen atmulti-walled carbon nanotubes and cobalt porphyrin modified glassy carbon electrode.Electroanalysis2004,16,1444-1450.
    12. Murata, K.; Hashimoto, A.; Yudasaka, M.; Kasuya, D.; Kaneko, K.; Iijima, S. The use ofcharge transfer to enhance the methane-storage capacity of single-walled, nanostructured carbon. Adv.Mater.2004,16,1520-1522.
    13. Utsumi, S.; Urita, K.; Kanoh, H.; Yudasaka, M.; Suenaga, K.; Iijima, S.; Kaneko, K.Preparing a magnetically responsive single-wall carbon nanohorn colloid by anchoringmagnetite nanoparticles. J. Phys. Chem. B2006,110,7165-7170.
    14. Kostarelos, K.; Lacerda, L.; Pastorin, G.; Wu, W.; Wieckowski, S.; Luangsivilay, J.;Godefroy, S.; Pantarotto, D.; Briand, J. P.; Muller, S.; Prato, M.; Bianco, A. Cellular uptakeof functionalized carbon nanotubes is independent of functional group and cell type. Nat.Nanotechnol.2007,2,108-113.
    15. Kim, S. N.; Rusling, J. F.; Papadimitrakopoulos, F. Carbon nanotubes for electronic andelectrochemical detection of biomolecules. Adv. Mater.2007,19,3214-3228.
    16. Katz, E.; Willner, I. Biomolecule-functionalized carbon nanotubes: applications innanobioelectronics. ChemPhysChem2004,5,1084-1104.
    17. Gooding, J. J. Nanostructuring electrodes with carbon nanotubes: A review on electro-chemistry and applications for sensing. Electrochim. Acta2005,50,3049-3060.
    18. Merkoci, A.; Pumera, M.; Llopis, X.; Perez, B.; Valle, M. del; Alegret, S. New materials forelectrochemical sensing VI: carbon nanotubes. TrAC Trends Anal. Chem.2005,24,826-838.
    19. Hecht, D. S.; Ramirez, R. J. A.; Briman, M.; Arukovic, E.; Chichak, K. S.; Stoddart, J. F.;GrSner, G. Bioinspired detection of light using a porphyrin-sensitized single-wall nanotubefield effect transistor. Nano Lett.2006,6,2031-2036.
    20. Hersam, M. C. Progress towards monodisperse single-walled carbon nanotubes. Nat.Nanotechnol.2008,3,387-394.
    21. Coleman, J. N. Liquid-phase exfoliation of nanotubes and grapheme. Adv. Funct. Mater.2009,19,3680-3695.
    22. Grobert, N. Carbon nanotubes-becoming clean. Mater. Today2007,10,28-35.
    23. Liu, J.; Rinzler, A. G.; Dai, H. J.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson,T.; Shelimov, K.; Huffman, C. B.; Rodriguez-Macias, F.; Shon, Y. S.; Lee, T. R.; Colbert, D.T.; Smalley, R. E. Fullerene Pipes. Science1998,280,1253-1256.
    24. Matsuzawa, Y.; Kato, H.; Ohyama, H.; Nishide, D.; Kataura, H.; Yoshida, M. Photoinduceddispersibility tuning of carbon nanotubes by a water-soluble stilbene as a dispersant. Adv.Mater.2011,23,3922-3925.
    25. Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of carbon nanotubes. Chem.Rev.2006,106,1105-1136.
    26. Hirsch, A. Functionalization of single-walled carbon nanotubes. Angew. Chem.2002,41,1853-1859.
    27. Karachevtsev, V. A.; Zarudnev, E. S.; Stepanian, S. G.; Glamazda, A. Yu.; Karachevtsev, M.V.; Adamowicz L. Raman spectroscopy and theoretical characterization of nanohybrids ofporphyrins with carbon nanotubes. J. Phys. Chem. C2010,114,16215-16222.
    28. Chichak, K. S.; Star, A.; Altoé, M. V. P.; Stoddart J. F. Single-walled carbon nanotubesunder the influence of dynamic coordination and supramolecular chemistry. Small2005,1,452-461.
    29. Chen, R. J.; Zhang, Y. G.; Wang, D. W.; Dai, H. J. Noncovalent sidewall functionalization ofsingle-walled carbon nanotube for protein immobilization. J. Am. Chem. Soc.2001,123,3838-3839.
    30. Chen, R. J.; Bangsaruntip, S.; Drouvalakis, K. A.; Kam, N. W. S.; Shim, M.; Li, Y. M.; Kim,W.; Utz, P. J.; Dai, H. J. Noncovalent functionalization of carbon nanotubes for highlyspecific electronic biosensors. Proc. Natl. Acad. Sci. U.S.A.2003,100,4984-4989.
