用户名: 密码: 验证码:
环形半导体发光器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GaAs衬底环形半导体发光器件的研究一直是半导体发光器件领域内研究的热点乙一。GaAs衬底环形半导体发光器件的研究大体分为光发射二极管(LED)、激光器二极管(LD)和超辐射发光二极管(SLD)三种器件类型。本文从环形器件结构设计和制备工艺角度出发,主要研究了LD和SLD两种类型的环形腔半导体发光器件。这两种环形发光器件具有不同的特点。环形LD结构器件在光路集成、高亮度输出和高光谱纯度的优良特性应用方面,被人们寄予厚望。在实现发光器件高亮度、激射光的高纯度输出方面,具有替代分布反馈式激光器(DFB)结构或分布布拉格反射激光器(DBR) LD结构的潜力。同时环形LD较容易制备,DFB或DBR结构LD制备难度大,不易于实现光路集成,更无法满足光集成的需要;环形SLD具有光谱宽、光束质量好、抑制激射能力强和亮度高的特点,同时还具有制备工艺简单的优点。
     本论文研究主要内容为:
     1.从环形谐振腔的波动方程出发,分析了环形的曲率对器件损耗的影响;理论上分析了影响环形半导体发光器件横模和纵模模式特性的相关因素;从环形量子阱发光器件的理论出发,对环形腔量子阱发光器件进行了理论分析,包括对电场、磁场以及顺时针方向(CW)和逆时针方向(CCW)电磁场传播的理论分析;并讨论了单向输出的基础理论。
     2.进行了环形腔半导体发光器件外延片的结构研究。根据环形半导体发光器件的器件结构特点,设计出一种大光腔非对称波导外延结构,并通过MOCVD系统进行了相应的外延材料生长。并进行了相应的表征和分析,获得环形单量子阱AlGaAs/GaAs半导体材料发光器件的外延片的内量子效率为0.89、波导损耗为1.8cm-1,其阈值特性获得较大改进。
     3.通过不同结构SLD器件的制备,获得了带倾角的单环SLD最大连续输出功率为100mW峰值波长为785nm,半高宽(FWHM)为24nm;集成器件结构的SLD最大连续输出功率约为400mW,峰值波长为808.5nm,半高宽(FWHM)为31nm,垂直发散角为35.4°,水平发散角为2.1°;带有8°的集成器件结构的SLD最大连续输出功率近700mW峰值波长为803.5nm,半高宽(FWHM)为36rnm,水平发散角为0.9°。
     4.设计并制备了多环耦合结构的集成式半导体发光器件,器件输出功率达到10mW,水平远场角度为2.7°,在821nm处的谱线宽度0.3nm,实现Q因子达2737;发现了电流对光谱调制特性,调制范围接近10nm,同时发现电流对谱线宽度的调制范围在O.1nm左右。优化了工艺和器件结构,使得输出的斜率效率大幅改善,谱线宽度变窄,达到0.2nm,实现Q因子达4040。
The ring semiconductor light-emitting devices of GaAs-based have been an interesting direction in the field of semiconductor devices. GaAs-based ring semiconductor light-emitting device can be divided into three types of devices of LED, LD and SLD. From the structure design and process fabrication of ring semiconductor to view, the LD and SLD are two classic types of light-emitting devices. The both type's light-emitting devices have different characteristics:the device of ring LD structure in the optical integration owns excellent characteristics of high-brightness output and high spectral purity; the light-emitting device of high brightness and lasing spectrum output of high-purity has a potential trend to replace LD of DFB and DBR structure. Ring LD is easier preparation than the preparation process of LD of DFB and DBR structure, which is difficult and is not easy to achieve optical path integration, and unable to meet the needs of optical integration; ring SLD has a wide spectrum, good beam quality, strongly suppress lasing ability and high brightness characteristics, but also the process is simple.
     This thesis is mainly about the study of single ring,single ring integrated with tapered and multi-ring coupling structure of the semiconductor light emitting device. The main contents are as follows:
     1. From wave equation of the ring resonator to discuss loss of circular curvature of ring device; theoretically analyzes features of the transverse mode and longitudinal mode of the ring semiconductor light emitting device by relevant factors; theory and its theoretical analysis were included in the electric and magnetic fields, CW and CCW electromagnetic field propagation from ring cavity single quantum well light-emitting devices; discussion of single output direction basic theory.
     2. Structure of ring semiconductor light emitting device was researched and processed by fabrication. Epitaxial material characteristics of special structure ring semiconductor device was designed, grown and valued.the epitaxial materials structure of the ring semiconductor light emitting device was characterized and analysis. Light-emitting device wafer of808nm wavelength ring AlGaAs/GaAs semiconductor materials can get of0.89internal quantum efficiency and1.4cm-1waveguide losses. Their characteristic of threshold characteristics was compared with traditional devices has been significantly improved.
     3. Different structure SLDs are fabricated and designed. A tilt angle single ring SLD can be up to maximum continuous output power of100mW, its peak wavelength is785nm, and its width at half maximum (FWHM) is24nm; maximum continuous output power of the integrated structure SLD is about400mW, its peak wavelength is808.5nm, its width at half maximum (FWHM) is31nm, and its vertical divergence angle and parallel divergence angle are35.4°nd2.1°, respectively; the SLD of the integrated structure device with8°tilt angle can achieve maximum continuous output power nearly700mW,803.5nm peak-wavelength,36nm-FWHM,and parallel divergence angle of0.9°.
