用户名: 密码: 验证码:
贵金属团簇与碳纳米材料的表面修饰与物性调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,低维纳米结构如金属团簇、碳纳米管和石墨烯,成为物理学、化学、材料科学等多个学科的研究热点,对它们的深入研究有助于揭示和理解其独特的光学性质、电子结构和带隙特征,为微纳尺度的材料设计和改性提供科学依据。本论文采用密度泛函理论方法分别考察了有机分子吸附的零维Ag和Au纳米团簇的光吸收谱,Ru原子或团簇在一维碳纳米管内外表而的吸附行为,以及二维氢化石墨烯的能隙调控。
     多聚物、生物分子和配体等有机分子吸附的贵金属纳米团簇,不仅能够阻止团簇继续生长还能改变金属团簇的表面结构,从而调控其物理化学性质,因此在生物传感、医学成像和治疗方面有较广泛的应用。本论文采用第一性原理研究了有机分子吸附的Ag38和Au38团簇的吸附结构、电子性质和光吸收谱,发现贵金属纳米团簇的光吸收谱受到机分子官能团类型和吸附浓度的调控。具有较浅d带深度的Au团簇比Ag团簇的结构和电子性质更容易受到有机分子的影响,且有机分子吸附对Au38团簇的紫外-可见光吸收谱的改变更大。具有高吸附能,转移电荷量大、对团簇结构改变明显的有机分子(如2-巯基吡啶)是贵金属团簇光吸收谱调控的理想有机分子。改变吸附分子数量同样能调控贵金属团簇的光吸收特性。随着三甲胺分子吸附数量增加,Ag38团簇的吸收光谱总体红移、并伴随吸收峰展宽现象;8个TMA分子吸附的Au38团簇在399nm处山现一个强度与紫外区主吸收峰相当的新吸收峰。我们的理论模拟加深了对有机金属团簇的光吸收行为的理解,也为实验上制备光敏感金属团簇基电子器件提供了参考。
     与传统碳材料如石墨,无定形碳等相比,碳纳米管作为催化剂的载体,具有更高的催化活性和选择性。由于碳管内外表面曲率不同、电子结构差异,过渡金属担载在其内外表面时相互作用也不同,从而形成不同的金属/碳管复合物。我们采用第一性原理方法系统地研究了4d过渡金属(尤其是Ru)原子和团簇吸附在单壁或双壁碳纳米管上的几何结构、结合能和电子性质。过渡金属原子在碳管上的平衡吸附构型依赖于金属原子的价电子构型。因为曲率效应,所有过渡金属原子吸附在(6,6)管内外部时向碳管贡献不同量的电子,但是工者转移电荷的差值近似一个常数,即0.5个电子。电子态密度分析揭示出C原子的π电子和Ru的d电子存在杂化现象,这导致了电荷从金属转移向碳管。电荷转移量给出了对4d过渡金属电负性系统地依赖关系。当Ru原子或团簇吸附在双壁碳纳米管上时,电荷转移效应比单壁管略有加强。我们的理论结果对过渡金属和碳纳米管之间的相互作用提供了更深的理解,有助于解释在实验上观察到的碳纳米管内部和外部吸附的过渡金属纳米粒子不同的催化行为。
     石墨烯作为一种原子厚度的二维材料,为纳米电子学和光电材料的发展提供了平台,然而零带隙的特征极大地限制了石墨烯在电子学和光子学领域的应用。因此石墨烯带隙的打开和调控成为石墨烯研究的一个重点,我们通过密度泛函理论重点调查了部分氢化石墨烯的电子态。氢化石墨烯构型包括随机去除孤立H原子、随机去除相邻H原子对、有序去除相邻H原子对三类。模拟结果发现随机去除相邻H原子对的氢化石墨烯构型更稳定。更有趣的是,这类构型的氢化石墨烯带隙随着H浓度下降而逐渐变小,在H覆盖度为67%时,带隙为零。带隙从0到4.66eV连续可变,为石墨烯材料电子结构的调控提供了一条新的途径,并增加了其在电子学和光子学方面的应用。
During the last decades, the exploration of low-dimensional nano structures such as metal clusters, carbon nanotubes and graphene, is a hot topic in the fields of physics, chemistry and many other subjects. Intensive investigations of these nanostructures is of key importance to reveal and understand their unique optical properties, electronic structures and band gap, which can help design the novel nano-materials that are technologically promising. In this dissertation, we studied from optical adsorption spectra of the zero-dimensional Ag38and Au38clusters adsorbed with organic molecules, the adsorption behavior of Ru atom or clusters inside and outside carbon nanotubes, to band gap tuning of the two-dimensional hydrogenated graphene.
     The organic molecules such as polymers, biomolecules and organic ligands, adsorbing on noble metal clusters, not only can avoid the metal clusters aggregating to bigger, but also modify their surface geometry and electronic structures, which can tune their physical and chemical properties. We have investigated the adsorption structures, electronic properties and optical adsorption spectra of the Ag38and Au38clusters adsorbed with different organic molecules by first-principles calculations. Optical adsorption spectra of the noble metal clusters varies with metal elements, functional groups of organic molecules and concentration of adsorption molecules. Due to the d band of Au closer to Fermi level, geometry structures and electronic properties of the Au38cluster are more easily affected by adsorbing organic molecules, which leads to more distinctive optical adsorption spectra comparing with pure gold clusters. Optical adsorption spectra of the noble metal clusters is tuned by such organic molecules, which has higher adsorption energy, leads to stronger surface modifications and transfers more charge to metal clusters, such as2-Pyridinethiol molecule. Adsorption concentration of organic molecules is another important fact to tune optical adsorption spectra of noble mtal cluster. Increasing the numbers of trimethylamine molecules results in the overall red-shift of optical adsorption spectra and the broadening of adsorption peaks for Ag38cluster. After adsorbed with eight TMA molecules, there appears a new adsorption peak at399nm in the visible region for Au38cluster. The simulations of Ag38and Au38clusters can help understand the optical adsorption behavior of noble metal clusters adsorbed with organic molecules, and provide reference to synthesize light-sensitive metal clusters.
     First-principles calculations were performed to investigate the binding energies, geometric structures, and electronic properties of4d transition metal TM (particularly, Ru), atoms, and clusters adsorbed outside/inside the single-walled or double-walled carbon nanotubes. The equilibrium adsorption structures of the TM atoms depend on the valence electron configuration of the metal atoms. Due to curvature effect, all TM atoms adsorbed inside and outside (6,6) carbon nanotubes donate different amounts of electrons to the nanotube, with a nearly constant difference of about0.5electrons/TM atom. The analysis of electronic density of states revealed hybridization between the n electrons from C and the d electrons from Ru, which results in charge transfer from metal to carbon. The amount of charge transfer shows systematical trend with the electronegativity of4d TMs. When Ru atom or cluster adsorbs on double-walled nanotubes, the effect of charge transfer is slightly enhanced with regard to the single-walled nanotubes.
