用户名: 密码: 验证码:
活性物种在液相光催化降解有机污染物过程中的作用本质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体光催化技术在环境污染治理领域的应用已成为近年来国内外研究的热点。液相光催化机理的研究主要集中在引发光催化过程的活性物种方面,但对于它们在光催化过程中具体的作用机制仍未清楚。因此,系统地阐明不同体系的光催化过程对于认识光催化机理及制备可见光催化剂都有极大的指导意义。
     本文首先以TiO_2降解甲基橙(MO)过程为例,研究此过程中的主要活性物种及各自的作用。然后通过对比Zn_xCd_(1-x)S与TiO_2降解MO过程中的主要活性物种及其作用,揭示可见光与紫外光体系中,活性物种的不同特点。继而又研究在同一紫外光体系下,ZnO与TiO_2降解MO过程中的活性物种及它们的来源。最后,研制出一种能显著增强光敏化作用从而达到进一步降解污染物的新型Zn_xCd_(1-x)S/TiO_2类的光催化剂。运用X射线衍射(XRD)、紫外-可见漫反射光谱(UV-vis DRS)、X射线光电子能谱(XPS)、透射电镜(TEM)等对催化剂的组成、结构和形貌进行表征。采用电子自旋共振(ESR)、核磁共振(NMR)、荧光光谱(PL)、电化学分析、液相色谱-质谱联用(LCMS)等技术对催化过程中的活性物种及降解中间产物进行检测和研究,主要结果如下:
     (1) TiO_2降解MO过程中的主要活性物种是O_2,空穴和OH次之。溶解氧和表面OH对这些物种的产生起重要作用;(2)采用水热和微波溶剂热法合成Zn_xCd_(1-x)S纳米晶,与TiO_2对比发现,在Zn_(0.28)Cd_(0.72)S可见光降解MO体系中, O_2和空穴起主要作用;在Zn_(0.28)Cd_(0.72)S紫外光和TiO_2紫外光降解体系中, O_2, OH和空穴起主要作用;(3) ZnO和TiO_2在液相降解过程中表现出不同的性质。在TiO_2体系中, OH是由空穴产生;在ZnO体系中, OH是由空穴和O_2共同产生;(4)通过简单的水热法合成出Zn_xCd_(1-x)S/TiO_2复合物,实验证明这两种半导体的复合极大地增强了可见光光敏化降解罗丹明B(RhB)的作用,染料与催化剂之间的电子转移起重要作用。
     论文的特色与创新:(1)利用电化学分析及各种表征手段揭示出TiO_2降解MO体系中活性物种与光催化过程的关系;(2) Zn_xCd_(1-x)S纳米晶首次被应用于光催化降解染料,并显示出较好的光催化活性;(3)首次对比并揭示出Zn_(0.28)Cd_(0.72)S和TiO_2降解MO过程中主要活性物种的作用;(4)发现ZnO和TiO_2降解MO过程中活性物种的来源不同;(5)利用半导体复合的方法增强了光敏化作用,首次制备出活性较好的Zn_xCd_(1-x)S/TiO_2复合型催化剂。
In recent years, the use of semiconductor materials as photocatalysts has attracted greatattention for the removal of organic and inorganic pollutants in aqueous phase. Themain researches of the mechanism in aqueous-phase photocatalysis have focusedmainly on the role of active species leading to the initial photoreaction process.However, the specific mechanisms in the photocatalytic process still remain obscureand controversial. To recognize the photocatalytic process systematically in thedifferent kinds of systems would be helpful to explain the photocatalytic mechanismand develop new type visible light photocatalysts.
     In this thesis, the degradation process of methyl orange (MO) solution over TiO_2wasfirst chosen as our object to identify the main active species and determine their roles inthe photodegradation of MO under UV light irradiation. Then through the comparisonand investigation of the active species during the degradation of MO on Zn_xCd_(1-x)S andTiO_2in liquid-phase, the differences of the active species between the visible lightsystem and the UV light system were revealed. To further realize the mechanism in thedegradation of MO, ZnO as a UV-light response catalyst was also applied to comparewith TiO_2. The active species and their sources in the two systems were exploredconcretely. At last, in order to decompose organic compounds efficiently, a novelapproach to enhance photosensitized degradation of dyes under visible light irradiationby the Zn_xCd_(1-x)S/TiO_2nanocomposites was explored. The composition, structures, andmorphologies of the samples have been investigated through XRD, UV–Vis DRS, XPS,TEM, and et al. characterizations. ESR, NMR, PL, electrochemical analysis and LCMStechniques were used to characterize the active species and the generated byproducts inthe reaction process. The main conclusions are as follows:
     (1) Through the detection of the active species in the degradation process of MO onTiO_2, the MO oxidation by photocatalysis was mainly due to the participation of O_2radicals and slightly to the contribution of holes and OH radicals. The dissolvedoxygen and OH groups were important to the generation of these active species.(2) The Zn_xCd_(1-x)S nanoparticles and nanorods with visible-light response were synthesizedby hydrothermal process and microwave solvothermal method, respectively. Comparedwith TiO_2, it was found that O_2, OH and holes played much more role inZn_(0.28)Cd_(0.72)S-UV and TiO_2-UV systems. O_2and holes contributed to the degradation inZn_(0.28)Cd_(0.72)S-visible light system.(3) With the similar band gap, ZnO and TiO_2showeddifferent properties in the photocatalytic process. After the addition of different types ofactive species scavengers, it was found that in TiO_2system, OH was generated byholes; while in ZnO system, OH was generated by holes and O_2. The larger numbersof the active species and their incessant sources in ZnO system contributed to the betteractivity.(4) Zn_xCd_(1-x)S/TiO_2nanocomposites were synthesized by a simplehydrothermal method. The results showed that the composite of the two inorganicsemiconductors largely enhanced the photosensitized degradation of rhodamine B (RhB)under visible light irradiation. These photocatalytic reactions were supposed to arisemainly from the electron that transferred from the adsorbed dye in its singlet excitedstate to the conduction band of Zn_xCd_(1-x)S and TiO_2.
     The features and innovations of this thesis are as follows:(1) the relationshipbetween the active species and the degradation process was revealed by theelectrochemical method and other techniques in the TiO_2/MO system.(2) Zn_xCd_(1-x)Snanocrystals were first used and exhibited good photocatalytic activity in thedegradation of dyes.(3) The role of the active species involved in the degradation ofMO in Zn_(0.28)Cd_(0.72)S and TiO_2systems was first compared and realized.(4) Thedifferent sources of the active species in ZnO and TiO_2systems were investigated indetail.(5) The novel approach to enhance the photosensitized degradation was exploredby the composite of two inorganic semiconductors. And the Zn_xCd_(1-x)S/TiO_2nanocomposites with good activity were synthesized for the first time.
引文
[1] Hoffmann M R, Martin S T, Choi W Y, et al., Environmental applications of semiconductorphotocatalysis. Chemical Reviews,1995.95(1):69-96.
    [2] Marsh A L and Gland J L, Mechanisms of deep benzene oxidation on the Pt(111) surface usingtemperature-programmed reaction methods. Surface Science,2003.536(1-3):145-154.
    [3] Lillo-Ródenas M A, Cazorla-Amorós D and Linares-Solano A, Behaviour of activated carbons withdifferent pore size distributions and surface oxygen groups for benzene and toluene adsorption at lowconcentrations. Carbon,2005.43(8):1758-1767.
    [4] Wu W C, Liao L F, Lien C F, et al., FTIR study of adsorption, thermal reactions and photochemistry ofbenzene on powdered TiO2. Physical Chemistry Chemical Physics,2001.3(19):4456-4461.
    [5] Fujishima A and Honda K, Electrochemical photolysis of water at a semiconductor electrode. Nature,1972.238(5358):37-38.
    [6] Qu P, Zhao J C, Tao S, et al., TiO2assisted photodegradation of dyes: A study of two competitiveprimary processes in the degradation of RB in an aqueous TiO2colloidal solution. Journal of MolecularCatalysis A: Chemical,1998.129:257-268.
    [7] Sato S, Photocatalytic activity of NOx-doped TiO2in the visible light region. Chemical Physics Letters,1986.123(1-2):126-128.
    [8] De G C, Roy A M and Bhattacharya S S, Photocatalytic production of hydrogen and concomitantcleavage of industrial waste hydrogen sulphide. International Journal of Hydrogen Energy,1995.20:127-131.
    [9] Hwang D W, Kim J, Park T J, et al., Mg-doped WO3as a novel photocatalyst for visible light-inducedwater splitting. Catalysis Letters,2002.80(1-2):53-57.
    [10] Fox M A and Dulay M T, Heterogeneous Photocatalysis. Chemical Reviews,1993.93(1):341-357.
    [11] Fujishima A, Rao T N and Tryk D A, Titanium dioxide photocatalysis. Journal of Photochemistry andPhotobiology C: Photochemistry Reviews,2000.1:1–21.
    [12] Hufschmidt D, Liu L, Selzer V, et al., Photocatalytic water treatment: fundamental knowledgerequired for its practical application. Water Science and Technology,2004.49(4):135-140.
    [13] Sun Y and Pignatello J, Evidence for a surface dual hole-radical mechanism in the TiO2photocatalytic oxidation of2,4-Dichlorophenoxyacetic acid. Environmental Science&Technology,1995.29(8):2065-2072.
    [14] Lawless D, Serpone N and Meisel D, Role of·OH radlcals and trapped holes in photocatalysis. Apulse radlolysls study. Journal of Physical Chemistry,1991.95(13):5166-5170.
    [15] Rabani J, Yamashita K, Ushida K, et al., Fundamental reactions in illuminated titanium dioxidenanocrystallite layers studied by pulsed laser. Journal of Physical Chemistry B,1998.102(10):1689-1695.
    [16] Turchi C S and Ollis D E, Photocatalytic degradation of organic water contaminants: mechanismsinvolving hydroxyl radical attack. Journal of Catalysis,1990.122:178-192.
    [17] Hagfeldt A and Graetzel M, Light-induced redox reactions in nanocrystalline systems. ChemicalReviews,1995.95(1):49–68.