    31. Guldi, D. M.; Rahman, G. M. A.; Jux, N.; Balbinot, D.; Hartnagel, U.; Tagmatarchis, N.;Prato, M. Functional single-wall carbon nanotube nanohybridss associating swnts with water-soluble enzyme model systems. J. Am. Chem. Soc.2005,127,9830-9838.
    32. Ehli, C.; Rahman, G. M. A.; Jux, N.; Balbinot, D.; Guldi, D. M.; Paolucci, F.; Maraccio, M.;Paolucci, D.; Melle-Franco, M.; Zerbetto, F.; Campidelli, S.; Prato, M. Interactions in singlewall carbon nanotubes/pyrene/porphyrin nanohybrids. J. Am. Chem. Soc.2006,128,11222-11231.
    33. Aratani, N.; Kim, D.; Osuka, A. Discrete cyclic porphyrin arrays as artificial light-harvestingantenna. Acc. Chem. Res.2009,42,1922-1934.
    34. Guldi, D. M. Fullerene–porphyrin architectures; photosynthetic antenna and reaction centermodels. Chem. Soc. Rev.2002,31,22-36.
    35. Li, L. L.; Diau, E. W. G. Porphyrin-sensitized solar cells. Chem. Soc. Rev.2013,42,291-304.
    36. Ethirajan, M.; Chen, Y. H.; Joshi P.; Pandey, R. K. The role of porphyrin chemistry in tumorimaging and photodynamic therapy. Chem. Soc. Rev.2011,40,340-362.
    37. Cambré, S.; Wenseleers, W.; ulin, J.; Doorslaer, S. V.; Fonseca, A.; Nagy, J. B.; Goovaerts,E. Characterisation of nanohybrids of porphyrins withmetallic and semiconducting carbonnanotubes by EPR and optical spectroscopy ChemPhysChem2008,9,1930-1941.
    38. Cheng, F. Y.; Adronov, A. Noncovalent functionalization and solubilization of carbonnanotubes by using a conjugated Zn-porphyrin polymer. Chem. Eur. J.2006,12,5053-5059.
    39. Guldi, D. M.; Taieb, H.; Rahman, G. M. A.; Tagmatarchis, N.; Prato, M. Novel photoactivesingle-walled carbon nanotube-porphyrin polymer wraps: efficient and long-livedintracomplex charge separation. Adv. Mater.2005,17,871-875.
    40. Murakami, H.; Nomura, T.; Nakashima, N. Noncovalent porphyrin-functionalizedsingle-walled carbon nanotubes in solution and the formation of porphyrin-nanotubenanocomposites. Chem. Phys. Lett.2003,378,481-485.
    41. Li, H. P.; Zhou, B.; Lin, Y.; Gu, L. R.; Wang, W.; Fernando, K. A. S.; Kumar, S.; Allard, L.F.; Sun, Y. P. Selective interactions of porphyrins with semiconducting single-walled carbonnanotubes J. Am. Chem. Soc.2004,126,1014-1015.
    42. Chen, J. Y.; Collier, C. P. Noncovalent functionalization of single-walled carbon nanotubeswith water-soluble porphyrins. J. Phys. Chem. B2005,109,7605-7609.
    43. Hasobe, T.; Fukuzumi, S.; Kamat, P. V. Ordered assembly of protonated porphyrin driven bysingle-wall carbon nanotubes. J-and H-aggregates to nanorods. J. Am. Chem. Soc.2005,127,11884-11885.
    44. Rahman, G. M. A.; Guldi, D. M.; Campidelli, S.; Prato, M. Electronically interacting singlewall carbon nanotube-porphyrin nanohybrids. J. Mater. Chem.2006,16,62-65.
    45. Sáfar, G. A. M.; Ribeiro, H. B.; Malard, L. M.; Plentz, F. O.; Fantini, C.; Santos, A. P.;Freitas-Silva, G. D.; Idemori, Y. M. Optical study of porphyrin-doped carbon nanotubes.Chem. Phys. Lett.2008,462,109-111.
    1. Hastings, G. W.; Mahmud, E. A. Intelligent orthopaedic materials. Journal of IntelligentMaterial Systems and Structures1993,4,452-457.
    2. Deng, G. H.; Li, F. Y.; Yu, H. X.; Liu, F. Y.; Liu, C. Y.; Sun, W. X.; Jiang, H. F.; Chen, Y.M.Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsivesol gel transitions. ACS Macro Lett.2012,1,275-279.
    3. Hager, M. D.; Greil, P.; Leyens, C.; Zwaag, S. V. D.; Schubert, U. S. Self-healing materials.Adv. Mater.2010,22,5424-5430.
    4.付小兵.生长因子与创伤修复.北京:人民军医出版社.1991,42-51.