     The electronic states of partially hydrogenated graphene (HG) structures are studied by the density functional theory calculations. Several types of HG configurations, including randomly removing of H pair, randomly removing individual H atoms, and ordered H pairs removal, are investigated. We find that the configurations with randomly removingHpairs aremost energetically favorable. More interestingly, the band gap for such configurations decrease with H concentration and approaches zero around67%H coverage. The ability to continuously tune the band gap of hydrogenated graphene from0to4.66eV by different H coverage provides a new pathway for engineering the electronic structure of graphene materials and enhances their applications in electronics and photonics.
引文
[1]Dai L, Chang D W, Baek J-B, et al. Carbon Nanomaterials for Advanced Energy Conversion and Storage [J]. Small,2012,8(8):1130-1166.
    [2]Rao C N R, Vivekchand S R C, Biswas K, et al. Synthesis of inorganic nanomaterials [J]. Dalton Transactions,2007,0(34):3728-3749.
    [3]Joshi P, Shewale V, Pandey R, et al. Tryptophan-Gold Nanoparticle Interaction: A First-Principles Quantum Mechanical Study [J]. The Journal of Physical Chemistry C, 2011,115(46):22818-22826.
    [4]Sanchez S I, Small M W, Bozin E S, et al. Metastability and Structural Polymorphism in Noble Metals:The Role of Composition and Metal Atom Coordination in Mono-and Bimetallic Nanoclusters [J]. ACS Nano,2012,7(2):1542-1557.
    [5]Valiev R. Materials science:Nanomaterial advantage [J]. Nature,2002, 419(6910):887-889.
    [6]Ashok K. Functional Nanomaterials:From Basic Science to Emerging Applications [J]. Solid State Phenomena,2013,201(1):1-19.
    [7]Daniel M-C, Astruc D. Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology [J]. Chemical Reviews,2003,104(1):293-346.
    [8]Abou El-Nour K M M, Eftaiha A A, Al-Warthan A, et al. Synthesis and applications of silver nanoparticles [J]. Arabian Journal of Chemistry,2010,3(3): 135-140.
    [9]Udayabhaskararao T, Pradeep T. New Protocols for the Synthesis of Stable Ag and Au Nanocluster Molecules [J]. The Journal of Physical Chemistry Letters,2013, 4(9):1553-1564.
    [10]Bonacic-Koutecky V, Kulesza A, Gell L, et al. Silver cluster-biomolecule hybrids:from basics towards sensors [J]. Physical Chemistry Chemical Physics,2012, 14(26):9282-9290.
    [11]Atwater H A, Polman A. Plasmonics for improved photovoltaic devices [J]. Nat Mater,2010,9(3):205-213.
    [12]Jincan K, Shuli Z, Qinghong Z, et al. Ruthenium Nanoparticles Supported on Carbon Nanotubes as Efficient Catalysts for Selective Conversion of Synthesis Gas to Diesel Fuel13 [J]. Angewandte Chemie,2009,121(14):2603-2606.
    [13]Javey A, Guo J, Wang Q, et al. Ballistic carbon nanotube field-effect transistors [J]. Nature,2003,424(6949):654-657.
    [14]Gilje S, Han S, Wang M, et al. A chemical route to graphene for device applications [J]. Nano Letters,2007,7(11):3394-3398.
    [15]Brumfiel G. Graphene gets ready for the big time [J]. Nature,2009,458(7237): 390-391.
    [16]Stevenson S, Rice G, Glass T, et al. Small-bandgap endohedral metallofullerenes in high yield and purity [J]. Nature,1999,401(6748):55-57.
    [17]Ofir Y, Samanta B, Rotello V M. Polymer and biopolymer mediated self-assembly of gold nanoparticles [J]. Chemical Society Reviews,2008,37(9): 1814-1825.
    [18]Tsukuda T. Toward an Atomic-Level Understanding of Size-Specific Properties of Protected and Stabilized Gold Clusters [J]. Bulletin of the Chemical Society of Japan, 2012,85(2):151-168.
    [19]H.W. Kroto J R H, S. C. O'brien, R. F. Curl, R. E. Smalley. C60: Buckminsterfullerene [J]. Nature,1985,318(14):162-163.
    [20]Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348): 56-58.
    [21]Novoselov K S, Geim A K, Morozov S V, et al. Electric Field Effect in Atomically Thin Carbon Films [J]. Science,2004,306(5696):666-669.
    [22]Ferrando R, Jellinek J, Johnston R L. Nanoalloys:From Theory to Applications of Alloy Clusters and Nanoparticles [J]. Chemical Reviews,2008,108(3):845-910.
    [23]Johnston R L. Evolving better nanoparticles:Genetic algorithms for optimising cluster geometries [J]. Dalton Transactions,2003,22):4193-4207.
    [24]Baletto F, Ferrando R. Structural properties of nanoclusters:Energetic, thermodynamic, and kinetic effects [J]. Reviews of Modern Physics,2005,77(1): 371-423.
    [25]Castleman A W, Bowen K H. Clusters:Structure, Energetics, and Dynamics of Intermediate States of Matter [J]. The Journal of Physical Chemistry,1996,100(31): 12911-12944.
    [26]Sun Y, Xia Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles [J]. Science,2002,298(5601):2176-2179.
    [27]Hutter E, Fendler J H. Exploitation of Localized Surface Plasmon Resonance [J]. Advanced Materials,2004,16(19):1685-1706.
    [28]Kumar S, Bolan M D, Bigioni T P. Glutathione-Stabilized Magic-Number Silver Cluster Compounds [J]. Journal of the American Chemical Society,2010,132(38): 13141-13143.
    [29]Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles:the influence of size, shape, and dielectric environment [J]. The Journal of Physical Chemistry B,2003,107(3):668-677.
    [30]Tomar A, Garg G. Short Review on Application of Gold Nanoparticles [J]. Global Journal of Pharmacology,2013,7(1):34-38.
    [31]Aryal S, Grailer J J, Pilla S, et al. Doxorubicin conjugated gold nanoparticles as water-soluble and pH-responsive anticancer drug nanocarriers [J]. Journal of Materials Chemistry,2009,19(42):7879-7884.