     4. Multi-ring coupling structure of the integrated semiconductor light emitting device is designed and preparated. far-field parallel divergence angle of the device is2.7°, the output power is up to lOmW, spectral FWHM width is0.3nm at821nm, Q factor is up to2737; discovering that structure of the multi-ring coupling device has the modulation characteristics of current to spectral, modulation range is close to10nm; and it can achieve a certain injection current modulation effect to its spectrum width, and its capacity of modulation is about0.1nm. The process and device structure are optimized, the output slope efficiency is improved significantly,0.2nm-linewidth can be reached, Q factor is up to4040.
引文
[1]G P. Agrawal,Semiconductor Lasers. Past, Present and Future, AIP Press,1995.
    [2]Wei chen, P. J. R. Laybourn, A. F. Jezierski,Miniature Semiconductor Ring Laser Sources for Integrated Optical Circuits,SPIE,1990,12(80):319.
    [3]D. R. Scifres R. D. Burnham,W.Streifer, Grating-coupled GaAs single heterostructure ring laser, Appl. Phys. Letts. 1976,28(11):681-683.
    [4]T. Krauss, P. J. R. Laybourn,CW operation of ring lasers,EL. Letts.1990,26(25):2095-2097.
    [5]P. J. R. Laybourn, T. F. Krauss,Progress in Semiconductor Ring Laser,SPIE,1996,24(01):12.
    [6]王俊铠,环形半导体激光器设计及制造:[硕士学位论文],国立中山大学光电工程研究所,2002年.
    [7]H. Kawaguchi,T. Kawakami,GaAs-AlGaAs half-ring laser fabricated by deep Zn diffusion,Japan J. Appl. Phys. 1977,16(12):2281-2282.
    [8]N. Matsumoto,K.Kumabe, AlGaAs-GaAs semiconductor ring laser, Japan. J. of Appl. Phys.1977,16(8):1395-1398.
    [9]D. Botez L. Figueroa,S.Wang, Optically pumped GaAs-Ga1-xAlxAs half-ring laser fabricated by liquid-phase epitaxy over chemically-etched channels,Appl. Phys. Letts,1976,29(8):502-504.
    [10]A. S. H. Liao, S.Wang, Half-ring (GaAl)As double-heterostructure injection lasers,Appl.Phys.Letts.1980,36(5): 353-356.
    [11]A.S.H.Liao,S.Wang,Semiconductor injection lasers with a circuit resonator,Appl.Phys.Letts 1980,36(10):801-803.
    [12]A. F. Jezierski, P. J. R. Laybourn,Integrated semiconductor ring lasers,IEE Proc.J,1988,135(1):17-24.
    [13]P. J. R. Laybourn, T. F. Krauss,Progress in semiconductor ring lasers,SPIE,(240):1-5.
    [14]A.Behfar-Rad J.M.Ballantyne.S.S.Wong, Etched-facet AlGaAs triangular-shaped ring lasers with output coupling,Appl. Phys. Letts.1991,59(12):1395-1397.
    [15]Oku, M. Okayasu, M. Ikeda,Low-threshold operation of square-shaped semiconductor ring lasers(orbiter lasers), IEEE Photonics Tech Letts 1991,3(7):588-590.
    [16]T. Krauss, R.M. De La Rue, P.J.R. Laybourn, B. Vogele, Efficient semiconductor ring lasers made by a simple self-aligned fabrication process,J.Quantum Elec, to be published.
    [17]Chil-Min Kimjinhang Cho,Jinhyung Lee,Continuous wave operation of a spiral-shaped microcavity laser,Appl.Phys.Lett.2008,92(13):131110.
    [18]Hong-Gyu Park, Fang Qian, Carl J.Barrelet, Microstadium single-nanowire laser,Appl.Phys.Lett.2007,91(25).251115
    [19]Toni P'erezl, Alessandro Scir'e, Guy Van der Sande, Pere Coletl.Bistability and all-optical switching in semiconductor ring lasers,2007,15(20):12941.
    [20]C.M. Kim, S.Y. Lee, J.W. Ryu. Progress in semiconductor ring lasers, Phys. Suppl.2007,166:112.
    [21]Z.Wang, G.Yuan,S.Yu, Directional bistability in novel semiconductor ring lasers with retro-reflector micro-cavity,IEEE Photon.Technol. Lett,2008,20(12):1048-1050.
    [22]G.Yuan,S.Yu, Analysis of dynamic switching behavior of bistable semiconductor ring lasers triggered by resonant optical pulse injection,IEEE. J. Select. Topics Quantum Electon.,2007,13(5):1227-1234.
    [23]C. Born, M. Sorel, S. Yu, Linear and nonlinear mode interactions in a semiconductor ring laser, IEEE J. Quantum Electron.2005,41(3):261-271.
    [24]S. Furst,M. Sorel, Cavity-enhanced four-wave mixing in semiconductor ring lasers,IEEE Photon. Technol. Lett. 2008,20(5):366-368.
    [25]Y. Liu, M.T. Hill, N. Calabretta, et al., Semiconductor injection lasers with a circuit resonator, IEEE Photon Tech.Lett..2003,15,:1461.
    [26]M. L. Cohen and J. R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors, Springer Series in Solid-State Sciences,edited by M. Cardona Springer,1988
    [27]A. Behfar-Rad, J.M. Ballantyne, S.S.Wong, semiconductor ring laser, Appl. Phys.Lett.1992,60:1658.
    [28]J.J. Liang, S.T. Lau, M.H. Leary,J.M. Ballantyne, Linear and nonlinear mode interactions,Appl.Phys. Lett.1997,70: 1192.