    [18] Vinodgopal K, Wynkoop D E and Kamat P V, Environmental photochemistry on semiconductorsurfaces: Photosensitized degradation of a textile azo dye, acid orange7, on TiO2particles using visiblelight. Environmental Science&Technology,1996.30(5):1660-1666.
    [19] Vinodgopal K and Kamat P V, Enhanced rates of photocatalytic degradation of an azo-dye usingSnO2/TiO2coupled semiconductor thin-films. Environmental Science&Technology,1995.29(3):841-845.
    [20] Kamat P V, Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chemical Reviews,1993.93(1):267-300.
    [21] Vinodgopal K and Kamat P V, Photochemistry on surfaces-photodegradation of1,3-diphenylisobenzofuran over metal-oxide particles. Journal of Physical Chemistry,1992.96(12):5053-5059.
    [22] Zhang F L, Zhao J C, Zang L, et al., Photoassisted degradation of dye pollutants in aqueous TiO2dispersions under irradiation by visible light. Journal of Molecular Catalysis a-Chemical,1997.120(1-3):173-178.
    [23] Zhang F L, Zhao J C, Shen T, et al., TiO2-assisted photodegradation of dye pollutants-II. Adsorptionand degradation kinetics of eosin in TiO2dispersions under visible light irradiation. Applied CatalysisB-Environmental,1998.15(1-2):147-156.
    [24] Liu G, Wu T, Zhao J, et al., Photoassisted degradation of dye pollutants.8. Irreversible degradation ofalizarin red under visible light radiation in air-equilibrated aqueous TiO2dispersions. EnvironmentalScience&Technology,1999.33(12):2081–2087.
    [25] Lucarelli L, Nadtochenko V and Kiwi J, Environmental photochemistry: Quantitative adsorption andFTIR studies during the TiO2-photocatalyzed degradation of Orange II. Langmuir,2000.16(3):1102-1108.
    [26] Gad-Allah T A, Kato S, Satokawa S, et al., Treatment of synthetic dyes wastewater utilizing amagnetically separable photocatalyst (TiO2/SiO2/Fe3O4): Parametric and kinetic studies. Desalination,2009.244(1-3):1-11.
    [27] Wang C C, Lee C K, Lyu M D, et al., Photocatalytic degradation of C.I. Basic Violet10using TiO2catalysts supported by Y zeolite: An investigation of the effects of operational parameters. Dyes andPigments,2008.76(3):817-824.
    [28] Carneiro P A, Osugi M E, Sene J J, et al., Evaluation of color removal and degradation of a reactivetextile azo dye on nanoporous TiO2thin-film electrodes. Electrochimica Acta,2004.49(22-23):3807-3820.
    [29]Ozkan A, Ozkan M H, Gurkan R, et al., Photocatalytic degradation of a textile azo dye, Sirius GelbGC on TiO2or Ag-TiO2particles in the absence and presence of UV irradiation: the effects of someinorganic anions on the photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry,2004.163(1-2):29-35.
    [30] Sanchez-Polo M, Rivera-Utrilla J, Mendez-Diaz J D, et al., Photooxidation of naphthalenesulfonicacids: Comparison between processes based on O3, O3/activated carbon and UV/H2O2. Chemosphere,2007.68(10):1814-1820.
    [31] David Yao C C and Haag W R, Rate constants for direct reactions of ozone with several drinkingwater contaminants. Water Research,1991.25(7):761-773.
    [32] Camel V and Bermond A, The use of ozone and associated oxidation processes in drinking watertreatment. Water Research,1998.32(11):3208-3222.
    [33] Rivera-Utrilla J and Sánchez-Polo M, Ozonation of1,3,6-naphthalenetrisulphonic acid catalysed byactivated carbon in aqueous phase. Applied Catalysis B: Environmental,2002.39(4):319-329.
    [34] Gupta V K, Jain R, Mittal A, et al., Photochemical degradation of the hazardous dye Safranin-T usingTiO2catalyst. Journal of Colloid and Interface Science,2007.309(2):464-469.
    [35] Bhatkhande D S, Pangarkar V G and Beenackers A A C M, Photocatalytic degradation forenvironmental applications-a review. Journal of Chemical Technology and Biotechnology,2001.77:102-116.
    [36] Jones A P, Indoor air quality and health. Atmospheric Environment,1999.33(28):4535-4564.
    [37] Peral J, Domenech X and Ollis D F, Heterogeneous photocatalysis for purification, decontaminationand deodorization of air. Journal of Chemical Technology and Biotechnology,1997.70(2):117-140.
    [38] Obuchi E, Sakamoto T, Nakano K, et al., Photocatalytic decomposition of acetaldehyde overTiO2/SiO2catalyst. Chemical Engineering Science,1999.54(10):1525-1530.
    [39] Yu J C, Yu J G and Zhao J C, Enhanced photocatalytic activity of mesoporous and ordinary TiO2thinfilms by sulfuric acid treatment. Applied Catalysis B: Environmental,2002.36(1):31-43.
    [40] Takahashi M, Mita K, Toyuki H, et al., Pt-TiO2thin-films on glass substrates as efficientphotocatalysts. Journal of Materials Science,1989.24(1):243-246.
    [41] Kato K, Tsuzuki A, Torii Y, et al., Morphology of thin anatase coatings prepared from alkoxidesolutions containing organic polymer, affecting the photocatalytic decomposition of aqueous acetic-acid.Journal of Materials Science,1995.30(3):837-841.
    [42] Ao C H and Lee S C, Indoor air purification by photocatalyst TiO2immobilized on an activatedcarbon filter installed in an air cleaner. Chemical Engineering Science,2005.60(1):103-109.
    [43] Pham H N, McDowell T and Wilkins E, Photocatalytically-mediated disinfection of water using TiO2as a catalyst and spore-forming bacillus-pumilus as a model. Journal of Environmental Science andHealth Part a-Environmental Science and Engineering&Toxic and Hazardous Substance Control,1995.30(3):627-636.
    [44] Cai R X, Kubota Y, Shuin T, et al., Induction of cytotoxicity by photoexcited TiO2particles. CancerResearch,1992.52(8):2346-2348.
    [45] Serpone N, Brief introductory-remarks on heterogeneous photocatalysis. Solar Energy Materials andSolar Cells,1995.38(1-4):369-379.
    [46] Lombardo T, Chabas A, Lefe`vre R, et al., Weathering of a float glass exposed outdoors in an urbanarea. Glass Technology,2005.46(3):271-276.
    [47] Kudo A, Development of photocatalyst materials for water splitting. International Journal ofHydrogen Energy,2006.31(2):197-202.
    [48] Hwang D W, Kim H G, Kim J, et al., Photocatalytic water splitting over highly donor-doped (110)layered perovskites. Journal of Catalysis,2000.193(1):40-48.
    [49] Sato J, Saito N, Nishiyama H, et al., New photocatalyst group for water decomposition ofRuO2-loaded p-block metal (In, Sn, and Sb) oxides with d10configuration. Journal of PhysicalChemistry B,2001.105(26):6061-6063.
    [50] Lei Z B, Ma G J, Liu M Y, et al., Sulfur-substituted and zinc-doped In(OH)3: A new class of catalystfor photocatalytic H2production from water under visible light illumination. Journal of Catalysis,2006.237(2):322-329.
    [51] Yi H, Peng T, Ke D, et al., Photocatalytic H2production from methanol aqueous solution over titaniananoparticles with mesostructures. International Journal of Hydrogen Energy,2008.33(2):672-678.
    [52] Li L and Xin B F, Photogenerated carrier transfer mechanism and photocatalysis properties of TiO2sensitized by Zn(II) phthalocyanine. Journal of Central South University of Technology,2010.17(2):218-222.
    [53] Yu J G, Zhang J and Liu S W, Ion-exchange synthesis and enhanced visible-light photoactivity ofCuS/ZnS nanocomposite hollow spheres. Journal of Physical Chemistry C,2010.114(32):13642-13649.
    [54] Kou J H, Li Z S, Guo Y, et al., Photocatalytic degradation of polycyclic aromatic hydrocarbons inGaN:ZnO solid solution-assisted process: Direct hole oxidation mechanism. Journal of MolecularCatalysis a-Chemical,2010.325(1-2):48-54.
    [55] Kou J H, Li Z S, Yuan Y P, et al., Visible-light-induced photocatalytic oxidation of polycyclicaromatic hydrocarbons over tantalum oxynitride photocatalysts. Environmental Science&Technology,2009.43(8):2919-2924.
    [56] Cheng H F, Huang B B, Dai Y, et al., One-step synthesis of the nanostructured AgI/BiOI compositeswith highly enhanced visible-light photocatalytic performances. Langmuir,2010.26(9):6618-6624.
    [57] Grela M A, Coronel M E J and Colussi A J, Quantitative spin-trapping studies of weakly illuminatedtitanium dioxide sols. Implications for the mechanism of photocatalysts. Journal of Physical Chemistry,1996.100(42):16940-16946.
    [58] Sun L Z and Bolton J R, Determination of the quantum yield for the photochemical generation ofhydroxyl radicals in TiO2suspensions. Journal of Physical Chemistry,1996.100(10):4127-4134.
    [59] Schwarz P F, Turro N J, Bossmann S H, et al., A new method to determine the generation of hydroxylradicals in illuminated TiO2suspensions. Journal of Physical Chemistry B,1997.101(36):7127-7134.
    [60] Nosaka Y, Komori S, Yawata K, et al., Photocatalytic (OH)-O-center dot radical formation in TiO2aqueous suspension studied by several detection methods. Physical Chemistry Chemical Physics,2003.5(20):4731-4735.
    [61] Liang H, Li X, Yang Y, et al., Effects of dissolved oxygen, pH, and anions on the2,3-dichlorophenoldegradation by photocatalytic reaction with anodic TiO2nanotube films. Chemosphere,2008.73(5):805–812.
    [62] Stafford U, Gray K A and Kamat P V, Radiolytic and TiO2-assisted photocatalytic degradation of4-chlorophenol-a comparative-study. Journal of Physical Chemistry,1994.98(25):6343-6351.