    [32]Nanda K K, Kruis F E, Fissan H. Evaporation of Free PbS Nanoparticles: Evidence of the Kelvin Effect [J]. Physical Review Letters,2002,89(25):256103.
    [33]Magnusson M H, Deppert K, Malm J-O, et al. Gold nanoparticles:production, reshaping, and thermal charging [J]. Journal of Nanoparticle Research,1999,1(2): 243-251.
    [34]Jung J H, Cheol Oh H, Soo Noh H, et al. Metal nanoparticle generation using a small ceramic heater with a local heating area [J]. Journal of Aerosol Science,2006, 37(12):1662-1670.
    [35]Sylvestre J-P, Poulin S, Kabashin A V, et al. Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media [J]. The Journal of Physical Chemistry B,2004,108(43):16864-16869.
    [36]Kabashin A, Meunier M. Femtosecond laser ablation in aqueous solutions:a novel method to synthesize non-toxic metal colloids with controllable size [J]. Journal of Physics:Conference Series,2007,59(1):354.
    [37]Sylvestre J-P, Kabashin A V, Sacher E, et al. Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins [J]. Journal of the American Chemical Society,2004,126(23):7176-7177.
    [38]Mafune F, Kohno J-Y, Takeda Y, et al. Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation [J]. The Journal of Physical Chemistry B,2000,104(35):8333-8337.
    [39]Tsuji T, Thang D-H, Okazaki Y, et al. Preparation of silver nanoparticles by laser ablation in polyvinylpyrrolidone solutions [J]. Applied Surface Science,2008, 254(16):5224-5230.
    [40]Shirtcliffe N, Nickel U, Schneider S. Reproducible preparation of silver sols with small particle size using borohydride reduction:for use as nuclei for preparation of larger particles [J]. Journal of colloid and interface science,1999,211(1):122-129.
    [41]PanacEk A, Kvitek L, Prucek R, et al. Silver colloid nanoparticles:synthesis, characterization, and their antibacterial activity [J]. The Journal of Physical Chemistry B, 2006,110(33):16248-16253.
    [42]Bai J, Li Y, Du J, et al. One-pot synthesis of polyacrylamide-gold nanocomposite [J]. Materials Chemistry and Physics,2007,106(2):412-415.
    [43]Pillai Z S, Kamat P V. What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? [J]. The Journal of Physical Chemistry B,2004,108(3):945-951.
    [44]El-Rafie M, El-Naggar M, Ramadan M, et al. Environmental synthesis of silver nanoparticles using hydroxypropyl starch and their characterization [J]. Carbohydrate Polymers,2011,86(2):630-635.
    [45]Zhang Y, Peng H, Huang W, et al. Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles [J]. Journal of colloid and interface science,2008,325(2):371-376.
    [46]Krutyakov Y A, Olenin A Y, Kudrinskii A, et al. Aggregative stability and polydispersity of silver nanoparticles prepared using two-phase aqueous organic systems [J]. Nanotechnologies in Russia,2008,3(5-6):303-310.
    [47]Iglesias-Silva E, Vilas-Vilela J, Lopez-Quintela M, et al. Synthesis of gold-coated iron oxide nanoparticles [J]. Journal of Non-Crystalline Solids,2010, 356(25):1233-1235.
    [48]Raveendran P, Fu J, Wallen S L. Completely "green" synthesis and stabilization of metal nanoparticles [J]. Journal of the American Chemical Society,2003,125(46): 13940-13941.
    [49]Vilchis-Nestor A R, Sanchez-Mendieta V, Camacho-Lopez M A, et al. Solventless synthesis and optical properties of Au and Ag nanoparticles using< i> Camellia sinensis extract [J]. Materials Letters,2008,62(17):3103-3105.
    [50]Woodruff D P. Atomic clusters:from gas phase to deposited [M]. Elsevier, 2007.
    [51]Sun T, Seff K. Silver clusters and chemistry in zeolites [J]. Chemical reviews, 1994,94(4):857-870.
    [52]Zhang H, Huang X, Li L, et al. Photoreductive synthesis of water-soluble fluorescent metal nanoclusters [J]. Chemical Communications,2012,48(4):567-569.
    [53]Henglein A. Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles [J]. Chemical Reviews,1989,89(8): 1861-1873.
    [54]Xu H, Suslick K S. Sonochemical synthesis of highly fluorescent Ag nanoclusters [J]. ACS nano,2010,4(6):3209-3214.
    [55]Liu S, Lu F, Zhu J-J. Highly fluorescent Ag nanoclusters:microwave-assisted green synthesis and Cr3+sensing [J]. Chem Commun,2011,47(9):2661-2663.
    [56]Diez I, Kanyuk M I, Demchenko A P, et al. Blue, green and red emissive silver nanoclusters formed in organic solvents [J]. Nanoscale,2012,4(15):4434-4437.
    [57]Xavier P L, Chaudhari K, Baksi A, et al. Protein-protected luminescent noble metal quantum clusters:an emerging trend in atomic cluster nanoscience [J]. Nano reviews,2012,3():14767_14761-14767_14716.
    [58]Xie J, Zheng Y, Ying J Y. Protein-directed synthesis of highly fluorescent gold nanoclusters [J]. Journal of the American Chemical Society,2009,131(3):888-889.
    [59]Ghosh A, Udayabhaskararao T, Pradeep T. One-Step Route to Luminescent Aul8SG14 in the Condensed Phase and Its Closed Shell Molecular Ions in the Gas Phase [J]. The Journal of Physical Chemistry Letters,2012,3(15):1997-2002.
    [60]Wu Z, Macdonald M A, Chen J, et al. Kinetic control and thermodynamic selection in the synthesis of atomically precise gold nanoclusters [J]. Journal of the American Chemical Society,2011,133(25):9670-9673.
    [61]Yu Y, Luo Z, Yu Y, et al. Observation of Cluster Size Growth in CO-Directed Synthesis of Au25 (SR) 18 Nanoclusters [J]. ACS nano,2012,6(9):7920-7927.
    [62]Love J C, Estroff L A, Kriebel J K, et al. Self-assembled monolayers of thiolates on metals as a form of nanotechnology [J]. Chemical reviews,2005,105(4):1103-1170.
    [63]HMkkinen H. The gold-sulfur interface at the nanoscale [J]. Nature Chemistry, 2012,4(6):443-455.
    [64]Zhong L-S, Hu J-S, Cui Z-M, et al. In-situ loading of noble metal nanoparticles on hydroxyl-group-rich titania precursor and their catalytic applications [J]. Chemistry of Materials,2007,19(18):4557-4562.
    [65]Wang J-X, Wen L-X, Wang Z-H, et al. Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects [J]. Materials chemistry and physics,2006,96(1):90-97.