    [29]S.T. Lau, T. Shiraishi, J.M. Ballantyne, High power wide aperture AlGaAsP-based lasers,IEEE J. LightwaveTechnol. 1994,12:202.
    [30]N. Matsumoto,K. Kumabe, Jpn. J. Efficient semiconductor ring lasers,App3. Phys.1977,16:1395.
    [31]A. Shuh-Huei, L. Wang, S. Wang, High performance interminiband quantum cascade lasers with graded superlattices Appl. Phys. Lett.1980,36,801.
    [32]T.F. Krauss, P.J.R. Laybourn, J.S. Roberts, Semiconductor injection lasers,Electron.Lett.1990,26:2095.
    [33]V. Heine, The Pseudopotential Concept, in Solid State Physics, edited byH. Ehrenreich, F. Seitz, and D. Turnbull, 1970,24.
    [34]J.P. Hoimer, G.A. Vawter, D.C. Craft, G.R. Hadley, Wide aperture GaAs-based lasers Appl. Phys. Lett.1992, 61:1375.
    [35]H. Han, D.V. Forbes,J.J. Coleman, IR lasers operating above room temperature,IEEE J. QuantumElectron.1995,31: 1994.
    [36]J.P. Hoimer, D.C. Craft, G.R. Hadley, G.A. Vawter,Electron. Lett.1992,28:374.
    [37]T.F. Krauss, R.M. De La Rue, I. Gontijo, quantum cascade lasers with graded superlattices Appl. Phys. Lett. 1994,64:2788.
    [38]T.F. Krauss, R.M. De La Rue, P.J.R. Laybourn, High power wide aperture AlGaAs-based lasers,IEEE J.Lightwave Technol.1995,13:1500.
    [39]T.F. Krauss, R.M. De La Rue, P.J.R. Laybourn, et al., Semiconductor injection lasers with circuit resonators,IEEEJ. Sel. Top. Quantum Electron.1995,1:757.
    [40]J.P. Zhang, D.Y. Chu, S.L. Wu, et al., High performance interminiband quantum lasers,IEEE Photon. Tech.Lett. 1996,8:968.
    [41]C.L. Tang, A. Schremer, T. Fujita, An introduction to the development of the semiconductorlaser,Appl. Phys. Lett. 1987,51:1392.
    [42]P. V. Kamat,L.W. Wang and A. Zunger, Semiconductor Nanoclusters,1996,103:161.
    [43]M. L. Cohen and V. Heine, The Fitting of Pseudopotentials to Experi-mental Data and their Subsequent Application, in Solid State Physics.edited by H. Ehrenreich. F. Seitz. and D. Turnbull. Academic,1970.24:38.
    [44]M. Sorel. G. Giuliani, A. Scir'e, et al., Efficient semiconductor ring lasers. IEEE J. QuantumElectron.2003.39:1187.
    [45]Y. Shimosako, T. Numai, Jpn. J. An introduction to the semiconductorlaser,Appl. Phys.2000,39:3983.
    [46]Y. Shimosako,T. Numai, Jpn. J. IR lasers operating above room temperature, Appl. Phys.2000.39:3991.
    [47]H.A. Haus, H. Statz, I.W. Smith, High power wide aperture AlGaAs-based lasers, IEEE J. Quantum Electron. 1985,21:78.
    [48]P. Meystre,M. Sargent III, Elements of Quantum Optics Springer-Verlag, Berlin,1992.
    [49]M. Yamada,Y. Suematsu, J. Efficient semiconductor ring lasers, Appl. Phys.1981,52:2653.
    [50]M. Asada, A. Kameyama, Y. Suematsu, High performance interminiband quantum lasers,IEEE J. QuantumElectron. 1984,20:745.
    [51]M.N. Armenise, V.M.N. Passaro, F. De Leonardis, and M.Armenise, High power wide aperture AlGaAs-based lasersⅢ-ⅤIEEE J. Lightwave Technol.2001.19:1476.
    [52]M.N. Armenise, C. Ciminelli, F. De Leonardis.5th Int. ESA Conf. on Space Optics, Toulouse,2004,554:95.
    [53]C. Ciminelli. An introduction to the development of the semiconductorlaser, IEEE J. Quant. Electron,1987, 23(6):651-657,
    [54]A. Ishida,H. Fujiyasu, Recent progress in lead-salt lasers in Laser Diodes and ApplicationsII, SPIE Proceedings,1996, 2682:206-215.
    [55]T. C. Hasenberg, R. H. Miles, A. R. Kost, Recent advances in Sb-based midwave-infrared lasers, IEEE J. Quant.
    Electron.1997,33:1403-1406.
    [56]J.I. Malin, C.L. Felix, J.R. Meyer, Type II mid IR lasers operating above room temperature, Electron. Lett.1996, 32,:1593-1595.
    [57]J. Faist, A. Tredicucci, F. Capasso, High power continous-wave quantum cascade lasers, IEEE J. Quant. Electron. 1998,34:336-341
    [58]A. Tredicucci, F. Capasso, C. Gmachl, High performance interminiband quantum cascade lasers with graded superlattices, Appl. Phys. Lett.1998,73:2101-2103.
    [59]C. Gmachl,. A. Tredicucci, F. Capasso, A. Hutchinson, High power λ=8μm quantum cascade laser with near optimum performance, Appl. Phys. Lett.1998,72:3130-3132.