    [63] Chen C C, Lei P X, Ji H W, et al., Photocatalysis by titanium dioxide and polyoxometalate/TiO2cocatalysts. Intermediates and mechanistic study. Environmental Science&Technology,2004.38(1):329-337.
    [64] Yang H, An T C, Li G Y, et al., Photocatalytic degradation kinetics and mechanism of environmentalpharmaceuticals in aqueous suspension of TiO2: A case of beta-blockers. Journal of HazardousMaterials,2010.179(1-3):834-839.
    [65] Liu S W, Yu J G and Wang W G, Effects of annealing on the microstructures and photoactivity offluorinated N-doped TiO2. Physical Chemistry Chemical Physics,2010.12(38):12308-12315.
    [66] Gazi S, Ananthakrishnan R and Singh N D P, Photodegradation of organic dyes in the presence ofFe(III)-salen Cl complex and H2O2under visible light irradiation. Journal of Hazardous Materials,2010.183(1-3):894-901.
    [67] Chen C H, Liang Y H and Zhang W D, ZnFe2O4/MWCNTs composite with enhanced photocatalyticactivity under visible-light irradiation. Journal of Alloys and Compounds,2010.501(1):168-172.
    [68] Yang L M, Yu L E and Ray M B, Photocatalytic oxidation of paracetamol: Dominant reactants,intermediates, and reaction mechanisms. Environmental Science&Technology,2009.43(2):460-465.
    [69] Cornu C J G, Colussi A J and Hoffmann M R, Quantum yields of the photocatalytic oxidation offormate in aqueous TiO2suspensions under continuous and periodic illumination. Journal of PhysicalChemistry B,2001.105(7):1351-1354.
    [70] Hirakawa T and Nosaka Y, Properties of O-2(center dot-) and OH center dot formed in TiO2aqueoussuspensions by photocatalytic reaction and the influence of H2O2and some ions. Langmuir,2002.18(8):3247-3254.
    [71] Antunes C S A, Bietti M, Salamone M, et al., Early stages in the TiO2-photocatalyzed degradation ofsimple phenolic and non-phenolic lignin model compounds. Journal of Photochemistry andPhotobiology a-Chemistry,2004.163(3):453-462.
    [72] Lanzalunga O and Bietti M, Photo-and radiation chemical induced degradation of lignin modelcompounds. Journal of Photochemistry and Photobiology B,2000.56(2/3):85–108.
    [73] Jonsson M, Lind J, Reitberger T, et al., Free radical combination reactions involving phenoxylradicals. Journal of Physical Chemistry,1993.97(31):8229–8233.
    [74] Ryu J and Choi W, Effects of TiO2surface modifications on photocatalytic oxidation of arsenite: Therole of superoxides. Environmental Science&Technology,2004.38(10):2928-2933.
    [75] Yang Y Q, Zhang G K, Yu S J, et al., Efficient removal of organic contaminants by a visible lightdriven photocatalyst Sr6Bi2O9. Chemical Engineering Journal,2010.162(1):171-177.
    [76] Zhao X, Xu T G, Yao W Q, et al., Photodegradation of dye pollutants catalyzed by gamma-Bi2MoO6nanoplate under visible light irradiation. Applied Surface Science,2009.255(18):8036-8040.
    [77] Nie Y L, Hu C, Qu J H, et al., Efficient photodegradation of acid red B by immobilized ferrocene inthe presence of UVA and H2O2. Journal of Hazardous Materials,2008.154(1-3):146-152.
    [78] Fu H B, Zhang L W, Zhang S C, et al., Electron spin resonance spin-trapping detection of radicalintermediates in N-doped TiO2-assisted photodegradation of4-chlorophenol. Journal of PhysicalChemistry B,2006.110(7):3061-3065.
    [79] Schrank S G, Jose H J and Moreira R, Simultaneous photocatalytic Cr(VI) reduction and dyeoxidation in a TiO2slurry reactor. Journal of Photochemistry and Photobiology a-Chemistry,2002.147(1):71-76.
    [80] Chen Y X, Yang S Y, Wang K, et al., Role of primary active species and TiO2surface characteristicin UV-illuminated photodegradation of acid orange7. Journal of Photochemistry and Photobiologya-Chemistry,2005.172(1):47-54.
    [81] Hong A P, Bahnemann D W and Hoffmann M R, Cobalt(Ii) Tetrasulfophthalocyanine ontitanium-dioxide-a new efficient electron relay for the photocatalytic formation and depletion ofhydrogen-peroxide in aqueous suspensions. Journal of Physical Chemistry,1987.91(8):2109-2117.
    [82] Ilisz I and Dombi A, Investigation of the photodecomposition of phenol in near-UVirradiated aqueousTiO2suspensions. II. Effect of charge-trapping species on product distribution. Applied Catalysis A,1999.180:35-45.
    [83] Chatterjee D and Mahata A, Photoassisted detoxification of organic pollutants on the surfacemodified TiO2semiconductor particulate system. Catalysis Communications,2001.2:1–3.
    [84] Yin M C, Li Z S, Kou J H, et al., Mechanism investigation of visible light-induced degradation in aheterogeneous TiO2/Eosin Y/Rhodamine B system. Environmental Science&Technology,2009.43(21):8361-8366.
    [85] Bader H, Sturzenegger V and Hoigne J, Photometric method for the determination of lowconcentrations of hydrogen peroxide by the peroxidase catalyzed oxidation ofN,N-diethyl-p-phenylenediamine (DPD) Water Research,1988.22(9):1109-1115.
    [86] Palin A T, The determination of free and combined chlorine in water by the use ofdiethyl-p-phenylene diamine. Journal of American Water Works Association,1957.49:873-881.
    [87] Kurzmann G E, Instrumentelle analytik von oxidationsmitteln. Brunnenbauen Bau Wasserwerk.,Rohrleitungsbau,1983.34:91-98.
    [88] Job D and Dunford H B, Substituent effect on the oxidation of phenols and aromatic amines byhorseradish peroxidase compound. I. European Journal of Biochemistry,1976.66:607-614.
    [89] Traylor T G, Lee W A and Stynes D V, Model compound studies related to peroxidases. Mechanismsof reactions of hemins with peracids. Journal of the American Chemical Society,1984.106:755-764.
    [90] Michaelis L and Hill E S, Potentiometric studies on semiquinones. Journal of the American ChemicalSociety,1933.55:1481-1495.
    [91] Gilbert E, Photometrische bestimmung niedriger ozonkonzentrationen in wasser mit hilfe vondiathyl-p-phenylendiamin (DPD). GWF Wass./Abwass.,1981.122:410-416.
    [92] Li W, Li D, Xian J, et al., Specific analyses of the active species on Zn0.28Cd0.72S and TiO2photocatalysts in the degradation of methyl orange. Journal of Physical Chemistry C,2010.114(49):21482–21492.
    [93] Zhang W, Li D, Sun M, et al., Microwave hydrothermal synthesis and photocatalytic activity ofAgIn5S8for the degradation of dye. Journal of Solid State Chemistry,2010.183:2466–2474.
    [94] Kikuchi Y, Sunada K, Iyoda T, et al., Photocatalytic bactericidal effect of TiO2thin films: Dynamicview of the active oxygen species responsible for the effect. Journal of Photochemistry andPhotobiology a-Chemistry,1997.106(1-3):51-56.
    [95] Hu X X, Hu C and Qu J H, Photocatalytic decomposition of acetaldehyde and Escherichia coli usingNiO/SrBi2O4under visible light irradiation. Applied Catalysis B-Environmental,2006.69(1-2):17-23.
    [96] Chen C C, Wang Q, Lei P X, et al., Photodegradation of dye pollutants catalyzed by porousK3PW12O40under visible irradiation. Environmental Science&Technology,2006.40(12):3965-3970.
    [97] Hu C, Peng T W, Hu X X, et al., Plasmon-induced photodegradation of toxic pollutants withAg-Agl/Al2O3under visible-light irradiation. Journal of the American Chemical Society,2010.132(2):857-862.
    [98] Li G T, Wong K H, Zhang X W, et al., Degradation of acid orange7using magnetic AgBr undervisible light: The roles of oxidizing species. Chemosphere,2009.76(9):1185-1191.
    [99] Hu C, Guo J, Qu J H, et al., Photocatalytic degradation of pathogenic bacteria with AgI/TiO2undervisible light irradiation. Langmuir,2007.23(9):4982-4987.
    [100] Aguila A, O’Shea K E, Tobien T, et al., Reactions of hydroxyl radical with dimethylmethylphosphonate and diethyl methylphosphonate. A Fundamental Mechanistic Study. Journal ofPhysical Chemistry A,2001.105(33):7834-7839.
    [101] Janata E and Schuler R H, Rate constant for scavenging eaq-in N2O-saturated solutions. Journal ofPhysical Chemistry,1982.86(11):2078-2084.
    [102] Razavi B, Song W, Cooper W J, et al., Free-radical-induced oxidative and reductive degradation offibrate pharmaceuticals: Kinetic studies and degradation mechanisms. Journal of Physical Chemistry A,2009.113(7):1287–1294.
    [103] Kasarevic-Popovic Z, Behar D and Rabani J, Role of excess electrons in TiO2nanoparticles coatedwith Pt in reduction reactions studied in radiolysis of aqueous solutions. Journal of Physical ChemistryB,2004.108(52):20291-20295.
    [104] Behar D and Rabani J, Kinetics of Hydrogen Production upon reduction of aqueous TiO2nanoparticles catalyzed by Pd0, Pt0, or Au0coatings and an unusual hydrogen abstraction; steady stateand pulse radiolysis study. Journal of Physical Chemistry B,2006.110(17):8750-8755.
    [105] Buxton G V, In Radiation chemistry of the liquid state:(1) water and homogeneous aqueoussolutions; In: Farhataziz and Rodgers, M.A.J., Editors,1987. Radiation Chemistry: Principles andApplications, VCH Publishers: New York.1987.321-349.
    [106] Schmelling D C, Poster D L, Chaychian M, et al., Degradation of polychlorinated biphenyls inducedby ionizing radiation in aqueous micellar solutions. Environmental Science&Technology,1998.32(2):270-275.
    [107] Gordon S, Hart E J, Matheson M S, et al., Reaction constants of the hydrated electron. Journal of theAmerican Chemical Society,1963.85(10):1375-1377.