    [66]Jia X, Ma X, Wei D, et al. Direct formation of silver nanoparticles in cuttlebone-derived organic matrix for catalytic applications [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2008,330(2):234-240.
    [67]Bhattacharyya S, Kudgus R A, Bhattacharya R, et al. Inorganic nanoparticles in cancer therapy [J]. Pharmaceutical research,2011,28(2):237-259.
    [68]Cho M, Chung H, Choi W, et al. Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection [J]. Applied and environmental microbiology,2005,71(1):270-275.
    [69]Gangadharan D, Harshvardan K, Gnanasekar G, et al. Polymeric microspheres containing silver nanoparticles as a bactericidal agent for water disinfection [J]. water research,2010,44(18):5481-5487.
    [70]Rai M, Yadav A, Gade A. Silver nanopartictes as a new generation of antimicrobials [J]. Biotechnology advances,2009,27(1):76-83.
    [71]Hahm J-I, Lieber C M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors [J]. Nano Letters,2004,4(1): 51-54.
    [72]Manno D, Filippo E, Di Giulio M, et al. Synthesis and characterization of starch-stabilized Ag nanostructures for sensors applications [J]. Journal of Non-Crystalline Solids,2008,354(52-54):5515-5520.
    [73]Yin J, Qi X, Yang L, et al. A hydrogen peroxide electrochemical sensor based on silver nanoparticles decorated silicon nanowire arrays [J]. Electrochimica Acta,2011, 56(11):3884-3889.
    [74]Guo J-Z, Cui H, Zhou W, et al. Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide [J]. Journal of Photochemistry and Photobiology A:Chemistry,2008,193(2):89-96.
    [75]Underwood S, Mulvaney P. Effect of the solution refractive index on the color of gold colloids [J]. Langmuir,1994,10(10):3427-3430.
    [76]Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles [J]. Langmuir,1996,12(3):788-800.
    [77]Berciaud S, Cognet L, Tamarat P, et al. Observation of intrinsic size effects in the optical response of individual gold nanoparticles [J]. Nano Letters,2005,5(3): 515-518.
    [78]Royon A, Bourhis K, Bellec M, et al. Silver clusters embedded in glass as a perennial high capacity optical recording medium [J]. Advanced Materials,2010,22(46): 5282-5286.
    [79]Peyser L A, Vinson A E, Bartko A P, et al. Photoactivated fluorescence from individual silver nanoclusters [J]. Science,2001,291(5501):103-106.
    [80]Sun W, Yao J, Yao T, et al. Label-free fluorescent DNA sensor for the detection of silver ions based on molecular light switch Ru complex and unmodified quantum dots [J]. Analyst,2013,138(2):421-424.
    [81]Cai W, Chen X. Nanoplatforms for targeted molecular imaging in living subjects [J]. Small,2007,3(11):1840-1854.
    [82]Li L, Fan M, Brown R C, et al. Synthesis, properties, and environmental applications of nanoscale iron-based materials:a review [J]. Critical Reviews in Environmental Science and Technology,2006,36(5):405-431.
    [83]El-Sayed I H, Huang X, El-Sayed M A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles [J]. Cancer letters,2006,239(1):129-135.
    [84]Jadzinsky P D, Calero G, Ackerson C J, et al. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 A resolution [J]. Science,2007,318(5849): 430-433.
    [85]Koivisto J, Malola S, Kumara C, et al. Experimental and Theoretical Determination of the Optical Gap of the Au144 (SC2H4Ph) 60 Cluster and the (Au/Ag) 144 (SC2H4Ph) 60 Nanoalloys [J]. The Journal of Physical Chemistry Letters,2012, 3(20):3076-3080.
    [86]Qian H, Jin R. Ambient synthesis of Au144 (SR) 60 nanoclusters in methanol [J]. Chemistry of Materials,2011,23(8):2209-2217.
    [87]Fan J, Chen S, Gao Y. Coating gold nanoparticles with peptide molecules via a peptide elongation approach [J]. Colloids and Surfaces B:Biointerfaces,2003,28(2): 199-207.
    [88]Duncan B, Kim C, Rotello V M. Gold nanoparticle platforms as drug and biomacromolecule delivery systems [J]. Journal of Controlled Release,2010,148(1): 122-127.
    [89]Ghosh P, Han G, De M, et al. Gold nanoparticles in delivery applications [J]. Advanced drug delivery reviews,2008,60(11):1307-1315.
    [90]Bhumkar D R, Joshi H M, Sastry M, et al. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin [J]. Pharmaceutical research,2007, 24(8):1415-1426.
    [91]Morton S M, Silverstein D W, Jensen L. Theoretical studies of plasmonics using electronic structure methods [J]. Chemical Reviews,2011,111(6):3962-3994.
    [92]Yao H, Kitaoka N, Sasaki A. Chemical transformation of chiral monolayer-protected gold clusters:observation of ligand size effects on optical and chiroptical responses [J]. Nanoscale,2012,4(3):955-963.
    [93]Lu Y, Chen W. Sub-nanometre sized metal clusters:from synthetic challenges to the unique property discoveries [J]. Chemical Society Reviews,2012,41(9):3594-3623.
    [94]Jin R. Quantum sized, thiolate-protected gold nanoclusters [J]. Nanoscale,2010, 2(3):343-362.
    [95]Ramasamy P, Guha S, Shibu E S, et al. Size tuning of Au nanoparticles formed by electron beam irradiation of Au25 quantum clusters anchored within and outside of dipeptide nanotubes [J]. Journal of Materials Chemistry,2009,19(44):8456-8462.
    [96]Aikens C M. Electronic structure of ligand-passivated gold and silver nanoclusters [J]. The Journal of Physical Chemistry Letters,2010,2(2):99-104.
    [97]Alvarez M M, Khoury J T, Schaaff T G, et al. Optical absorption spectra of nanocrystal gold molecules [J]. The Journal of Physical Chemistry B,1997,101(19): 3706-3712.
    [98]Pinchuk A, Kreibig U, Hilger A. Optical properties of metallic nanoparticles: influence of interface effects and interband transitions [J]. Surface Science,2004,557(1): 269-280.
    [99]Novo C, Gomez D, Perez-Juste J, et al. Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study [J]. Phys Chem Chem Phys,2006,8(30):3540-3546.
    [100]Seney C S, Gutzman B M, Goddard R H. Correlation of size and surface-enhanced Raman scattering activity of optical and spectroscopic properties for silver nanoparticles [J]. The Journal of Physical Chemistry C,2008,113(1):74-80.