    5. Zhao, Y.; Abreu, E.; Kim, J.; Stadler, G.; Eskiocak, U.; Terns, M. P.; Terns, R. M.; Shay, J.W.; Wright, W. E. Processive and distributive extension of human telomeres by telomeraseunder homeostatic and nonequilibrium conditions. Molecular Cell2011,42,297-307.
    6. Burattini, S.; Greenland, B. W.; Chappell, D.; Colquhoun, H. M.; Hayes, W. Healablepolymeric materials: a tutorial review. Chem. Soc. Rev.2010,39,1973-1985.
    7. Syrett, J. A.; Becer, C. R.; Haddleton, D. M. Self-healing and self-mendable polymers. Polym.Chem.2010,1,978-987.
    8. Wool, R. P. Self-healing materials: a review. Soft Matter2008,4,400-418.
    9. Dong, K.; Wei, Z.; Yang, Z. M.; Chen, Y. M. Sci. Sin. Chim.2012,42,741-756.
    10. Wei, Q.; Wang, J.; Shen, X. Y.; Zhang, X. A.; Sun, J. Z.; Qin, A. J.; Tang, B. Z. Self-healinghyperbranched poly(aroyltriazole)s. Sci. Rep.2013,3,1093.
    11. Murphy, E. B.; Wudl, F. The world of smart healable materials. Prog. Polym. Sci.2010,35,223-251.
    12. Guimard, N. K.; Oehlenschlaeger, K. K.; Zhou, J. W.; Hilf, S.; Schmidt, F. G.; Barner-Kowollik, C. Current trends in the field of self-healing materials. Macromol. Chem. Phys.2012,213,131-143.
    13. Blaiszik, B. J.; Kramar, S. L. B.; Olugebefola, S. C.; Moore, J. S.; Sottos, N. R.; White, S. R.Self-healing polymers and composites. Annu. Rev. Mater. Res.2010,40,179-211.
    14. Wang, X.; Liu, F.; Zheng, X. W.; Sun, J. Q. Water-enabled self-healing of polyelectrolytemultilayer coatings. Angew. Chem. Int. Ed.2011,50,11378-11381.
    15. White, S. R.; Sottos, N. R.; Geubelle, P. H.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.;Brown, E. N.; Viswanathan, S. Autonomic healing of polymer composites. Nature2001,409,794-797.
    16. Toohey, K. S.; Sottos, N. R.; Lewis, J. A.; Moore, J. S.; White, S. R. Self-healing materialswith microvascular networks. Nat. Mater.2007,6,581-585.
    17. Cordier, P.; Tournilhac, F.; Soulie-Ziakovic, C.; Leibler, L. Self-healing and thermo-reversible rubber from supramolecular assembly. Nature2008,451,977-980.
    18. Vidyasagar, A.; Handore, K.; Sureshan, K. M. Soft optical devices from self-healing gelsformed by oil and sugar-based organogelators. Angew. Chem. Int. Ed.2011,50,8021-8024.
    19. Burattini, S.; Colquhoun, H. M.; Fox, J. D.; Friedmann, D.; Greenland, B. W.; Harris, P. J. F.;Hayes, W.; Mackay, M. E.; Rowan, S. J. A self-repairing, supramolecular polymer system:healability as a consequence of donor-acceptor π-π stacking interactions. Chem. Commun.2009,40,6717-6719.
    20. Fox, J.; Wie, J. J.; Greenland, B. W.; Burattini, S.; Hayes, W.; Colquhoun, H. M.; Mackay, M.E.; Rowan, S. J. High-strength, healable, supramolecular polymer nanocomposites. J. Am.Chem. Soc.2012,134,5362-5368.
    21. South, A. B.; Lyon, L. A. Autonomic self-healing of hydrogel thin films. Angew. Chem. Int.Ed.2010,49,767-771.
    22. Wang, Q. G.; Mynar, J. L.; Yoshida, M.; Lee, E.; Lee, M.; Okuro, K.; Kinbara K.; Aida, T.High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder.Nature2010,463,339-343.
    23. Tuncaboylu, D. C.; Sari, M.; Oppermann, W.; Okay, O. Tough and self-healing hydrogelsformed via hydrophobic interactions. Macromolecules2011,44,4997-5005.
    24. Tuncaboylu, D. C.; Sahin, M.; Argun, A.; Oppermann, W.; Okay, O. Dynamics and largestrain behavior of self-healing hydrogels with and without surfactants. Macromolecules2012,45,1991-2000.
    25. Ceylan, H.; Urel, M.; Erkal, T. S.; Tekinay, A. B.; Dana, A.; Guler, M. O. Mussel inspireddynamic cross-linking of self-healing peptide nanofiber network Adv. Funct. Mater.2013,23,2081-2090.