    [60]G.P. Agrawal, N.K. Dutta, Long wavelength semiconductor lasers. Van Nostrand Reinhold,New York,1986:416.
    [61]P.J.A.Thijs,L.F.Tiemeijer,J.J.M.Binsma,Progress in longwavelength strained layer InGaAs(P) quantumwell semiconductor lasers and amplifiers,IEEE J. Quant.Electron.1994,30:477.
    [62]A. Ishibashi, Ⅱ-Ⅵ blue-green laser diodes.IEEE J. Select. Topics Quant. Electron,1995,1:741-748.
    [63]P. Bhattacharya,Properties of Lattice-Matched and Strained Indium Gallium Arsenide,1993.
    [64]R. Steele, Review and forecasts of Laser Markets 1998:Part Ⅱ", Laser Focus World,1998,34 (2):72.
    [65]S. O'Brien, H. Zhang and R.J. Lang. High power wide aperture AlGaAs-based lasers at 870nm.Electron.Lett.1998,34: 184-185.
    [66]W. Pittroff, F. Bugge, G. Erbert, Highly-reliable tensily strained 810nm QW laser diode operating at high temperatures. Conf. Proc. IEEE 1998.1:278-279.
    [67]A. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, High power (>10W) continuous wave operation from 100μm-aperture 0.97μm emitting Al-free diode lasers", Appl. Phys. Lett.1998 73:1182-1184.
    [68]A. Knauer, G. Erbert, H. Wenzel, A. Bhattacharya.7W CW power from tensile-strained GaAsP/AlGaAs (X=735nm) QW diode lasers, Electron. Lett.1999,35:638-639.
    [69]D.Z. Garbuzov, R.J. Menna, R.U. Martinelli, Broadened-waveguide 1.5μm SCH-MQW InGaAsP/InP laser diodes with CW output powers of 4.6W, Postdeadline paper CPD10,1996,32(18)
    [70]X. He, D. Xu, A. Ovtchinnikov, F. Malarayap. High power efficient GaInAsP/InP (1.9μm) laser diode arrays, Electron. Lett.1999,35,397-398.
    [71]M. Maiorov, R. Menna, V. Khalfin,218 W quasi-CW operation of 1.83 μm two-dimensional laser diode array, Electron. Lett.1999,35:638-639.
    [72]S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matushita, T. Mukai, InGaN/GaN/AlGaN-Based LEDs and Laser Diodes, MRS Internet J. Nitride Semicond.1999,,537
    [73]N. Holonayak, Jr., S.F. Bevacqua, Coherent (visible) light emission from Ga(Asl-xPx) junctions.Appl. Phys. Lett. 1962.1,82.
    [74]G.H. Olsen, C.J. Nuese, M. Ettenberg, Reliability of vapor-grown InGaAs and InGaAsP heterojunction laser structures. IEEE J. Quant. Electron.1979,15,688-693.
    [75]M.A. Herman and H. Sitter, Molecular Beam Epitaxy in Springer Series in Material Science, Springer Verlag 1989.7.
    [76]E.H.C. Parker ed, The Technology and Physics of Molecular Beam Epitaxy, Plenum Publ. Corp.New York,1985:686
    [77]H. Jaeckel, G.-L. Bona. P. Buchmann,Very high-power(425 mW) AlGaAs SQW-GRINSCH ridge laser with frequency-doubled output,IEEE J. Quant. Electron.1991.27:1560-1567.
    [78]M. B. Panish, Molecular beam epitaxy of GaAs and InP with gas sources for As and J.Electrochem.Soc.1980,127: 2729.
    [79]G. Zhang, A. Ovtchinnikov, J. Nappi, H. Asonen,M. Pessa, Optimization and characteristicsof Al-freestrained-layer InGaAs/GaInAsP/GaInP SCH-QW lasers (λ~980nm) grown by gas-sourceMBE, IEEE J. Quant. Electron,1993,29, 1943-1949.
    [80]A. Ovtchinnikov, J. Nappi, A. Jaan, S. Mohrdiek. Highly efficient 808nm-range Al-free lasers by gas source MBE,Proc. SPIE,1997,3004:34-42.
    [81]M. Toivonen, P. Savolainen, H. Asonen.M. Pessa, Solid-source MBE for growth of laser diode materials, J. Cryst. Growth 1997,175:37-41.
    [82]E. Veuhoff, Potential of MOMBE/CBE for the production of photonic devices in comparison withMOVPE, J. Cryst. Growth,1998.188:231-246.
    [83]G.B. Stringfellow, Organometallic Vapor Phase Epitaxy:Theory and Practice. Academic Press.1989.
    [84]M. Razeghi, The MOCVD Challenge Vol.1:A Survey of GaInAsP-InP for Photonic and Electronic Applications. Institute of Physics Publishing (Bristol).1989.
    [85]M. Razeghi, The MOCVD Challenge Vol.2:A Survey of GaInAsP-GaAs for Photonic and Electronic Device Applications. Institute of Physics Publishing (Bristol),1995.
    [86]A.C. Jones,P. O'Brien, CVD of Compound Semiconductors:Precursor Synthesis. Development and Applications, VCH (Weinheim),1997.
    [87]J.S. Roberts,N.J. Mason, Factors influencing doping control and abrupt metallurgical transitions during atmospheric pressure MOVPE growth of AlGaAs and GaAs, Cryst. Growth 1984.68:422-423.
    [88]S.D. Hersee, M. Krakowski, R. Blondeau, Abrupt OMVPE grown GaAs/GaAlAs heterojunctions, J. Cryst. Growth, 1984,68:282-288.