    [101]Aikens C M, Li S, Schatz G C. From discrete electronic states to plasmons: TDDFT optical absorption properties of Ag n (n= 10,20,35,56,84,120) tetrahedral clusters [J]. The Journal of Physical Chemistry C,2008,112(30):11272-11279.
    [102]Yau S H, Varnavski O, Goodson Iii T. An Ultrafast Look at Au Nanoclusters [J]. Accounts Chem Res,2013,46(7):1506-1516.
    [103]Hao E, Schatz G C, Hupp J T. Synthesis and optical properties of anisotropic metal nanoparticles [J]. Journal of Fluorescence,2004,14(4):331-341.
    [104]Kamat P V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles [J]. The Journal of Physical Chemistry B,2002,106(32):7729-7744.
    [105]Jensen L, Zhao L L, Schatz G C. Size-Dependence of the enhanced Raman scattering of pyridine adsorbed on Ag n (n= 2-8,20) clusters [J]. The Journal of Physical Chemistry C,2007,111(12):4756-4764.
    [106]LoPez Lozano X C, Mottet C, Weissker H-C. Effect of Alloying on the Optical Properties of Ag-Au Nanoparticles [J]. The Journal of Physical Chemistry C,2013, 117(6):3062-3068.
    [107]Xiang Y, Wu X, Liu D, et al. Gold nanorod-seeded growth of silver nanostructures:from homogeneous coating to anisotropic coating [J]. Langmuir,2008, 24(7):3465-3470.
    [108]Templeton A C, Wuelfing W P, Murray R W. Monolayer-protected cluster molecules [J]. Accounts Chem Res,2000,33(1):27-36.
    [109]Cortie M B, Mcdonagh A M. Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles [J]. Chemical reviews,2011,111(6):3713-3735.
    [110]Shenhar R, Norsten T B, Rotello V M. Polymer-Mediated Nanoparticle Assembly:Structural Control and Applications [J]. Advanced Materials,2005,17(6): 657-669.
    [111]Franzen S, Folmer J C, Glomm W R, et al. Optical properties of dye molecules adsorbed on single gold and silver nanoparticles [J]. The Journal of Physical Chemistry A,2002,106(28):6533-6540.
    [112]Sun Y, Jose D, Sorensen C, et al. Alkyl and Aromatic Amines as Digestive Ripening/Size Focusing Agents for Gold Nanoparticles [J]. Nanomaterials,2013,3(3): 370-392.
    [113]Bonacic-Koutecky V, Kulesza A, Gell L, et al. Silver cluster-biomolecule hybrids:from basics towards sensors [J]. Physical Chemistry Chemical Physics,2012, 14(26):9282-9290.
    [114]Petty J T, Giri B, Miller IC, et al. Silver clusters as both chromophoric reporters and DNA ligands [J]. Analytical chemistry,2013,85(4):2183-2190.
    [115]Cathcart N, Mistry P, Makra C, et al. Chiral thiol-stabilized silver nanoclusters with well-resolved optical transitions synthesized by a facile etching procedure in aqueous solutions [J]. Langmuir,2009,25(10):5840-5846.
    [116]Harkness K M, Tang Y, Dass A, et al. Ag44 (SR) 304-. a silver-thiolate superatom complex [J]. Nanoscale,2012,4(14):4269-4274.
    [117]Devadas M S, Bairu S, Qian H, et al. Temperature-dependent optical absorption properties of monolayer-protected Au25 and Au38 clusters [J]. The Journal of Physical Chemistry Letters,2011,2(21):2752-2758.
    [118]Song Y, Huang T, Murray R W. Heterophase ligand exchange and metal transfer between monolayer protected clusters [J]. Journal of the American Chemical Society, 2003,125(38):11694-11701.
    [119]Nishida N, Yao H, Kimura K. Chiral functionalization of optically inactive monolayer-protected silver nanoclusters by chiral ligand-exchange reactions [J]. Langmuir,2008,24(6):2759-2766.
    [120]Niihori Y, Matsuzaki M, Pradeep T, et al. Separation of Precise Compositions of Noble Metal Clusters Protected with Mixed Ligands [J]. Journal of the American Chemical Society,2013,135(13):4946-4949.
    [121]Knoppe S, Dass A, Biirgi T. Strong non-linear effects in the chiroptical properties of the ligand-exchanged Au38 and Au40 clusters [J]. Nanoscale,2012,4(14): 4211-4216.
    [122]Jung J, Kang S, Han Y-K. Ligand effects on the stability of thiol-stabilized gold nanoclusters:Au25 (SR) 18-, Au38 (SR) 24, and Au102 (SR) 44 [J]. Nanoscale,2012, 4(14):4206-4210.
    [123]Meng X, Xu Q, Wang S, et al. Ligand-exchange synthesis of selenophenolate-capped Au25 nanoclusters [J]. Nanoscale,2012,4(14):4161-4165.
    [124]Bellina B, Antoine R, Broyer M, et al. Formation and characterization of thioglycolic acid-silver cluster complexes [J]. Dalton Trans,2013,42(23):8328-8333.
    [125]Zhu M, Qian H, Meng X, et al. Chiral Au25 nanospheres and nanorods: synthesis and insight into the origin of chirality [J]. Nano letters,2011,11(9): 3963-3969.
    [126]Jiang X, Yu A. Silver nanoplates:A highly sensitive material toward inorganic anions [J]. Langmuir,2008,24(8):4300-4309.
    [127]Zhang Q, Huang J-Q, Qian W-Z, et al. The Road for Nanomaterials Industry:A Review of Carbon Nanotube Production, Post-Treatment, and Bulk Applications for Composites and Energy Storage [J]. Small,2013,9(8):1237-1265.
    [128]De Voider M F L, Tawfick S H, Baughman R H, et al. Carbon Nanotubes: Present and Future Commercial Applications [J]. Science,2013,339(6119):535-539.
    [129]Xiao L, Chen Z, Feng C, et al. Flexible, Stretchable, Transparent Carbon Nanotube Thin Film Loudspeakers [J]. Nano Letters,2008,8(12):4539-4545.
    [130]Sandhu A. Strictly nanotubes in Beijing [J]. Nat Nano,2009,4(7):398-399.
    [131]Chen W, Pan X, Willinger M-G, et al. Facile Autoreduction of Iron Oxide/Carbon Nanotube Encapsulates [J]. Journal of the American Chemical Society, 2006,128(10):3136-3137.
    [132]Chen W, Pan X, Bao X. Tuning of Redox Properties of Iron and Iron Oxides via Encapsulation within Carbon Nanotubes [J]. Journal of the American Chemical Society, 2007,129(23):7421-7426.