    [108] Zacheis G A, Gray K A and Kamat P V, Radiolytic reduction of hexachlorobenzene in surfactantsolutions: A steady-state and pulse radiolysis study. Environmental Science&Technology,2000.34(16):3401-3407.
    [109] Fischer M and Warneck P, Photodecomposition and photooxidation of hydrogen sulfite in aqueoussolution. Journal of Physical Chemistry,1996.100(37):15111-15117.
    [110] Cheng L, Wang M, Zhu H, et al., Characterization of the transient species generated by thephotoionization of Berberine: A laser flash photolysis study. Spectrochimica Acta Part A,2009.73:955–959.
    [111] Foldvary C M and Wojnarovits L, The effect of high-energy radiation on aqueous solution of acidred1textile dye. Radiation Physics and Chemistry,2007.76:1485–1488.
    [112] Nosaka Y, Kishimoto M and Nishino J, Factors governing the initial process of TiO2photocatalysisstudied by means of in-situ electron spin resonance measurements. Journal of Physical Chemistry B,1998.102(50):10279-10283.
    [113] Hirakawa T, Kominami H, Ohtani B, et al., Mechanism of photocatalytic production of activeoxygens on highly crystalline TiO2particles by means of chemiluminescent probing and ESRspectroscopy. Journal of Physical Chemistry B,2001.105(29):6993-6999.
    [114] Ishibashi K, Fujishima A, Watanabe T, et al., Quantum yields of active oxidative species formed onTiO2photocatalyst. Journal of Photochemistry and Photobiology a-Chemistry,2000.134(1-2):139-142.
    [115] Hirakawa T, Yawata K and Nosaka Y, Photocatalytic reactivity for O2and OH radical formationin anatase and rutile TiO2suspension as the effect of H2O2addition. Applied Catalysis a-General,2007.325(1):105-111.
    [116] Ishibashi K, Fujishima A, Watanabe T, et al., Detection of active oxidative species in TiO2photocatalysis using the fluorescence technique. Electrochemistry Communications,2000.2(3):207-210.
    [117] Ishibashi K, Fujishima A, Watanabe T, et al., Generation and deactivation processes of superoxideformed on TiO2film illuminated by very weak UV light in air or water. Journal of Physical ChemistryB,2000.104(20):4934-4938.
    [118] Nosaka Y, Yamashita Y and Fukuyama H, Application of chemiluminescent probe to monitoringsuperoxide radicals and hydrogen peroxide in TiO2photocatalysis. Journal of Physical Chemistry B,1997.101(30):5822-5827.
    [119] Ishibashi K, Nosaka Y, Hashimoto K, et al., Time-dependent behavior of active oxygen speciesformed on photoirradiated TiO2films in air. Journal of Physical Chemistry B,1998.102(12):2117-2120.
    [120] Nosaka Y, Nakamura M and Hirakawa T, Behavior of superoxide radicals formed on TiO2powderphotocatalysts studied by a chemiluminescent probe method. Physical Chemistry Chemical Physics,2002.4(6):1088-1092.
    [121] Wu Z Z and Akiyama K, Time-resolved chemiluminescence study of photocatalytic reaction ofTiO2. Chemistry Letters,2003.32(12):1108-1109.
    [122] Wu X Z, Akiyama K and Min L Y, Time-resolved chemiluminescence of luminol induced by TiO2photocatalytic reactions. Bulletin of the Chemical Society of Japan,2005.78(6):1149-1153.
    [123] Wu X Z, Nakayama T, Uchiyama K, et al., Time-resolved chemiluminescence measurements forphotoinitiated chemiluminescence reactions. Nippon Kagaku Kaishi,1997.12:899-901.
    [124] Wu X Z, Lingyue M and Akiyama K, Chemiluminescence study of active oxygen species producedby TiO2photocatalytic reaction. Luminescence,2005.20(1):36-40.
    [125] Min L Y, Wu X Z, Tetsuya S, et al., Time-resolved chemiluminescence study of the TiO2photocatalytic reaction and its induced active oxygen species. Luminescence,2007.22(2):105-112.
    [126] Terazima M, Molecular volume and enthalpy changes associated with irreversible photo-reactions.Photochemistry and Photobiology C,2002.3:81-108.
    [127] Nicolet O and Vauthey E, Ultrafast nonequilibrium charge recombination dynamics of exciteddonor-acceptor complexes. Journal of Physical Chemistry A,2002.106(23):5553–5562.
    [128] Yamaguchi M, Katayama K and Sawada T, Lens-free heterodyne transient grating method fordynamics measurement of photoexcited species in liquid. Chemical Physics Letters,2003.377:589–594.
    [129] Okuda M and Katayama K, Selective detection of real and imaginary parts of refractive indexchange in solutions induced by photoexcitation using near-field heterodyne transient grating method.Chemical Physics Letters,2007.443:158–162.
    [130] Tsuruta T, Okuda M and Katayama K, Detection of active oxygen species dynamics in TiO2solsolutions using single-shot near-field heterodyne transient grating method. Chemical Physics Letters,2008.456(1-3):47-50.
    [131] Huang Y J, Wang H P and Lee J F, Speciation of copper in ZSM-48during NO reduction. AppliedCatalysis B,2003.40:111–118.
    [132] Lin K S and Wang H P, Byproduct shape selectivity in supercritical water oxidation of2-chlorophenol effected by CuO/ZSM-5. Langmuir,2000.16(6):2627–2631.
    [133] Hsiung T L, Wang H P and Wang H C, XANES studies of photocatalytic active species in nanoTiO2-SiO2. Radiation Physics and Chemistry,2006.75(11):2042-2045.
    [134] Tanaka T, Yamamoto T, Kohno Y, et al., Application of XANES spectra to supported catalysts.Japanese Journal of Applied Physics Part1-Regular Papers Short Notes&Review Papers,1999.38:30-35.
    [135] Park S J, Gesquiere A J, Yu J, et al., Charge injection and photooxidation of single conjugatedpolymer molecules. Journal of the American Chemical Society,2004.126(13):4116-4117.
    [136] Biju V, Micic M, Hu D H, et al., Intermittent single-molecule interfacial electron transfer dynamics.Journal of the American Chemical Society,2004.126(30):9374-9381.
    [137] Holman M W, Liu R and Adams D M, Single-molecule spectroscopy of interfacial electron transfer.Journal of the American Chemical Society,2003.125(41):12649–12654.
    [138] Funatsu T, Harada Y, Tokunaga M, et al., Imaging of single fluorescent molecules and individualATP turnovers by single myosin molecules in aqueous solution. Nature,1995.374:555-559.
    [139] Naito K, Tachikawa T, Fujitsuka M, et al., Single-molecule fluorescence imaging of the remoteTiO2photocatalytic oxidation. Journal of Physical Chemistry B,2005.109(49):23138-23140.
    [140] Yang S Y, Hu H, Chen Y Y, et al., Role of the reduction site in the fluorinated or sulfated TiO2photocatalytic process. Journal of Environmental Sciences-China,2007.19(10):1239-1244.
    [141] Saien J, Delavari H and Solymani A R, Sono-assisted photocatalytic degradation of styrene-acrylicacid copolymer in aqueous media with nano titania particles and kinetic studies. Journal of HazardousMaterials,2010.177(1-3):1031-1038.
    [142] Ulmann M and Augustynski J, The involvement of surface-bonded intermediates in the competitivephoto-oxidation of methanol and hydroxyl ions at a TiO2electrode Chemical Physics Letters,1987.141(1/2):154-158.
    [143] Tunesi S and Anderson M, Influence of chemisorption on the photodecomposition of salicylic-acidand related-compounds using suspended TiO2ceramic membranes. Journal of Physical Chemistry,1991.95(8):3399-3405.
    [144] Yoon S H and Lee J H, Oxidation mechanism of As(III) in the UV/TiO2system: Evidence for adirect hole oxidation mechanism. Environmental Science&Technology,2005.39(24):9695-9701.
    [145] Lv K L and Xu Y M, Effects of polyoxometalate and fluoride on adsorption and photocatalyticdegradation of organic dye X3B on TiO2: The difference in the production of reactive species. Journalof Physical Chemistry B,2006.110(12):6204-6212.
    [146] Buchalska M, Kras G, Oszajca M, et al., Singlet oxygen generation in the presence of titaniumdioxide materials used as sunscreens in suntan lotions. Journal of Photochemistry and Photobiologya-Chemistry,2010.213(2-3):158-163.
    [147] Hu X X and Hu C, Selective photocatalytic degradation of azodyes in NiO/Ag3VO4suspension.Journal of Chemical Technology and Biotechnology,2010.85(11):1522-1527.
    [148] Hu C, Hu X X, Wang L S, et al., Visible-light-induced photocatalytic degradation of azodyes inaqueous AgI/TiO2dispersion. Environmental Science&Technology,2006.40(24):7903-7907.
    [149] Schrank S G, Jose H J and Moreira R F P M, Simultaneous photocatalytic Cr(VI) reduction and dyeoxidation in a TiO2slurry reactor. Journal of Photochemistry and Photobiology a-Chemistry,2002.147(1):71-76.
    [150] Malato S, Blanco J, Richter C, et al., Enhancement of the rate of solar photocatalytic mineralizationof organic pollutants by inorganic oxidizing species. Applied Catalysis B-Environmental,1998.17(4):347-356.
    [151] Liu G, Zhao J and Hidaka H, ESR spin-trapping detection of radical intermediates in theTiO2-assisted photo-oxidation of sulforhodamine B under visible irradiation. Journal of Photochemistryand Photobiology A: Chemistry,2000.133:83–88.
    [152] Neta P, Steenken S, Janzen E G, et al., Pattern of addition of hydroxyl radicals to the spintraps.alpha.-pyridyl1-oxide N-tert-butyl nitrone. Journal of Physical Chemistry,1980.84(5):532.
    [153] Davies M J and Slater T F, Studies on the photolytic breakdown of hydroperoxides and peroxidizedfatty acids by using electron spin resonance spectroscopy. Spin trapping of alkoxyl and peroxyl radicalsin organic solvents. Biochemical Journal,1986.240:789-795.