    [89]S.J. Bass, Device quality epitaxial gallium arsenide grown by the metal alkyl-hydride technique,J Cryst. Growth,1975, 31:172-178.
    [90]N. Puetz, G. Hiller,A. J. Springthorpe, The inverted horizontal reactor:Growth of uniform InP and GaInAs by LPMOCVD, Electron. Mater J.1988.17,381.
    [91]R.D. Dupuis, GaAlAs-GaAs heterostructure lasers grown by metalorganic chemical vapor deposition, Jpn. J. Appl. Phys.1980:415-423.
    [92]K. Shiina, H. Tanaka, T. Ohori, K. Kasai,J. Komeno.Multi-wafer growth of 4-inch epitaxial layers by MOVPE for HEMT LSIs, Inst. Phys. Conf. Ser.1992,1:61-66.
    [93]W. Van der Stricht, I. Moerman, P. Demeester, J.A. Crawley.Study of GaN and InGaN films grown by metalorganic chemical vapor deposition, J. Cryst.Growth,1997,170:344-348.
    [94]P.M. Frijlink, J.L. Nicholas, P. Suchet, Layer uniformity in a multiwafer MOVPE reactor for Ⅲ-Ⅴ compounds. J. Cryst. Growth,1991,107:166-174.
    [95]K.F. Jensen, D.F. Fotiadis, T.J. Mountziaris,Detailed models of the MOVPE process J.Cryst. Growth,1991,107:1-11
    [96]T. Bergunde, M. Dauelsberg, L. Kadinski, Process optimization of MOVPE growth by numerical modelling of transport phenimena including thermal radiation, J. Cryst. Growth,1997,180:660-669.
    [97]P. Andre, M. Boulou, and A. Mircea-Roussel, Luminescence of Al(x)Ga(1-x)As grown by MOVPE, J. Cryst. Growth,1981,55:192.
    [98]M.J. Tsai, M.M. Tashima, and R.L. Moon, "The Effect of the Growth Temperature on Al(x)Ga(1-x)As (0    [99]G. Beister, F. Bugge, G. Erbert, J. Maege. Thies and H. Wenzel,Reliable high-power InGaAs/AlGaAs ridge waveguide laser diodes, Techn.Digest,1998,36:778-779
    [100]O. Ueda, Reliability and degradation of Ⅲ-Ⅴoptical devices, Artech House, Norwood, MA,1996.
    [101]M. Suzuki, M. Aoki, T. Tsuchiya, T. Taniwatari,1.24-1.66μm quantum energy tuning forsimultaneously grown InGaAs/InP QWs by selective area MOVPE, J. Cryst. Growth,1994,145:249-255.
    [102]S. Adachi ed.. Properties of aluminium gallium arsenide, EMIS datareviews series; no.7, IEE &INSPEC, Stevenage, Herts, UK,1993
    [103]S. Adachi, Physical properties of Ⅲ-Ⅴ semiconductor compounds:InP, In As, GaAs, GaP, InGaAs.and InGaAsP, Wiley, New York,1992.
    [104]I. Rechenberg, A. Oster, A. Knauer, U. Richter, J. Menninger. Ordering in GaxIn1-xAsyP1-y detected by diffraction methods,Mat. Res. Soc. Proc.1996,417:49.
    [105]T. Suzuki, A. Gomyo, S. Iijima, Strong ordering in GaInP alloy semiconductors:Formation mechanism for the ordered phase, J. Cryst. Growth,1988.93:396.
    [106]J.W. Matthews, A.E. Blakeslee, Defects in epitaxial multilayers. I. Misfit dislocations. J.Cryst. Growth. 1974,27:118-125.
    [107]T.F. Kuech, R. Potemski, F. Cardone, G. Scilla, Quantitative oxygen measurements in OMVPE AlxGa1-xAs grown by Methyl precursors, J.Electron. Mater.1992,21:341-346.
    [108]T.F. Kuech, E. Veuhoff, T.S. Kuan, V. Deline. R. Potemski.The influence of growth chemistry on the MOVPE growth of GaAs and AlxGa1-xAs layers and heterostructures, J. Cryst. Growth,1986,77:257-271.
    [109]S.L. Yellen, A.H. Shepard, R.J. Dalby, Reliability of GaAs-based semiconductor diode lasers:0.6-1.1μm, IEEE J. Quant. Electron.1993,29:2058-2067.
    [110]J.S. Roberts, J.P.R. David, L. Smith. The influence of trimethylindium impurities on the performance of InAlGaAs single quantum well lasers, J. Cryst Growth,1998,195:668-675.
    [111]A. Gomyo, T. Suzuki, K. Kobayashi, S. Kawata.Evidence for the existence of an ordered state in Ga0.5In0.5P grown by metalorganic vapor phase epitaxy and its relation to band-gapenergy, Appl. Phys. Lett.1987,50:673-675.
    [112]L.J. Mawst, A. Bhattacharya, J. Lopez.8W CW front-facet power from broad-waveguide Al-free 980 nm diode lasers, Appl. Phys. Lett.1996,69:1532-1535.
    [113]A. Bhattacharya, L.J. Mawst, M. Nesnida1.0.4 W CW diffraction-limited beam Al-free 0.98μm triple core ARROW-type diode lasers, Electron. Lett.1996.32:657-658.
    [114]C.H. Chen, S. A. Stockman, M. Peanasky.High Brightness Light Emitting Diodes,Semiconductors and Semimetals G. B. Stringfellow and M. George Crawford eds, Academic Press, San Diego,1997.48.