    26. Holten-Andersen, N.; Harrington, M. J.; Birkedal, H.; Lee, B. P.; Messersmith, P. B.; Lee, K.Y. C.; Waite, J. H. pH-induced metal-ligand cross-links inspired by mussel yield self-healingpolymer networks with near-covalent elastic moduli. Proc. Natl. Acad. Sci. U. S. A.2011,108,2651-2655.
    27. Zhang, M. M.; Xu, D. H.; Yan, X. Z,; Chen, J. Z,; Dong, S. Y.; Zheng, B.; Huang, F. H.Self-healing supramolecular gels formed by crown ether based host-guest interactions. Angew.Chem. Int. Ed.2012,51,7011-7015.
    28. Appel, E. A.; Loh, X. J.; Jones, S. T.; Biedermann, F.; Dreiss, C. A.; Scherman, O. A.Ultrahigh-water-content supramolecular hydrogels exhibiting multistimuli responsiveness. J.Am. Chem. Soc.2012,134,11767-11773.
    29. Nakahata, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Redox-responsive self-healingmaterials formed from host-guest polymers. Nat. Commun.2011,2,511.
    30. Harada, A.; Kobayashi, R.; Takashima, Y.; Hashidzume, A.; Yamaguchi H. Macroscopicself-assembly through molecular recognition. Nat. Chem.2011,3,34-37.
    31. Zheng, Y. T.; Hashidzume, A.; Takashima, Y.; Yamaguchi, H.; Harada, A. Switching ofmacroscopic molecular recognition selectivity using a mixed solvent system. Nat. Commun.2012,3,831.
    32. Deng, G. H.; Tang, C. M.; Li, F. Y.; Jiang, H. F.; Chen, Y. M. Covalent cross-linked polymergels with reversible sol-gel transition and self-healing properties. Macromolecules2010,43,1191-1194.
    33. Zhang, Y.; Tao, L.; Li, S.; Wei, Y. Synthesis of multiresponsive and dynamic chitosan-basedhydrogels for controlled release of bioactive molecules. Biomacromolecules2011,12,2894-2901.
    34. Chen, X. X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H. B.; Nutt, S. R.; Sheran, K.; Wudl, F. Athermally re-mendable cross-linked polymeric material.Science2002,295,1698-1702.
    35. Lu, Y. X.; Guan, Z. B. Olefin metathesis for effective polymer healing via dynamic exchangeof strong carbon-carbon double bonds. J. Am. Chem. Soc.2012,134,14226-14231.
    36. Nicolay, R.; Kamada, J.; Van Wassen, A.; Matyjaszewski, K. Responsive gels based on adynamic covalent trithiocarbonate cross-linker. Macromolecules2010,43,4355-4361.
    37. Amamoto, Y.; Kamada, J.; Otsuka, H.; Takahara, A.; Matyjaszewski, K. Repeatablephoto-induced self-healing of covalently cross-linked polymers through reshuffling oftrithiocarbonate units. Angew. Chem., Int. Ed.2011,50,1660-1663.
    38. Liu, Y. L.; Chen, Y. W. Thermally reversible cross-linked polyamides with high toughnessand self-repairing ability from maleimide and furan-functionalized aromatic polyamides.Macromol. Chem. Phys.2007,208,224-232
    39. Oku, T.; Furusho, Y.; Takata, T. A concept for recyclable cross-linked polymers:topologically networked polyrotaxane capable of undergoing reversible assembly anddisassembly. Angew. Chem., Int. Ed.2004,43,966-969.
    40. Higaki, Y.; Otsuka, H.; Takahara, A. A thermodynamic polymer cross-linking system basedon radically exchangeable covalent bonds. Macromolecules2006,39,2121-2125.
    41. Imato, K.; Nishihara, M.; Kanehara, T.; Amamoto, Y.; Takahara, A.; Otsuka, H. Self-healingof chemical gels cross-linked by diarylbibenzofuranone-based trigger-free dynamic covalentbonds at room temperature. Angew. Chem. Int. Ed.2012,51,1138-1142.
    42. Chen, X. X.; Wudl, F.; Mal, A. K.; Shen, H. B.; Nutt, S. R. New thermally remendable highlycross-linked polymeric materials. Macromolecules2003,36,1802-1807.
    43.高玉舟.双酶体系的构建及其应用研究.长春:吉林大学化学学院,2013.
    44. Saari, W. S.; Schwering, J. E.; Lyle, P. A.; Smith, S. J.; Engelhardt, E. L.Cyclization-activated prodrugs. basic carbamates of4-hydroxyanisole. J. Med. Chem.1990,33,97-101.
    45.高钧,丁运生,张涛,罗明灯,刘洋.丙烯酰乙二胺盐酸盐的合成.合成化学,200917,130-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700