    [133]Pan X, Fan Z, Chen W, et al. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles [J]. Nat Mater,2007,6(7): 507-511.
    [134]Wonrachel Pei C. Carbon nanotubes:Syngas converters [J].2007,
    [135]Dresselhaus M S, Dresselhaus G, Saito R, et al. Raman spectroscopy of carbon nanotubes [J]. Physics Reports,2005,409(2):47-99.
    [136]Dresselhaus M S, Dresselhaus G, Eklund P, et al. Carbon nanotubes [M]. Springer,2000.
    [137]Sanderson R T. Electronegativity and bond energy [J]. Journal of the American Chemical Society,1983,105(8):2259-2261.
    [138]Mestl G, Maksimova N I, Keller N, et al. Carbon Nanofilaments in Heterogeneous Catalysis:An Industrial Application for New Carbon Materials? [J]. Angewandte Chemie International Edition,2001,40(11):2066-2068.
    [139]Li W, Liang C, Qiu J, et al. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell [J]. Carbon,2002,40(5):791-794.
    [140]Zhang A M, Dong J L, Xu Q H, et al. Palladium cluster filled in inner of carbon nanotubes and their catalytic properties in liquid phase benzene hydrogenation [J]. Catalysis Today,2004,93-95(347-352.
    [141]Su D S, Maksimova N, Delgado J J, et al. Nanocarbons in selective oxidative dehydrogenation reaction [J]. Catalysis Today,2005,102-103(0):110-114.
    [142]Li Z, Liang C, Feng Z, et al. Ammonia synthesis on graphitic-nanofilament supported Ru catalysts [J]. Journal of Molecular Catalysis A:Chemical,2004,211(1-2): 103-109.
    [143]Nhut J-M, Pesant L, Tessonnier J-P, et al. Mesoporous carbon nanotubes for use as support in catalysis and as nanosized reactors for one-dimensional inorganic material synthesis [J]. Applied Catalysis A:General,2003,254(2):345-363.
    [144]Yin S-F, Xu B-Q, Ng C-F, et al. Nano Ru/CNTs:a highly active and stable catalyst for the generation of COx-free hydrogen in ammonia decomposition [J]. Applied Catalysis B:Environmental,2004,48(4):237-241.
    [145]Chen H-B, Lin J-D, Cai Y, et al. Novel multi-walled nanotubes-supported and alkali-promoted Ru catalysts for ammonia synthesis under atmospheric pressure [J]. Applied Surface Science,2001,180(3-4):328-335.
    [146]Xu Q-C, Lin J-D, Li J, et al. Combination and interaction of ammonia synthesis ruthenium catalysts [J]. Journal of Molecular Catalysis A:Chemical,2006,259(1-2): 218-222.
    [147]Liu Z, Lin X, Lee J Y, et al. Preparation and Characterization of Platinum-Based Electrocatalysts on Multiwalled Carbon Nanotubes for Proton Exchange Membrane Fuel Cells [J]. Langmuir,2002,18(10):4054-4060.
    [148]Li W, Liang C, Qiu J, et al. Multi-walled carbon nanotubes supported Pt-Fe cathodic catalyst for direct methanol fuel cell [J]. Reaction Kinetics and Catalysis Letters, 2004,82(2):235-240.
    [149]Tessonnier J-P, Pesant L, Ehret G, et al. Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde [J]. Applied Catalysis A:General,2005,288(1-2):203-210.
    [150]Guo S, Pan X, Gao H, et al. Probing the Electronic Effect of Carbon Nanotubes in Catalysis:NH3 Synthesis with Ru Nanoparticles [J]. Chemistry-A European Journal, 2010,16(18):5379-5384.
    [151]Serp P, Castillejos E. Catalysis in carbon nanotubes [J]. ChemCatChem,2010, 2(1):41-47.
    [152]Bittencourt C, Felten A, Ghijsen J, et al. Decorating carbon nanotubes with nickel nanoparticles [J]. Chemical Physics Letters,2007,436(4-6):368-372.
    [153]Zhang Y, Dai H. Formation of metal nanowires on suspended single-walled carbon nanotubes [J]. Applied Physics Letters,2000,77(19):3015-3017.
    [154]Zhang Y, Franklin N W, Chen R J, et al. Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction [J]. Chemical Physics Letters, 2000,331(1):35-41.
    [155]Chen W-X, Lee J Y, Liu Z. Preparation of Pt and PtRu nanoparticles supported on carbon nanotubes by microwave-assisted heating polyol process [J]. Materials Letters, 2004,58(25):3166-3169.
    [156]Unger E, Duesberg G S, Liebau M, et al. Decoration of multi-walled carbon nanotubes with noble- and transition-metal clusters and formation of CNT-CNT networks [J]. Appl Phys A,2003,77(6):735-738.
    [157]Yang C-K, Zhao J, Lu J. Binding energies and electronic structures of adsorbed titanium chains on carbon nanotubes [J]. Physical Review B,2002,66(4):
    [158]Wu M-C, Li C-L, Hu C-K, et al. Curvature effect on the surface diffusion of silver adatoms on carbon nanotubes:Deposition experiments and numerical simulations [J]. Physical Review B,2006,74(12):125424.
    [159]Shu D, Gong X. Curvature effect on surface diffusion:The nanotube [J]. The Journal of Chemical Physics,2001,114(10922.
    [160]Menon M, Andriotis A N, Froudakis G E. Curvature dependence of the metal catalyst atom interaction with carbon nanotubes walls [J]. Chemical Physics Letters, 2000,320(5-6):425-434.
    [161]Blase X, Benedict L X, Shirley E L, et al. Hybridization effects and metallicity in small radius carbon nanotubes [J]. Physical Review Letters,1994,72(12):1878.
    [162]Chen G, Kawazoe Y. Interaction between a single Pt atom and a carbon nanotube studied by density functional theory [J]. Physical Review B,2006,73(12):
    [163]Chi D H, Cuong N T, Tuan N A, et al. Electronic structures of Pt clusters adsorbed on (5,5) single wall carbon nanotube [J]. Chemical Physics Letters,2006, 432(1-3):213-217.
    [164]Cho Y, Kim C, Moon H, et al. Electronic structure tailoring and selective adsorption mechanism of metal-coated nanotubes [J]. Nano Letters,2008,8(1):81-86.
    [165]Duca D, Ferrante F, La Manna G. Theoretical study of palladium cluster structures on carbonaceous supports [J]. Journal of Physical Chemistry C,2007,111(14): 5402-5408.