    [115]C. Geng, A. Moritz, S. Heppel, A. Muhe, J. Kuhn. Influence of order-domain size on the optical gain of AlGalnP laserstructures, J. Cryst. Growth,1997,170:418-423.
    [116]H. Hamada, S. Honda, M. Shono, R. Hiroyama. AlGaInP visible laser diodes grown on misoriented substrates,IEEE J. Quant. Electron,1991,27:1483-1490.
    [117]A. Valster, C.T.H.F. Liedenbaum, M.N. Finke, High quality AlxGal-x-yInyP alloys grown on (311)B GaAs
    substrates J. Cryst. Growth,1991.107:403.
    [118]K. Onabe, Calculation of miscibility gap in quaternary InGaAsP with strictly regular solution approximation, Jpn. J. Appl. Phys.1982,21:797.
    [119]A. Knauer, G. Oelgart, A. Oster, S. Gramlich, F. Bugge and M. Weyers, "Ordering in GaInAsPgrown on GaAs by metalorganic vapour phase epitaxy", J. Cryst. Growth,1998,195:694-699.
    [120]A. Knauer. G. Erbert S. Gramlich. MOVPE growth of GaInAsP/GaAs, J. Electron. Mater.1995,24:1655.
    [121]I. Rechenberg, A. Knauer, U. Zeimer. F. Bugge, U. Richter, A. Klein, M. Weyers, Composition fluctuations in (InGa)(AsP) single layers and laser structures based on GaAs. Inst. Phys. Conf.Ser.1996,149:109.
    [122]D.M. Follstaedt, R.P. Schneider, E.D. Jones, Microstructure of (InGa)P alloys grown on GaAs by metalorganic vapor phase epitaxy, J. Appl. Phys.1995,77:3077-3087.
    [123]I. Rechenberg, A. Knauer, F. Bugge, U. Richter, Crystalline perfection in GalnAsP/GaAs laser structures with GalnP or AlGaAs claddinglayers. Mater. Science and Engineering B44,1997:368-372.
    [124]R. W. Glew, K. Scarrott, A.T.R. Briggs. Elimination of wavy layer growth'phenomena in strain compensated GalnAsP/GalnAsP multi-quantum well stacks", J. Cryst. Growth,1994,145:764-770.
    [125]R.S. McFadden, M. Skowronski, S. Mahajan, Influence of growth temperature on ordering in InGaAs grown on (001) InP using tertiarybutylarsine source MOCVD, Mat. Res. Soc. Symp. Proc.326,287-292,1994.
    [126]E. Veuhoff, T.F. Kuech, B.S. Meyerson, A study of silicon incorporation in GaAs MOCVD layers, J. Electrochem. Soc.1985.132:1958-1961.
    [127]T. Iwamoto, K. Mori, M. Mizuta,H. Kukimoto, Doped InGaP grown by MOVPE on GaAs, J.Cryst. Growth,1984,68:27-31.
    [128]T. Kimura, T. Ishida, T. Sonoda, Y. Mihashi. Metalorganic vapor phase epitaxy growth of Be-doped InP using Bismethylcyclopentadienyl-Beryllium, Jpn. J. Appl.Phys.1995,34:1106-1107.
    [129]M. Kondo, C. Anayama, H. Sekiguchi Magnesium doping transients during MOVPE of GaAs and AlGalnP, J. Cryst Growth,1994,141:1-10.
    [130]K. Kojima, R.A. Morgan, T. Mulally, Reduction of p-doped mirror relectrical resistance of GaAs/AlGaAs VCSELs by delta doping,Electron. Lett.1993,29:1771-1772.
    [131]E.Yablonovitch, E.O. Kane, Reduction of lasing threshold current density by the lowering of valence band effective mass, IEEE J. Lightwave Technol,1986:504-506.
    [132]K. Kim, Y.H. Lee, Temperature dependent critical layer thickness for strained layer heterostructures, Appl. Phys. Lett.1995,67:2212-2214.
    [133]C. Kopf, H. Kosina, S. Selberherr, Physical models for strained and relaxed GalnAs alloys:Band structure and low-field transport, Solid State Electron,1997.41:1139.
    [134]U. Zeimer, F. Bugge, S. Gramlich, I. Urban, A. Oster, M. Weyers, High-resolution X-ray diffraction investigation of crystal perfection and relaxation of GaAs/InGaAs/GaAs quantum wells depending on MOVPE growth conditions, II Nuovo Cimento,19979,1D:369-376.
    [135]1. Rechenberg, F. Bugge, A. Hopner, Defects in In(x)Ga(1-x)As/GaAsstrained quantum well, Inst. Phys. Conf. Ser. 1993,135:327.
    [136]F. Bugge, U. Zeimer, M. Sato, M. Weyers, MOVPE Growth of Highly Strained InGaAs/GaAs Quantum Wells, J. Cryst Growth,1998,183:511-518.
    [137]G. Erbert, F. Bugge, A. Knauer, Tensile-Strained GaAs1-yPy-AlGaAs Quantum Well Diode Lasers Emitting between 715 nm and790 nm, Proc.16th IEEE International Semiconductor Laser Conference,1998,49.
    [138]B.I. Miller, U. Koren, M.G. Young, M.D. Chien, "Strain-compensated strained layer superlattices for 1.5μm wavelength lasers, Appl. Phys. Lett,1991,58:1952-1954.