    [154] Nakamura R and Nakato Y, Primary intermediates of oxygen photoevolution reaction on TiO2(rutile)particles, revealed by in situ FTIR absorption and photoluminescence measurements. Journal of theAmerican Chemical Society,2004.126(4):1290-1298.
    [155] Salvador P, On the nature of photogenerated radical species active in the oxidative degradation ofdissolved pollutants with TiO2aqueous suspensions: A revision in the light of the electronic structure ofadsorbed water. Journal of Physical Chemistry C,2007.111(45):17038-17043.
    [156] Yang J, Dai J, Chen C C, et al., Effects of hydroxyl radicals and oxygen species on the4-chlorophenol degradation by photoelectrocatalytic reactions with TiO2-film electrodes. Journal ofPhotochemistry and Photobiology a-Chemistry,2009.208(1):66-77.
    [157] Henderson M A, Structural sensitivity in the dissociation of water on TiO2single-crystal surfaces.Langmuir,1996.12(21):5093-5098.
    [158] Suda Y and Morimoto T, Molecularly adsorbed water on the bare surface of titania (rutile).Langmuir,1987.3(5):786–788.
    [159] Wang L Q, Baer D R and Engelhard M H, The adsorption of liquid and vapor water on TiO2(110)surfaces: the role of defects. Surface Science,1995.344:237-250.
    [160] Kiselev A V and Uvarov A V, Infrared spectra and electron spin resonance of aluminium, siliconand titanium oxides and of adsorbed substances, Surface Science,1967.6:399-421.
    [161] Bezrodna T, Puchkovska G, Shymanovska V, et al., IR-analysis of H-bonded H2O on the pure TiO2surface. Journal of Molecular Structure,2004.700:175–181.
    [162] Yates D J C, Infrared studies of the surface hydroxyl groups on titanium dioxide, and of thechemisorption of carbon monoxide and carbon dioxide. Journal of Physical Chemistry,1961.65(5):746-753.
    [163] Malet P and Munuera G, Temperature-programmed desorption study of activated chemisorptioninvolving a precursor state: desorption of water from TiO2. Journal of the Chemical Society, FaradayTransactions1,1989.85:4157-4166.
    [164] Boehm H P, Acidic and basic properties of hydroxylated metal oxide surfaces. Discussions of theFaraday Society,1971.52:264-275.
    [165] Pauling L, The Nature of the Chemical Bond,3rd ed.; Ithaka, N.Y., Ed.; Cornell Univ. Press: NewYork.1960.
    [166] Boehm H P and Herrmann M, über die chemie des titandioxids I: Bestimmung des aktivenwasserstoffs, thermische entw sserung und rehydroxylierung. zeitschrift fur anorganische undallgemeine chemie,1967.352:156–167.
    [167] O’Shea K E and Cardona C, The reactivity of phenol in irradiated aqueous suspensions of TiO2.Mechanistic changes as a function of solution pH. Journal of Photochemistry and Photobiology A,1995.91:67-72.
    [168] Noda H, Oikawa K and Kamada H, ESR study of active oxygen radicals from photoexcitedsemiconductors using the spin-trapping technique. Bulletin of the Chemical Society of Japan,1992.65(9):2505-2509.
    [169] Aguila A, O’Shea K E, Tobien T, et al., Reactions of hydroxyl radical with dimethylmethylphosphonate and diethyl methylphosphonate. A Fundamental Mechanistic Study. Journal ofPhysical Chemistry A,2001.105(33):7834-7839.
    [170] Vinodgopal K and Kamat P V, Photochemistry of textile azo dyes. Spectral characterization ofexcited state, reduced and oxidized forms of acid orange7, Journal of Photochemistry and PhotobiologyA,1994.83(2):141-146.
    [171] Carp O, Huisman C L and Reller A, Photoinduced reactivity of titanium dioxide. Progress in SolidState Chemistry,2004.32:33–177.
    [172] Colbeau-Justin C and Kunst M, Structural influence on charge-carrier lifetimes in TiO2powdersstudied by microwave absorption. Journal of Materials Science,2003.38:2429-2437.
    [173] Sclafani A and Herrmann J M, Comparison of the photoelectronic and photocatalytic activity ofvarious anatase and rutile forms of titania in pure liquid organic phase and in aqueous solutions. Journalof Physical Chemistry,1996.100(32):13655-13661.
    [174] Kawaguchi H, Photocatalytic decomposition of phenol in the presence of titanium dioxide.Environmental Technology Letters,1984.5:471-474.
    [175] Matthews R W, Photocatalytic oxidation of chlorobenzene in aqueous suspensions of titaniumdioxide. Journal of Catalysis,1986.97(2):565-568.
    [176] Matthews R W, Photo-oxidation of organic material in aqueous suspensions of titanium dioxide.Water Research,1986.20(5):569-578.
    [177] Jang H D, Kim S K and Kim S J, Effect of particle size and phase composition of titanium dioxidenanoparticles on the photocatalytic properties. Journal of Nanoparticle Research,2001.3(2-3):141-147.
    [178] Hurum D C, Agrios A G, Gray K A, et al., Explaining the enhanced photocatalytic activity ofdegussa P25mixed-phase TiO2using EPR. Journal of Physical Chemistry B,2003.107(19):4545-4549.
    [179] Kaneko M and Okura I E, Photocatalysis Science and Technology. Springer: New York,2002.72-91.
    [180] Martin S T, Herrmann H, Choi W, et al., Time-resolved microwave conductivity (TRMC)1. TiO2photoactivity and size quantization. Journal of the Chemical Society, Faraday Transactions,1994.90(3315-3322.
    [181] Ollis D F, Al-Ekabi H and (eds), Photocatalytic Purification and Treatment of Water and Air.Elsevier: Amsterdam,1993.153-413.
    [182] Wang C C, Zhang Z and Ying J Y, Photocatalytic decomposition of halogenated organics overnanocrystalline titania. Nanostructured Materials,1997.9(1):583-586.
    [183] Zhang Z, Wang C C, Zakaria R, et al., Role of particle size in nanocrystalline TiO2-basedphotocatalysts. Journal of Physical Chemistry B,1998.102(52):10871-10878
    [184] Dreyer M, Titanium dioxide aerogels as photocatalysts for indoor air decontamination. ADissertation Submitted to The University of Oklahoma for Doctor of Philosophy,2002.
    [185] Yu J C, Wu L, Lin J, et al., Microemulsion mediated solvothermal synthesis of nanosized CdSsensitized TiO2crystalline photocatalyst. Chemical Communications,2003.1552-1553.
    [186] Wu Q P, Li D Z, Wu L, et al., Unprecedented application of lead zirconate titanate in degradation ofrhodamine B under visible light irradiation. Journal of Materials Chemistry,2006.16:1116–1117.
    [187] Xiao G C, Wang X C, Li D Z, et al., InVO4-sensitized TiO2photocatalysts for efficient airpurification with visible light. Journal of Photochemistry and Photobiology a-Chemistry,2008.193(2-3):213-221.
    [188] Niu M T, Cheng Y, Wang Y S, et al., Novel nanocrystal heterostructures: crystallographic-orientedgrowth of SnO2nanorods onto α-Fe2O3nanohexahedron. Crystal Growth&Design,2008.8(5):1727-1729.
    [189] Mokari T, Rothenberg E, Popov I, et al., Selective growth of metal tips onto semiconductor quantumrods and tetrapods. Science,2004.304:1787–1790.
    [190] Kwon K and Shim M, γ-Fe2O3/II-VI sulfide nanocrystal heterojunctions. Journal of the AmericanChemical Society,2005.127(29):10269–10275.
    [191] Zhang J, Xu Q, Feng Z C, et al., Importance of the relationship between surface phases andphotocatalytic activity of TiO2. Angewandte Chemie International Edition,2008.47:1766–1769.
    [192] Zong X, Yan H J, Wu G P, et al., Enhancement of photocatalytic H2evolution on CdS by loadingMoS2as cocatalyst under visible light irradiation. Journal of the American Chemistry Society,2008.130(23):7176–7177.
    [193] Choi W Y, Termin A and Hoffmann M R, Effects of metal-ion dopants on the photocatalyticreactivity of quantum-sized TiO2particles. Angewandte Chemie-International Edition in English,1994.33(10):1091-1092.
    [194] Choi W Y, Termin A and Hoffmann M R, The role of metal-ion dopants in quantum-sized TiO2-correlation between photoreactivity and charge-carrier recombination dynamics. Journal of PhysicalChemistry,1994.98(51):13669-13679.
    [195] Gaya U I and Abdullah A H, Heterogeneous photocatalytic degradation of organic contaminantsover titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry andPhotobiology C: Photochemistry Reviews,2008.9(1):1-12.
    [196] Han F, Kambala V S R, Srinivasan M, et al., Tailored titanium dioxide photocatalysts for thedegradation of organic dyes in wastewater treatment: A review. Applied Catalysis A: General,2009.359(1/2):25-40.
    [197] Subramanian V, Wolf E and Kamat P V, Semiconductor-metal composite nanostructures. To whatextent do metal nanoparticles improve the photocatalytic activity of TiO2films? Journal of PhysicalChemistry B,2001.105(46):11439-11446.
    [198] Sclafani A and Herrmann J M, Influence of metallic silver and of platinum-silver bimetallic depositson the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media. Journal ofPhotochemistry and Photobiology a-Chemistry,1998.113(2):181-188.
    [199] Wold A, Photocatalytic properties of TiO2. Chemistry of Materials,1993.5(3):280-283.
    [200] Rao K V S, Lavedrine B and Boule P, Influence of metallic species on TiO2for the photocatalyticdegradation of dyes and dye intermediates. Journal of Photochemistry and Photobiology a-Chemistry,2003.154(2-3):189-193.
    [201] Sung-Suh H M, Choi J R, Hah H J, et al., Comparison of Ag deposition effects on the photocatalyticactivity of nanoparticulate TiO2under visible and UV light irradiation. Journal of Photochemistry andPhotobiology a-Chemistry,2004.163(1-2):37-44.