    [166]Durgun E, Dag S, Bagci V M K, et al. Systematic study of adsorption of single atoms on a carbon nanotube [J]. Physical Review B,2003,67(20):
    [167]Durgun E, Dag S, Ciraci S, et al. Energetics and electronic structures of individual atoms adsorbed on carbon nanotubes [J]. Journal of Physical Chemistry B, 2004,108(2):575-582.
    [168]Ivanovskaya V V, Kohler C, Seifert G.3d metal nanowires and clusters inside carbon nanotubes:Structural, electronic, and magnetic properties [J]. Physical Review B (Condensed Matter and Materials Physics),2007,75(7):075410-075417.
    [169]Ruzankin S F, Avdeev V I, Dobrynkin N M, et al. Modeling Active Centers in Ammonia Synthesis. DFT Study of Dissociative Adsorption of N2 on Ru Clusters [J]. Journal of Structural Chemistry,2003,44(3):341-350.
    [170]Sun Y, Yang X B, Ni J. Bonding differences between single iron atoms versus iron chains with carbon nanotubes:First-principles calculations [J]. Physical Review B, 2007,76(3):
    [171]Vo T, Wu Y-D, Car R, et al. Structures, Interactions, and Ferromagnetism of Fe-carbon Nanotube Systems [J]. The Journal of Physical Chemistry C,2008,112(22): 8400-8407.
    [172]Yagi Y, Briere T M, Sluiter M H F, et al. Stable geometries and magnetic properties of single-walled carbon nanotubes doped with 3d transition metals:A first-principles study [J]. Physical Review B,2004,69(7):075414.
    [173]Yang C-K, Zhao J, Lu J P. Binding energies and electronic structures of adsorbed titanium chains on carbon nanotubes [J]. Physical Review B,2002,66(4): 041403.
    [174]Yuan S, Kong Y, Wen F, et al. Fe4 cluster adsorbed on single-wall carbon nanotubes:A density functional study [J]. Computational Materials Science,2008,42(1): 83-89.
    [175]Zhuang H L, Zheng G P, Soh A K. Interactions between transition metals and defective carbon nanotubes [J]. Computational Materials Science,2008,43(4):823-828.
    [176]Geim A K, Novoselov K S. The rise of graphene [J]. Nat Mater,2007,6(3): 183-191.
    [177]Novoselov K, Jiang D, Schedin F, et al. Two-dimensional atomic crystals [J]. Proceedings of the National Academy of Sciences of the United States of America,2005, 102(30):10451-10453.
    [178]Stolyarova E, Rim K T, Ryu S, et al. High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface [J]. Proceedings of the National Academy of Sciences,2007,104(22):9209-9212.
    [179]Allen M J, Tung V C, Kaner R B. Honeycomb Carbon:A Review of Graphene [J]. Chemical Reviews,2009,
    [180]Duplock E J, Scheffler M, Lindan P J D. Hallmark of Perfect Graphene [J]. Physical Review Letters,2004,92(22):225502.
    [181]Balandin A A, Ghosh S, Bao W, et al. Superior Thermal Conductivity of Single-Layer Graphene [J]. Nano Letters,2008,8(3):902-907.
    [182]Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. science,2008,321(5887):385-388.
    [183]Nair R, Blake P, Grigorenko A, et al. Fine structure constant defines visual transparency of graphene [J]. Science,2008,320(5881):1308-1308.
    [184]Zhang Y, Tang T-T, Girit C, et al. Direct observation of a widely tunable bandgap in bilayer graphene [J]. Nature,2009,459(7248):820-823.
    [185]Giannazzo F, Sonde S, Raineri V, et al. Optical, morphological and spectro-scopic characterization of graphene on SiO2 [J]. physica status solidi (c),2010,7(3-4): 1251-1255.
    [186]Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics [J]. Nature Photonics,2010,4(9):611-622.
    [187]Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes [J]. Nat Nanotechnol,2010,5(8):574-578.
    [188]Choi W, Lahiri I, Seelaboyina R, et al. Synthesis of graphene and its applications: a review [J]. Critical Reviews in Solid State and Materials Sciences,2010,35(1):52-71.
    [189]Georgakilas V, Otyepka M, Bourlinos A B, et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications [J]. Chemical Reviews,2012,112(11):6156-6214.
    [190]Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite [J]. Nat Nanotechnol,2008,3(9):563-568.
    [191]Sofo J O, Chaudhari A S, Barber G D. Graphane:A two-dimensional hydrocarbon [J]. Physical Review B,2007,75(15):4.
    [192]Cudazzo P, Attaccalite C, Tokatly I V, et al. Strong Charge-Transfer Excitonic Effects and the Bose-Einstein Exciton Condensate in Graphane [J]. Physical review letters,2010,104(22):226804.
    [193]Lebegue S, Klintenberg M, Eriksson O, et al. Accurate electronic band gap of pure and functionalized graphane from GW calculations [J]. Physical Review B,2009, 79(24):245117.
    [194]Leenaerts O, Peelaers H, Hernandez-Nieves A, et al. First-principles investigation of graphene fluoride and graphane [J]. Physical Review B,2010,82(19): 195436.
    [195]Samarakoon D K, Chen Z, Nicolas C, et al. Structural and electronic properties of fluorographene [J]. Small,2011,7(7):965-969.
    [196]Karousis N, Tagmatarchis N, Tasis D. Current progress on the chemical modification of carbon nanotubes [J]. Chemical reviews,2010,110(9):5366-5397.
    [197]Murphy C J, Sau T K, Gole A M, et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications [J]. The Journal of Physical Chemistry B, 2005,109(29):13857-13870.
    [198]Tiwari J N, Tiwari R N, Kim K S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices [J]. Progress in Materials Science,2012,57(4):724-803.
    [199]Luo Z, Somers L A, Dan Y, et al. Size-selective nanoparticle growth on few-layer graphene films [J]. Nano letters,2010,10(3):777-781.
    [200]Li F, Song J, Yang H, et al. One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors [J]. Nanotechnology,2009,20(45):455602.
    [201]Liang Y, Wang H, Casalongue H S, et al. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials [J]. Nano Research,2010,3(10):701-705.
    [202]Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels [J]. Science,1998,281(5385):2013-2016.
    [203]Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells [J]. Science,2002,295(5564):2425-2427.
    [204]Li X, Wang H, Robinson J T, et al. Simultaneous nitrogen doping and reduction of graphene oxide [J]. Journal of the American Chemical Society,2009,131(43): 15939-15944.
    [205]Lin Y-C, Lin C-Y, Chiu P-W. Controllable graphene N-doping with ammonia plasma [J]. Applied Physics Letters,2010,96(13):133110-133110-133113.