    [139]A. Valster, A.T. Meney, J.R. Downes, D.A. Faux, Strain-overcompensated GaInP-AIGaInP quantum-well laser structures for improved reliability at high output powers,IEEE J. Select. Topics Quant. Electron,1997,3:180-187.
    [140]S. Gupta, A. Garcia, S. Srinivasan, X. He, S.Wilson, J. Harrison, R. Patel, High average power density diode laser stacks for 808nm,915nm and 940nm, Proc.16th IEEE International Semiconductor Laser Conference,998,53.
    [141]T. Fujimoto, Y. Yamada, Y. Yamada, A. Okubo, Y. Oeda, and K. Muro. High-power.InGaAs/AIGaAs laser diodes with decoupled confinement heterostructure, Proc. SPIE,1999,3628:38-45.
    [142]H.Q. Hou, K.D. Choquette, K.M, Geib, and B.E. Hammons, High-Performance 1.06μm Selectively Oxidized Vertical-Cavity Surface-Emitting Lasers with InGaAs-GaAsP Strain-Compensated Quantum Wells, IEEE Photon. Technol. Lett.1997.9:1057-1059.
    [143]F. Bugge, A. Knauer, S. Gramlich, I. Rechenberg, G. Beister, H. Wenzel, G. Erbert and M.Weyers, MOVPE growth of AlGaAs/GaInP diode lasers, to appear in J. Electron. Mater.
    [144]C. Hanke, L. Korte, B. D. Acklin, J. Luft, S. Grotsch, G. Herrmann, Z. Spika, M. Marciano, B deOdorico, J. Wilhemi, Highly reliable 40W cw InGaAlAs/GaAs 808nm laser bars, Proc. SPIE,1999,3628:64-70.
    [145]M.A. Emanuel, J.A. Skidmore, M. Jansen and R. Nabiev, "High-power InAlGaAs-GaAs laser diode emitting near 731nm.IEEE Photon. Tech. Lett.1997,9:1451-1453.
    [146]D.Z.Garbuzov, J.H. Abeles, N.A. Morris, P.D. Gardner, A.R. Triano, M.G. Harvey, D.B. Gilbertand J.C. Connolly, High power separate confinement heterostructure AlGaAs/GaAs laser diodes with broadened waveguide, Proc. SPIE 1996.2682:20-26.
    [147]Y. Oeda, T. Fujimoto, Y. Yamada, H. Shibuya, and K. Muro, High-power,0.8μm-band broad-area laser diodes with a decoupled confinement heterostructure, OS A Tech. Digest Series, CLEO,1998.98(10).
    [148]K. Shigihara, Y. Nagai, S. Karadida, A. Takami, Y. Kokubo, H. Matsubara. and S. Kakimoto,High-power operation of broad-area laser diodes with GaAs and AlGaAs single quantum wells for Nd:YAG pumping", IEEE J. Quant. Electron.1991.27,1537.
    [149]P.L. Tihanyi, F.C. Jain, M.J. Robinson, J.E. Dixon, J.E. Williams, K. Meehan, M. S. O'Neill, L. S.Heath, and D.M.Beyea, "High power AlGaAs-GaAs visible lasers", IEEE Photon. Tech. Lett.1994,6:775-777.
    [150]F. Daiminger, S. Heinemann, J. Nappi, M. Toivonen and H Asonen, "100W cw Al-free 808nm linear bar arrays", OSA Tech. Dig. Series,1997,97:482-483.
    [151]J. Diaz, H.J. Yi, M. Razeghi, G.T. Burnham, Long term reliability of Al-free InGaAsP/GaAs (λ=808nm) lasers at high power high temperature operation, Appl. Phys. Lett,1997,71:3042-3044.
    [152]A. Al-Muhanna,J.K. Wade, T. Earles, J. Lopez, and L.J. Mawst High-performance, reliable,730-nm-emitting Al-free active region diode lasers,Appl. Phys. Lett.1998,73:2869-2871.
    [153]G. Erbert, F. Bugge, A. Knauer, J. Maege, A. Oster, J. Sebastian. R. Staske,A. Thies, H. Wenzel M. Weyers and G. Traenkle, "Diode lasers with Al-free quantum wellsembedded in LOC AlGaAs waveguides between 715nm and 840nm, Proc. SPIE,1999,3628:19-28.
    [154]G. Erbert. F. Bugge, A. Knauer, J. Sebastian, A. Thies, High power tensile-strained GaAsP-AlGaAs quantum well lasers emitting between 715 nm and 790 nm". IEEE. J. Select. Topics Quant. Electron, vol.5, No.3,1999.
    [155]S. L. Orsila, M. Toivonen, P.Savolainen, V. Vilokkinen, P. Melanen, M. Pessa. M. J. Saarinen, P. Uusimaa.F. Fang, M. Jansen and R. Nabiev, High-power 600nm-range lasers grown by solid-source molecular beam epitaxy", Proc. SPIE.1999.3628:203-208.
    [156]J.S. Osinski, B. Lu. H. Zhao, B. Schmitt, High-power continuous-wave operation of 630nm band laser diode arrays. Electron. Lett.1998.34:2336-2337.
    [157]H.-Jaeckel, G L. Bona, H. Richard. P.-Roentgen, P. Unger, Reliable 1.2W CW red-emitting (Al)GaInP diode laser array with AlGaAs cladding layers". Electron. Lett.1993,29,101-102.
    [158]A.I. Gurary. G.S. Tompa, A.G. Thompson, R.A. Stall, P.A. Zawadzki, and N.E. Schumacher.Thermal and flow issues in the design of metalorganic chemical vapor deposition reactors,J.Cryst. Growth,1994,145:642-649.