    [202] Asahi R, Morikawa T, Ohwaki T, et al., Visible-light photocatalysis in nitrogen-doped titaniumoxides. Science,2001.293(5528):269-271.
    [203] Khan S U M, Al-Shahry M and Ingler W B, Efficient photochemical water splitting by a chemicallymodified n-TiO2. Science,2002.297(5590):2243-2245.
    [204] Ohno T, Akiyoshi M, Umebayashi T, et al., Preparation of S-doped TiO2photocatalysts and theirphotocatalytic activities under visible light. Applied Catalysis a-General,2004.265(1):115-121.
    [205] Zhao W, Ma W H, Chen C C, et al., Efficient degradation of toxic organic pollutants withNi2O3/TiO2-xBxunder visible irradiation. Journal of the American Chemical Society,2004.126(15):4782-4783.
    [206] Lin L, Lin W, Zhu Y X, et al., Phosphor-doped titania-a novel photocatalyst active in visible light.Chemistry Letters,2005.34(3):284-285.
    [207] Hong X T, Wang Z P, Cai W M, et al., Visible-light-activated nanoparticle photocatalyst ofiodine-doped titanium dioxide. Chemistry of Materials,2005.17(6):1548-1552.
    [208] Wang H and Lewis J P, Effects of dopant states on photoactivity in carbon-doped TiO2. Journal ofPhysics-Condensed Matter,2005.17(21): L209-L213.
    [209] Gole J L, Stout J D, Burda C, et al., Highly efficient formation of visible light tunable TiO2-xNxphotocatalysts and their transformation at the nanoscale. Journal of Physical Chemistry B,2004.108(4):1230-1240.
    [210] Sakthivel S, Janczarek M and Kisch H, Visible light activity and photoelectrochemical properties ofnitrogen-doped TiO2. Journal of Physical Chemistry B,2004.108(50):19384-19387.
    [211] Bacsa R, Kiwi J, Ohno T, et al., Preparation, testing and characterization of doped TiO2active in theperoxidation of biomolecules under visible light. Journal of Physical Chemistry B,2005.109(12):5994-6003.
    [212] Burda C, Lou Y B, Chen X B, et al., Enhanced nitrogen doping in TiO2nanoparticles. Nano Letters,2003.3(8):1049-1051.
    [213] Torres G R, Lindgren T, Lu J, et al., Photoelectrochemical study of nitrogen-doped titanium dioxidefor water oxidation. Journal of Physical Chemistry B,2004.108(19):5995-6003.
    [214] Li D, Haneda H, Hishita S, et al., Visible-light-driven N-F-codoped TiO2photocatalysts.1.Synthesis by spray pyrolysis and surface characterization. Chemistry of Materials,2005.17(10):2588-2595.
    [215] Irie H, Watanabe Y and Hashimoto K, Nitrogen-concentration dependence on photocatalytic activityof TiO2-xNxpowders. Journal of Physical Chemistry B,2003.107(23):5483-5486.
    [216] Chen X B and Burda C, Photoelectron spectroscopic investigation of nitrogen-doped titaniananoparticles. Journal of Physical Chemistry B,2004.108(40):15446-15449.
    [217] Su W Y, Zhang Y F, Li Z H, et al., Multivalency iodine doped TiO2: Preparation, characterization,theoretical studies, and visible-light photocatalysis. Langmuir,2008.24(7):3422-3428.
    [218] Tojo S, Tachikawa T, Fujitsuka M, et al., Iodine-doped TiO2photocatalysts: Correlation betweenband structure and mechanism. Journal of Physical Chemistry C,2008.112(38):14948-14954.
    [219] Song S, Tu J J, Xu L J, et al., Preparation of a titanium dioxide photocatalyst codoped with ceriumand iodine and its performance in the degradation of oxalic acid. Chemosphere,2008.73(9):1401-1406.
    [220] He Z Q, Xu X, Song S, et al., A visible light-driven titanium dioxide photocatalyst codoped withlanthanum and iodine: An application in the degradation of oxalic acid. Journal of Physical Chemistry C,2008.112(42):16431-16437.
    [221] Umebayashi T, Yamaki T, Tanaka S, et al., Visible light-induced degradation of methylene blue onS-doped TiO2. Chemistry Letters,2003.32(4):330-331.
    [222] Ohno T, Preparation of visible light active S-doped TiO2photocatalysts and their photocatalyticactivities. Water Science and Technology,2004.49(4):159-163.
    [223] Wu T X, Liu G M, Zhao J C, et al., Photoassisted degradation of dye pollutants. V.Self-photosensitized oxidative transformation of Rhodamine B under visible light irradiation in aqueousTiO2dispersions. Journal of Physical Chemistry B,1998.102(30):5845-5851.
    [224] Brown M A and De-Vito S C, Predicting azo dye toxicity. critical reviews in environmental scienceand technology,1993.23:249-324.
    [225] Lachheb H, Puzenat E, Houas A, et al., Photocatalytic degradation of various types of dyes (alizarinS, crocein orange G, Methyl Red, congo red, methylene blue) in water by UV-irradiated titania. AppliedCatalysis B-Environmental,2002.39(1):75-90.
    [226] Chen Z, Li D, Zhang W, et al., Photocatalytic degradation of dyes by ZnIn2S4microspheres undervisible light irradiation. The Journal of Physical Chemistry C,2009.113(11):4433-4440.
    [227] Zhao J C, Wu T X, Wu K Q, et al., Photoassisted degradation of dye pollutants.3. Degradation ofthe cationic dye rhodamine B in aqueous anionic surfactant/TiO2dispersions under visible lightirradiation: Evidence for the need of substrate adsorption on TiO2particles. Environmental Science&Technology,1998.32(16):2394-2400.
    [228] Watanabe T, Takizawa T and Honda K, Photocatalysis through excitation of adsorbates.1. Highlyefficient N-deethylation of rhodamine B adsorbed to CdS. Journal of Physical Chemistry,1977.81(19):1845-1851.
    [229] Takizawa T, Watanabe T and Honda K, Photocatalysis through excitation of adsorbates.2. Acomparative study of rhodamine B and methylene blue on cadmium sulfide. Journal of PhysicalChemistry,1978.82(12):1391-1396.
    [230] Cho S B, Oledzka M and Riman R E, Hydrothermal synthesis of acicular lead zirconate titanate(PZT). Journal of Crystal Growth,2001.226:313-326.
    [231] Somiya S E, First international symposium on hydrothermal reactions, gakujutsu bunken Fukyu-Kai.1983.965.
    [232] Barrer R M, Hydrothermal Chemistry of Zeolites, Academic Press, New York.1982.360.
    [233] Laudise R A, in: F.A. Cotton (Ed.), Progress in Inorganic Chemistry, vol.3, American ChemicalSociety, Washington. DC.1962.1.
    [234] Byrappa K and Yoshimura M, Handbook of Hydrothermal Technology, William Andrew Publishing,New York.2001.
    [235] Demazeau G, Solvothermal processes a route to the stabilization of new materials. Journal ofMaterials Chemistry,1999.9:15-18.
    [236] Kolen'ko Y V, Maximov V D, Garshev A V, et al., Hydrothermal synthesis of nanocrystalline andmesoporous titania from aqueous complex titanyl oxalate acid solutions. Chemical Physics Letters,2004.388(4-6):411-415.
    [237] Byrappa K and Adschiri T, Hydrothermal technology for nanotechnology. Progress in CrystalGrowth and Characterization of Materials,2007.53(2):117-166.
    [238] Gao F, Lu Q Y and Komarneni S, Interface reaction for the self-assembly of silver nanocrystalsunder microwave-assisted solvothermal conditions. Chem. Mater.,2005.17(4):856-860.
    [239] Hu X L, Yu J C, Gong J M, et al., Rapid mass production of hierarchically porous ZnIn2S4submicrospheres via a microwave-solvothermal process. Crystal Growth&Design,2007.7(12):2444-2448.
    [240] Grisaru H, Palchik O, Gedanken A, et al., Microwave-assisted polyol synthesis of CuInTe2andCuInSe2nanoparticles. Inorganic Chemistry,2003.42(22):7148-7155.
    [241] Zhu Y J, Wang W W, Qi R J, et al., Microwave-assisted synthesis of single-crystalline telluriumnanorods and nanowires in ionic liquids. Angewandte Chemie International Edition,2004.43(11):1410-1414.
    [242] Xie H D, Shen D Z, Wang X Q, et al., Microwave hydrothermal synthesis and visible-lightphotocatalytic activity of Bi2WO6nanoplates. Materials Chemistry and Physics,2007.103(2-3):334-339.
    [243] Cao S W, Zhu Y J, Cheng G F, et al., ZnFe2O4nanoparticles: Microwave-hydrothermal ionic liquidsynthesis and photocatalytic property over phenol. Journal of Hazardous Materials,2009.171(1-3):431-435.
    [244] Wang C, Zhang W X, Qian X F, et al., A room temperature chemical route to nanocrystalline PbSsemiconductor. Materials Letters,1999.40(6):255-258.
    [245] Chen C, Liu P and Lu C, Synthesis and characterization of nano-sized ZnO powders by directprecipitation method. Chemical Engineering Journal,2008.144(3):509-513.
    [246] Chandra N, Singh D K, Sharma M, et al., Synthesis and characterization of nano-sized zirconiapowder synthesized by single emulsion-assisted direct precipitation. Journal of Colloid and InterfaceScience,2010.342(2):327-332.
    [247] Yamazoe N, Kurokawa Y and Seiyama T, Hydrogen sensitive gas detector using silver added tin(IV)oxide. Chemical Letters,1982.11(12):1899-1902.
    [248] Song K C and Kang Y, Preparation of high surface area tin oxide powders by a homogeneousprecipitation method. Materials Letters,2000.42(5):283-289.
    [249] Subrt J, Stengl V, Bakardjieva S, et al., Synthesis of spherical metal oxide particles usinghomogeneous precipitation of aqueous solutions of metal sulfates with urea. Powder Technology,2006.169(1):33-40.
    [250] Eshuis A, van Elderen G R A and Koning C A J, A descriptive model for the homogeneousprecipitation of zinc sulfide from acidic zinc salt solutions. Colloids and Surfaces A: Physicochemicaland Engineering Aspects,1999.151(3):505-512.