    [206]Zhou S Y, Gweon G H, Fedorov A V, et al. Substrate-induced bandgap opening in epitaxial graphene [J]. Nat Mater,2007,6(10):770-775.
    [207]Gui G, Li J, Zhong J X. Band structure engineering of graphene by strain: First-principles calculations [J]. Physical Review B,2008,78(7):6.
    [208]Son Y W, Cohen M L, Louie S G. Energy gaps in graphene nanoribbons [J]. Physical Review Letters,2006,97(21):4.
    [209]Zanella I, Guerini S, Fagan S B, et al. Chemical doping-induced gap opening and spin polarization in graphene [J]. Physical Review B,2008,77(7):4.
    [210]Ribeiro R M, Peres N M R, Coutinho J, et al. Inducing energy gaps in monolayer and bilayer graphene:local density approximation calculations [J]. Physical Review B (Condensed Matter and Materials Physics),2008,78(7): 075442-075441-075442-075442-075447.
    [211]Lu Y H, Chen W, Feng Y P, et al. Tuning the Electronic Structure of Graphene by an Organic Molecule [J]. Journal of Physical Chemistry B,2009,113(1):2-5.
    [212]Yankowitz M, Wang F, Lau C N, et al. Local spectroscopy of the electrically tunable band gap in trilayer graphene [J]. Physical Review B,2013,87(16):165102.
    [213]Zou K, Zhang F, Clapp C, et al. Transport studies of dual-gated ABC and ABA trilayer graphene:band gap opening and band structure tuning in very large perpendicular electric fields [J]. Nano letters,2013,13(2):369-373.
    [214]Enderlein C, Kim Y, Bostwick A, et al. The formation of an energy gap in graphene on ruthenium by controlling the interface [J]. New Journal of Physics,2010, 12(3):033014.
    [215]Pletikosic I, Kralj M, Pervan P, et al. Dirac cones and minigaps for graphene on Ir (111) [J]. arXiv preprint arXiv:08072770,2008,
    [216]Shemella P, Nayak S K. Electronic structure and band-gap modulation of graphene via substrate surface chemistry [J]. Applied Physics Letters,2009,94(3): 032101-032101-032103.
    [217]Kan E, Ren H, Wu F, et al. Why the band gap of graphene is tunable on hexagonal boron nitride [J]. The Journal of Physical Chemistry C,2012,116(4): 3142-3146.
    [218]Du A, Sanvito S, Li Z, et al. Hybrid graphene and graphitic carbon nitride nanocomposite:gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response [J]. Journal of the American Chemical Society,2012, 134(9):4393-4397.
    [219]Ryu S, Han M Y, Maultzsch J, et al. Reversible Basal Plane Hydrogenation of Graphene [J]. Nano Letters,2008,8(12):4597-4602.
    [220]Balog R, Jorgensen B, Nilsson L, et al. Bandgap opening in graphene induced by patterned hydrogen adsorption [J]. Nat Mater,2010,9(4):315-319.
    [221]Elias D C, Nair R R, Mohiuddin T M G, et al. Control of Graphene's Properties by Reversible Hydrogenation:Evidence for Graphane [J]. Science,2009,323(5914): 610-613.
    [222]Martin R M. Electronic structure:basic theory and practical methods [M]. Cambridge university press,2004.
    [223]Castro A, Marques M A, Alonso J A, et al. Optical properties of nanostructures from time-dependent density functional theory [J]. Journal of Computational and Theoretical Nanoscience,2004,1(3):231-255.
    [224]Marques M A, Castro A, Bertsch G F, et al. octopus:a first-principles tool for excited electron-ion dynamics [J]. Computer Physics Communications,2003,151(1): 60-78.
    [225]Castro A, Appel H, Oliveira M, et al. octopus:a tool for the application of time-dependent density functional theory [J]. physica status solidi (b),2006,243(11): 2465-2488.
    [226]Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules [J]. The Journal of chemical physics,1990,92(508.
    [227]Delley B. From molecules to solids with the DMol approach [J]. The Journal of Chemical Physics,2000,113(18):7756.
    [228]Segall M, Lindan P J, Probert M, et al. First-principles simulation:ideas, illustrations and the CASTEP code [J]. Journal of Physics:Condensed Matter,2002, 14(11):2717.
    [229]Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Physical Review B,1992,45(23):13244-13249.
    [230]Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules [J]. The Journal of Chemical Physics,1990,92(1): 508-517.
    [231]Robertson W, Burgess. A TDDFT Study of the Optical Absorption Spectra of Gold and Silver Clusters [D],2012.
    [232]Dyer W. Amines in fish muscle:I. Colorimetric determination of trimethylamine as the picrate salt [J]. Journal of the Fisheries Board of Canada,1945,6(5):351-358.
    [233]Basila M R, Kantner T R, Rhee K H. The Nature of the Acidic Sites on a Silica-Alumina. Characterization by Infrared Spectroscopic Studies of Trimethylamine and Pyridine Chemisorptionl [J]. The Journal of Physical Chemistry,1964,68(11): 3197-3207.
    [234]Herold R J, Bingham R E. Method for treating polypropylene ether and poly-1, 2-butylene ether polyols [M]. Google Patents.1982.
    [235]Finch C A. Polyvinyl alcohol:properties and applications [M]. Wiley London, 1973.
    [236]Ravin H A, Seligman A M, Fine J. Polyvinyl pyrrolidone as a plasma expander: Studies on its excretion, distribution and metabolism [J]. New England Journal of Medicine,1952,247(24):921-929.
    [237]Singer A G. Dimethyl disulfide:An attractant pheromone in hamster vaginal secretion [J]. Science,1976,
    [238]Smeyers Y, Nino A, Moule D. Dynamical and spectroscopic studies of nonrigid molecules. Application to the visible spectrum of thioacetaldehyde [J]. The Journal of Chemical Physics,1990,93(8):5786.
    [239]Fleischmann M, Hendra P, Mcquillan A. Raman spectra of pyridine adsorbed at a silver electrode [J]. Chemical Physics Letters,1974,26(2):163-166.
    [240]Sawaguchi T, Mizutani F, Yoshimoto S, et al. Voltammetric and in situ STM studies on self-assembled monolayers of 4-mercaptopyridine,2-mercaptopyridine and thiophenol on Au (111) electrodes [J]. Electrochimica acta,2000,45(18):2861-2867.
    [241]Camacho R-L, Montiel E, Jayanthi N, et al. DFT studies of< i> a-diimines adsorption over Fe< i> n surface (< i> n

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700