    [159]J. Jimenez, Microprobe Characterization of Optoelectronic Materials (Opto-electronic properties semiconductors and superlattices),2002.
    [160]J. G. Grasselli, B. J. Bulkin, Analytical Raman Spectroscopy, John Wiley and Sons, Inc, ISBN,1991.
    [161]M.T.Kelemen, Fraunhofer Institu t fur Angewandte Festkorperphysik (IAF), Freiburg. Germany. Presentation at OSRAM Opto Semiconductor.2005.
    [162]S. D. McDougall, O. P. Kowalski, C. J. Hamilton, IEEE J. Select. Top. Quantum Electron.1998,4,636.
    [163]R. W. Lambert, T. Ayling, A. F. Hendry, J. M. Carson, D. A. Barrow, S. McHendry, C. J. Scott, A. McKee, and W. Meredith, J. Lightwave Tech.2006,24:956-959.
    [164]M. J. Pelletier, Analytical applications of Raman spectroscopy, Black-well Science,1999.
    [165]S. Zollner, U. Schmid, N. E. Christensen, C. H. Grein.Proceedings of 20th International Conference On Physics ofSemiconductors, edited by E. M. Anastassakis and J. D. Joannopoulos World Scientific, Singapore,1990,3:1735.
    [166]O. Ueda, Reliability and Degradation of Ⅲ-Ⅴ Optical Devices, Artech house,1996.
    [167]L. A. Johnson, Laser Diode Burn-in and Reliability Testing. Mater. Electron.2006,44(2):4-7.
    [168]F. R. Nash, Estimating Device Relia bility. Assessment of Credibility, Kluver Academic Publishers,1993.
    [169]P. Altieri-Weimar, Efficiency and Reliability of AlGaInP LEDs, Dissertation, University of Ulm,Germany,2005.
    [170]G. Hatakoshi, M. Suzuki, N. Motegi, M. Ishikawa. and Y. Uematsu, Transaction Electronics,1988,71,315.
    [171]M. Fukuda, Reliability and Degradation of Semiconductor Lasers and LEDs, Artech House,1991,3(4):751-753.
    [172]R. Michalzik, Advanced Optoelectronic Communication Systems, Script, Op-toelectronic department, Univer sity of Ulm, Germany,2003.
    [173]L. A. Coldren,S. W. Corzine, Diode Lasers and Photonic Integrated cir-cuits, Wiley series in microwave & optical engineering,1995.
    [174]P. S. Zory Jr, Quantum Well Lasers, Academic Press.1993.
    [175]C. M. Wolfe, N. Holonyak, Jr. and G. E. Stillman, Physical properties of semi-conductor, Prentice-Hall international editions,1989.
    [176]R. Diehl, High-Power Diode Lasers Fundamentals, Technology, Applica-tions, Springer-Verlag,2000.
    [177]C. Geng, Spontane Mischkristallordnung in AIGaIn P Laserstrukturen, Disser-tation, University of Stuttg art,1997.
    [178]G.B.Stringfellow.M. G. Craford, High-Brightness Light Emit-ting Diodes,1997,48.
    [179]H. C. Casey, Jr. and M. B. Panish, Heterostructure Lasers, Part B, Materials and Operating Characteristics,1978
    [180]A. Meney, A. Prins, A. Philips, J. Sly, E. O'Reilly, D. Dunstan, A. Adams, and A. Valster, IEEE J. Quantum Electron.1995,1:697.
    [181]S. Andersson-Engels and T. Trebst, BRIGHTER.EU Project e-Newslettern,2006.
    [182]M. D. Fairchild, Color appearance modes,2nd edition, Wiley series in Imaging Science and Technology,2005.
    [183]E. Kapon Semiconductor Lasers II, Materials and Structures 1999.
    [184]P. Ressel and G. Erbert, Verfahren zur Passivierung der Spiegelflachen von Optischen Halbleiterbauelementen, German patent 2003.
    [185]P. Yeh, Optical Waves in Layere d Media, John Wiley & Sons Inc, ISBN 0-471-82866-1 (1988).
    [186]N. Chand and R. A. Hamm, In-situ technique for cleaving crystals, United States Patent 1998.
    [187]E. J. Skogen, Quantum Well Interm ixing for Wavelength-Agile Photonic Inte-grated Circuits, Dissertation, University of California Santa Barbara,2003.
    [188]S. Charbonneau, E. Kotels, P. Poole, J. He, G. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. Goldberg, P. Piva, and I. Mitchell, IEEE J. Sel. Topics in Quantum Electron.1998,4,772.
    [189]O. Madelung, Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology,1996.
    [190]H. C. Casey, Jr. and M. B. Panish,Heterostructure Lasers, Part A:Fun-damental Principles Academic,1978.
    [191]S. Adachi, GaAs and Related Materials:Bulk Semiconducting and Su-perlattice Properties World Scientific, Singapore,1994.
    [192]S. Adachi,Physical Properties of Ⅲ-Ⅴ Semiconductor Compounds:InP,InAs, GaAs, GaP, InGaAs, and InGaAsP Wiley,1992.
    [193]V. Swaminathan, inIndium Phosphide and Related Materials:Process-ing, Technology, and Devices, edited by A. Katz Artech House, Boston,1992.
    [194]V. Swaminathan and A. T. Macrander,Materials Aspects of GaAs andInP Based Structures Prentice Hall, Englewood Cliffs, NJ,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700