    [251] van der Gijp S, Emond M H J, Winnubst A A, et al., Preparation of BaTiO3by homogeneousprecipitation. Journal of the European Ceramic Society,1999.19(9):1683-1690.
    [252] Wang H, Liu P, Cheng X, et al., Effect of surfactants on synthesis of TiO2nano-particles byhomogeneous precipitation method. Powder Technology,2008.188(1):52-54.
    [253] Martinez-de la Cruz A and Perez U M G, Photocatalytic properties of BiVO4prepared by theco-precipitation method: Degradation of rhodamine B and possible reaction mechanisms under visibleirradiation. Materials Research Bulletin,2010.45(2):135-141.
    [254] Maolin Z, Guoying S, Jiamo F, et al., Novel preparation of nanosized ZnO-SnO2with highphotocatalytic activity by homogeneous co-precipitation method. Materials Letters,2005.59(28):3641-3644.
    [255] Luo Z, Lu M, Bao J, et al., Co-precipitation synthesis of gadolinium gallium garnet powders usingammonium hydrogen carbonate as the precipitant. Materials Letters,2005.59(10):1188-1191.
    [256] Zhang Y C, Chen W W and Hu X Y, Controllable Synthesis and Optical Properties of Zn-DopedCdS Nanorods from Single-Source Molecular Precursors. Crystal Growth&Design,2007.7(3):580-586.
    [257] Einaga H, Futamura S and Ibusuki T, Complete oxidation of benzene in eas phase by platinizedtitania photocatalysts. Environmental Science&Technology,2001.35(9):1880-1884.
    [258] Tamura H, Tanaka A, Mita K, et al., Surface hydroxyl site densities on metal oxides as a measurefor the ion-exchange capacity. Journal of Colloid and Interface Science,1999.209(1):225-231.
    [259] Chatterjee D and Mahata A, Photoassisted detoxification of organic pollutants on the surfacemodified TiO2semiconductor particulate system. Catalysis Communications,2001.2:1-3.
    [260] Zhang D D, Qiu R L, Song L, et al., Role of oxygen active species in the photocatalytic degradationof phenol using polymer sensitized TiO2under visible light irradiation. Journal of Hazardous Materials,2009.163(2-3):843-847.
    [261] Almquist C and Biswas P, A mechanistic approach to modeling the effect of dissolved oxygen inphoto-oxidation reactions on titanium dioxide in aqueous systems. Chemical Engineering Science,2001.56:3421-3430.
    [262] Tanaka K and White J M, Characterlzatlon of specles adsorbed on oxldlzed and reduced anatase.Journal of Physical Chemistry,1982.86(24):4708-4714.
    [263] Jones P and Hockey J A, Infra-red studies of rutile surfaces. Journal of the Chemical Society,Faraday Transactions,1971.67:2679-2685.
    [264] Primet M, Pichat P and Mathieu M V, Infrared study of the surface of titanium dioxides. I. Hydroxylgroups. Journal of Physical Chemistry,1971.75(9):1216–1220.
    [265] Chary K V R, Bhaskar T, Kishan G, et al., Characterization of MoO3/TiO2(anatase) catalysts byESR,1H MAS NMR, and oxygen chemisorption. Journal of Physical Chemistry B,1998.102(20):3936-3940.
    [266] Kaewgun S, Nolph C A, Lee B I, et al., Influence of hydroxyl contents on photocatalytic activities ofpolymorphic titania nanoparticles. Materials Chemistry and Physics,2009.114(1):439-445.
    [267] Crocker M, Herold R H M, Wilson A E, et al.,1H NMR spectroscopy of titania. Chemical shiftassignments for hydroxy groups in crystalline and amorphous forms of TiO2. Journal of the ChemicalSociety, Faraday Transactions,1996.92(15):2791-2798.
    [268] Mastikhin V M, Characterization of surface active sites of catalysts with high-resolution solid-stateNMR. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1993.78:143-166.
    [269] Li S X, Zheng F Y, Liu X L, et al., Photocatalytic degradation of p-nitrophenol on nanometer sizetitanium dioxide surface modified with5-sulfosalicylic acid. Chemosphere,2005.61(4):589-594.
    [270] Xagas A P, Bernard M C, Goff A H-L, et al., Surface modification and photosensitisation of TiO2nanocrystalline films with ascorbic acid. J. Photochem. Photobiochem. A: Chemistry,2000.132(1/2):115-120.
    [271] Barreto J C, Smith G S, Strobel N H P, et al., Terephthalic acid: a dosimeter for the detection ofhydroxyl radicals in vitro. Life Sciences,1995.56(4):89-96.
    [272] Kominami H, Furusho A, Murakami S, et al., Effective photocatalytic reduction of nitrate toammonia in an aqueous suspension of metal-loaded titanium(IV) oxide particles in the presence ofoxalic acid. Catalysis Letters,2001.76(1-2):31-34.
    [273] Stylidi M, Kondarides D I and Verykios X E, Visible light-induced photocatalytic degradation ofAcid Orange7in aqueous TiO2suspensions. Applied Catalysis B-Environmental,2004.47(3):189-201.
    [274] Raja P, Bozzi A, Mansilla H, et al., Evidence for superoxide-radical anion, singlet oxygen andOH-radical intervention during the degradation of the lignin model compound(3-methoxy-4-hydroxyphenylmethylcarbinol). Journal of Photochemistry and Photobiology a-Chemistry,2005.169(3):271-278.
    [275] Palominos R, Freer J, Mondaca M A, et al., Evidence for hole participation during the photocatalyticoxidation of the antibiotic flumequine. Journal of Photochemistry and Photobiology a-Chemistry,2008.193(2-3):139-145.
    [276] Cermenati L, Pichat P, Guillard C, et al., Probing the TiO2photocatalytic mechanisms in waterpurification by use of quinoline, photo-Fenton generated OH radicals and superoxide dismutase.Journal of Physical Chemistry B,1997.101(14):2650-2658.
    [277] Brown G T and Darwent J R, Photoreduction of methyl orange sensitized by colloidal titaniumdioxide. Journal of the Chemical Society, Faraday Transactions1,1984.80:1631-1643.
    [278] Yoon M, Seo M, Jeong C, et al., Synthesis of liposome-templated titania nanodisks: Opticalproperties and photocatalytic activities. Chemistry of Materials,2005.17(24):6069-6079.
    [279] Chan W C W and Nie S, Quantum dot bioconjugates for ultrasensitive nonisotopic detection.Science,1998.281(5385):2016-2018.
    [280] Jr. M B, Moronne M, Gin P, et al., Semiconductor nanocrystals as fluorescent biological labels.Science,1998.281(5385):2013-2016.
    [281] Plass R, Pelet S, Krueger J, et al., Quantum dot sensitization of organic-inorganic hybrid solar cells.The Journal of Physical Chemistry B,2002.106(31):7578-7580.
    [282] Zhong X, Feng Y, Knoll W, et al., Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescencespectral width. Journal of the American Oil Chemists Society,2003.125(44):13559-13563.
    [283] Huang J and Lianos P, Preparation of ZnxCd1-xS nanocomposites in polymer matrices and theirphotophysical properties. Langmuir1998.14:4342.
    [284] Li Y, Ye M, Yang C, et al., Composition-and shape-controlled synthesis and optical properties ofZnxCd1-xS alloyed nanocrystals. Advanced Functional Materials,2005.15(3):433-441.
    [285] Wada Y, Niinobe D, Kaneko M, et al., Synthesis of CdxZn1-xS nanoparticles in porous vycol glassby reaction of single-source precursors. Chemistry Letters,2006.35(1):62-63.
    [286] Liu Y K, Zapien J A, Shan Y Y, et al., Wavelength-controlled lasing in ZnxCd1-xS single-crystalnanoribbons. Advanced Materials,2005.17:1372-1377.
    [287] Zhai T, Gu Z, Yang W, et al., Fabrication, structural characterization and photoluminescence ofsingle-crystal ZnxCd1xS zigzag nanowires. Nanotechnology,2006.17(18):4644-4649.
    [288] Zhai T Y, Zhang X Z, Yang W S, et al., Growth of single crystalline ZnxCd1-xS nanocombs bymetallo-organic chemical vapor deposition. Chemical Physics Letters,2006.427:371-374.
    [289] Chen J, Lin S, Yan G, et al., Preparation and its photocatalysis of Cd1-xZnxS nano-sized solidsolution with PAMAM as a template. Catalysis Communications,2008.9:65-69.
    [290] Wang W, Zhu W and Xu H, Monodisperse, mesoporous ZnxCd1-xS nanoparticles as stablevisible-light-driven photocatalysts. Journal of Physical Chemistry C,2008.112(43):16754-16758.
    [291] Li W J, Li D Z, Chen Z X, et al., High-efficient degradation of dyes by ZnxCd1-xS solid solutionsunder visible light irradiation. Journal of Physical Chemistry C,2008.112(38):14943-14947.
    [292] Makhluf S, Dror R, Nitzan Y, et al., Microwave-assisted synthesis of nanocrystalline MgO and itsuse as a bacteriocide. Advanced Functional Materials,2005.15:1708–1715.
    [293] Butler M A, Photoelectrolysis and physical properties of the semiconducting electrode WO3. Journalof Applied Physics,1977.48(5):1914-1920.
    [294] Zhang S, Zhang C, Man Y, et al., Visible-light-driven photocatalyst of Bi2WO6nanoparticlesprepared via amorphous complex precursor and photocatalytic properties. Journal of Solid StateChemistry,2006.179:62-69.
    [295] Asahi R, Morikawa T, Ohwaki T, et al., Visible-light photocatalysis in nitrogen-doped titaniumoxides. Science,2001.293:269-271.
    [296] Wu T, Liu G, Zhao J, et al., Photoassisted degradation of dye pollutants. V. self-photosensitizedoxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2dispersions.Journal of Physical Chemistry B,1998.102(30):5845-5851.
    [297] Sellarajah S, Lekishvili T, Bowring C, et al., Synthesis of analogues of congo red and evaluation oftheir anti-prion activity. Journal of Medicinal Chemistry,2004.47(22):5515-5534.
    [298] Tang J, Zou Z and Ye J, Efficient photocatalytic decomposition of organic contaminants overCaBi2O4under visible-light irradiation. Angewandte Chemie International Edition,2004.43:4463.
    [299] Tang J, Zou Z and Ye J, Effects of substituting Sr2+and Ba2+for Ca2+on the structural propertiesand photocatalytic behaviors of CaIn2O4. Chemistry of Materials,2004.16(9):1644-1649.
    [300] Ballentyne D W G and Ray B, Electroluminescence and crystal structure in the alloys systemZnS-CdS. Physica,1961.27(3):337-341.
    [301] Shimaoka G and Suzuki Y, Preparation and optical properties of ZnxCd1-xS films. Applied SurfaceScience,1997.113/114:528-533.
    [302] Tsuji I, Kato H, Kobayashi H, et al., Photocatalytic H2evolution reaction from aqueous solutionsover band structure-controlled (AgIn)xZn2(1-x)S2solid solution photocatalysts with visible-light responseand their surface nanostructures. Journal of the American Chemical Society,2004.126(41):13406–13413.
    [303] Kumar V, Singh V, Sharma S, et al., Structural and optical properties of sintered Cd1-xZnxS films.Optical Materials,1998.11(1):29-34.
    [304] Xing C J, Zhang Y J, Yan W, et al., Band structure-controlled solid solution of Cd1-xZnxSphotocatalyst for hydrogen production bywater splitting. International Journal of Hydrogen Energy,2006.31:2018-2024.
    [305] Kudo A and Sekizawa M, Photocatalytic H2evolution under visible light irradiation on Zn1-xCuxSsolid solution. Catalysis Letters,1999.58(4):241-243.
    [306] Kudo A and Sekizawa M, Photocatalytic H2evolution under visible light irradiation on Ni-dopedZnS photocatalyst. Chemical Communications,2000.15:1371-1372.
    [307] Baiocchi C, Brussino M C, Pramauro E, et al., Characterization of methyl orange and itsphotocatalytic degradation products by HPLC/UV-VIS diode array and atmospheric pressure ionizationquadrupole ion trap mass spectrometry. International Journal of Mass Spectrometry,2002.214(2):247-256.
    [308] Redmond G, O K, A., Burgess C, et al., Spectroscopic determination of the flatband potential oftransparent nanocrystalline zinc oxide films. Journal of Physical Chemistry,1993.97(42):11081-11086.
    [309] Bard A J and Faulkner L R, Electrochemical Methods Fundamentals and Applications. John Wiley&Sons: New York,1980.636.
    [310] Morrison S R, Electrochemistry at Semiconductor and Oxidized Metal Electrodes. Plenum Press:New York,1980. Chapter4.
    [311] Bard A J, Parsons R and Jordan J, Standard Potentials in Aqueous Solution. Marcel Dekker: NewYork,1985.
    [312] Langlais B, Reckhow D A and Brank D R, Ozone in Water Treatment: Application and Engineering.Lewis Publishers: Chelsea, MI,1991.
    [313] Stafford U, Gray K A and Kamat P V, Radiolytic and TiO2-assisted photocatalytic degradation of4-chlorophenol. A comparative study. Journal of Physical Chemistry,1994.98(25):6343–6351.
    [314] Li W J, Li D Z, Zhang W J, et al., Microwave synthesis of ZnxCd1-xS nanorods and theirphotocatalytic activity under visible light. Journal of Physical Chemistry C,2010.114(5):2154-2159.
    [315] Zollinger H, In Color Chemistry: Synthesis, Properties and Applications of Organic Dyes andPigments,2nd ed. Zollinger, H., Ed.; VCH Publishers: New York,1987.1436.
    [316] Ollis D F, Al-Ekabi H and (Eds.), Photocatalytic Purification and Treatment of Water and Air,Elsevier, Amsterdam,1993.17-20.
    [317] Sakthivel S, Neppolian B, Palanichamy M, et al., Photocatalytic degradation of leather dye, Acidgreen16using ZnO in the slurry and thin film forms. Indian Journal of Chemical Technology,1999.6(3):161-165.
    [318] Sakthivel S, Neppolian B, Arabindoo B, et al., TiO2catalysed photodegradation of leather dye, AcidGreen16. Journal of Scientific&Industrial Research,2000.59(7):556-562.
    [319] Okamoto K, Yamamoto Y, Tanaka H, et al., Heterogeneous Photocatalytic Decomposition of Phenolover Tio2Powder. Bulletin of the Chemical Society of Japan,1985.58(7):2015-2022.
    [320] Sharma A, Rao P, Mathur R P, et al., Photocatalytic Reactions of Xylidine Ponceau onSemiconducting Zinc-Oxide Powder. Journal of Photochemistry and Photobiology a-Chemistry,1995.86(1-3):197-200.
    [321] Meulenkamp E A, Size dependence of the dissolution of ZnO nanoparticles. Journal of PhysicalChemistry B,1998.102(40):7764-7769.
    [322] van Dijken A, Janssen A H, Smitsmans M H P, et al., Size-selective photoetching of nanocrystallinesemiconductor particles. Chemistry of Materials,1998.10(11):3513-3522.
    [323] Wang J C, Liu P, Wang S M, et al., Nanocrystalline zinc oxide in perfluorinated ionomermembranes: Preparation, characterization, and photocatalytic properties. Journal of Molecular Catalysisa-Chemical,2007.273(1-2):21-25.
    [324] de Jongh P E, Meulenkamp E A, Vanmaekelbergh D, et al., Charge carrier dynamics in illuminated,particulate ZnO electrodes. Journal of Physical Chemistry B,2000.104(32):7686-7693.
    [325] Daneshvar N, Salari D and Khataee A R, Photocatalytic degradation of azo dye acid red14in wateron ZnO as an alternative catalyst to TiO2. Journal of Photochemistry and Photobiology a-Chemistry,2004.162(2-3):317-322.
    [326] Gouvea C A K, Wypych F, Moraes S G, et al., Semiconductor-assisted photocatalytic degradation ofreactive dyes in aqueous solution. Chemosphere,2000.40(4):433-440.
    [327] Dindar B and Icli S, Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight.Journal of Photochemistry and Photobiology a-Chemistry,2001.140(3):263-268.
    [328] Lizama C, Freer J, Baeza J, et al., Optimized photodegradation of Reactive Blue19on TiO2andZnO suspensions. Catalysis Today,2002.76(2-4):235-246.
    [329] Khodja A A, Sehili T, Pilichowski J F, et al., Photocatalytic degradation of2-phenylphenol on TiO2and ZnO in aqueous suspensions. Journal of Photochemistry and Photobiology a-Chemistry,2001.141(2-3):231-239.
    [330] Marci G, Augugliaro V, Lopez-Munoz M J, et al., Preparation characterization and photocatalyticactivity of polycrystalline ZnO/TiO2systems.2. Surface, bulk characterization, and4-nitrophenolphotodegradation in liquid-solid regime. Journal of Physical Chemistry B,2001.105(5):1033-1040.
    [331] Percherancier J P, Chapelon R and Pouyet B, Semiconductor-sensitized photodegradation ofpesticides in water-the case of carbetamide. Journal of Photochemistry and Photobiology a-Chemistry,1995.87(3):261-266.
    [332] Poulios I, Kositzi M and Kouras A, Photocatalytic decomposition of triclopyr over aqueoussemiconductor suspensions. Journal of Photochemistry and Photobiology a-Chemistry,1998.115(2):175-183.
    [333] Yeber M C, Rodriguez J, Freer J, et al., Advanced oxidation of a pulp mill bleaching wastewater.Chemosphere,1999.39(10):1679-1688.
    [334] Oshea K E and Cardona C, The reactivity of phenol in irradiated aqueous suspensions of TiO2-mechanistic changes as a function of solution Ph. Journal of Photochemistry and Photobiologya-Chemistry,1995.91(1):67-72.
    [335] Parks G A, The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complexsystems. Chemical Review,1965.65(2):177-198.
    [336] Fujishima A, Rao T N and Tryk D A, Titanium dioxide photocatalysis. Journal of Photochemistryand Photobiology, C,2000.1:1-21.
    [337] Kim S, Hwang S J and Choi W Y, Visible light active platinum-ion-doped TiO2photocatalyst.Journal of Physical Chemistry B,2005.109(51):24260-24267.
    [338] Zhang C and Zhu Y F, Synthesis of square Bi2WO6nanoplates as high-activity visible-light-drivenphotocatalysts. Chemistry of Materials,2005.17(13):3537-3545.
    [339] Hou Y D, Wang W C, Wu L, et al., Efficient decomposition of benzene over a beta-Ga2O3photocatalyst under ambient conditions. Environmental Science&Technology,2006.40(18):5799-5803.
    [340] Dutta K, Bhattacharjee S, Chaudhuri B, et al., Oxidative degradation of malachite green by Fentongenerated hydroxyl radicals in aqueous acidic media. Journal of Environmental Science and Health, PartA: Toxic/Hazardous Substances and Environmental Engineering,2003.38:1311–1326.
    [341] Zazo J A, Casas J A, Mohedano A F, et al., Chemical pathway and kinetics of phenol oxidation byFenton’s reagent. Environmental Science&Technology,2005.39(23):9295–9302.
    [342] Bach U, Lupo D, Comte P, et al., Solid-state dye-sensitized mesoporous TiO2solar cells with highphoton-to-electron conversion efficiencies. Nature,1998.395:583–585.
    [343] Zhao W, Chen C C, Li X Z, et al., Photodegradation of sulforhodamine-B dye in platinized titaniadispersions under visible light irradiation: Influence of platinum as a functional co-catalyst. Journal ofPhysical Chemistry B,2002.106(19):5022-5028.
    [344] Fu H B, Pan C S, Yao W Q, et al., Visible-light-induced degradation of rhodamine B by nanosizedBi2WO6. Journal of Physical Chemistry B,2005.109(47):22432-22439.
    [345] Stafford U, Gray K A and Kamat P V, Radiolytic and TiO2-assisted photocatalytic degradation of4-chlorophenol. A comparative study. Journal of Physical Chemistry,1994.98(25):6343-6351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700