用户名: 密码: 验证码:
消逝场激发下的表面等离子体共振传感和表面增强拉曼光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面等离子体是导体表面自由电子的集体振荡模式,是金属表面振荡电荷和入射光电磁场之间的共振作用形成的。它具有独特的光学特性并吸引着人们极大的兴趣。随着纳米技术的日益成熟,表面等离子体已经成为目前研究的热点,它的机制、效应及应用的研究和进展都受到了人们的关注。表面等离子体技术在生化传感,表面增强拉曼光谱等领域都已得到广泛的应用。而提高传感和表面增强拉曼光谱的检测灵敏度是表面等离子体技术在这两个领域中得到应用的关键。在本文中,我们将设计并制备具有纳米结构的表面等离子体基底,用于提高传感和表面增强拉曼光谱检测的灵敏度。
     主要内容包括以下三个方面:
     1.表面等离子体共振(SPR)传感器的灵敏度是衡量其性能的最主要参数,而表面等离子体产生的金属表面电磁场增强对SPR传感灵敏度的提高具有至关重要的作用。为了提高SPR传感器的灵敏度,我们在棱镜表面引入了纳米结构,采用了模板印刷和电化学沉积技术制备了周期性的银纳米碗阵列基底,通过表面电磁场强度的增加从而提高了SPR传感器的灵敏度。该研究为下一代高灵敏的SPR传感器设计提供了启发和新的思路。
     2.表面增强拉曼散射(SERS)是一种无损的光谱检测方法,可以提供关于分子结构的详细信息。SERS基底的增强能力是它是否可以进行高灵敏检测的核心因素。以实现高增强能力的SERS基底为目标,我们设计了一种表面等离子体纳米天线,这种天线构型由棱镜/银纳米井阵列构成。通过Kretschmann棱镜,对入射光的收集效率可以接近100%。利用纳米井阵列可以使收集到的入射光能量汇聚到近场,使金属表面的局域电磁场达到300倍的增强。同时,通过周期性的纳米井阵列也可以控制SERS信号的耦合发射方向,使SERS信号以垂直于基底的方向发射出来,从而有利于SERS信号的收集。该SERS基底的设计关键之处在于基于天线理论来同时提高能量的收集效率、能量的局域化汇聚能力、和能量发射效率。因此该模型在其它需设计光学元件的应用领域中都具有重要的应用潜力。
     3.从SERS的增强贡献来看,热点,即基底上具有非常高的电磁场的区域,在SERS的增强信号中占有主导地位。一般来说,人们常常可以在以下位置获得热点:距离很近的两个纳米粒子之间或突出表面的尖锐位置。在本研究中,区别于传统的间隙型和针尖型热点构型,我们提出了一种利用光波导和金属纳米粒子相结合的方法来聚集和增强局域电磁场强度进行SERS光谱检测。这种SERS基底结合了两种效应,一种是由光波导带来的波导共振效应,另一种是金属纳米粒子上的局域表面等离子体共振效应。在它们的共同作用下,可以使单个金属纳米粒子周围的电场强度增强~103,与热点的增强能力相差不多。且与一般热点相比,该体系中最强电场位于金属纳米粒子的两侧,更易于实现对化合物和生物大分子的高灵敏度检测。
Surface plasmon is the collective oscillation of free electrons on metal surface,which is the result of the interaction of oscillation charge on metal surface and thefield of incident light. Surface plasmon has unique optical properties and has attractedgreat interests from people. With the increasing maturity of nanotechnology, surfaceplasmon has become the research hotspot. Its mechanism and application areintensively studied by researchers. Now surface plasmon has been widely applied inbiochemical sensing and surface enhanced Raman spectroscopy, in which thedetection sensitivity is the key issue. In this paper, in order to improve the sensing andRaman detection sensitivity, we design and prepare the surface plasmon substrate withnanostructures. The main contents include the following three aspects:
     1. The sensitivity of the surface plasmon resonance (SPR) sensor is the mostimportant parameter in evaluating its performance. In order to improve the sensitivityof SPR sensor, we introduce nanostructures on the prism surface. We prepare a silvernano-bowl array by using the template lithography and electrochemical depositiontechnique. The sensitivity of SPR sensor is improved by increasing the intensity ofsurface electromagnetic field.
     2. Surface enhanced Raman scattering (SERS) is a non-destructive spectrumdetection method, which can provide detailed information about molecular structures.The enhancing capacity of SERS substrate is the key issue in its high sensitivedetection. Here we design a surface plasmon nano-antenna, which is composed of aprism/silver nanowell array configuration. Through the Kretschmann prism, thecollection efficiency of the incident light is close to100%. The use of nanowell array can concentrate the collected light into nearfield, and produce a300timesenhancement in electric field intensity. In addition, through the nanowell array, we canalso control the SERS signal directional coupled emission for easy collection. In thedesign of this SERS substrate, the key issue lies in the improvement the collection andemission efficiency based on the antenna theory.
     3. For SERS enhancement contribution, hotspot, the regions on the substratewhich have intensive electromagnetic field plays a dominate role. Generally peoplecan often get hotspots in the following locations: positions between two nanoparticlesin close proximity, or sharp prominent surface. Here, different from the traditionalgap-or tip-type hotspot configuration, we propose a method combining opticalwaveguide and metal nanoparticles to enhance the local field intensity for SERSdetection. This SERS substrate has two enhancement contributions, one is from thewaveguide resonance, and the other is from the localized surface plasmon resonance.Under their combination effect, the local field around an isolated Ag nanoparticle canbe enhanced for about103times. Compared with general hotspots, in thisconfiguration the strongest electric field is located at the both sides of Agnanoparticles, which will have good performance in the detection of macromolecules.
引文
1Faraday, M. Experimental relations of gold (and other metals) to light. Phil. Trans.R. Soc.1857,147,145-181.
    2Wood, R. W. On a remarkable case of uneven distribution of light in a diffractiongrating spectrum. Phil Mag,1902,4,396.
    3Fano, U. J. The Theory of Anomalous Diffraction Gratings and ofQuasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves). Opt SocAm,1941,31,213.
    4Stem, E. A.; Farrell, R. A. Surface Plasma Oscillations of a Degenerate ElectronGas. Phys Rev,1960,120,130.
    5Gordon, J.G.; Ernst, S. Surface plasmons as a probe of the electrochemicalinterface. Surface Sci.1980,101,499–506.
    6Nylander, C.; Liedberg, B.; Lind, T. Gas detection by means of surface plasmonsresonance. Sensors and Actuators1982,379–88.
    7Liedberg, B.; Nylander, C.; Lundstrom, I. Surface plasmons resonance for gasdetection and biosensing. Sensors and Actuators1983,4299–304.
    8Liedberg, B.; Nylander, C.; Lundstrm, I. Biosensing with surface plasmonresonance—how it all started. Biosensors Bioelectron.1995,10, i–ix.
    9Liedberg, B.; Lundstrom, I.; Stenberg, E. Principles of biosensing with anextended coupling matrix and surface plasmon resonance. Sensors and ActuatorsB1993,11,63–72.
    10J nsson, U.; F gerstam, L.; Ivarsson, B. et al. Real-time biospecfic interactionanalysis using surface plasmon resonance and a sensor chip technology.Biotechniques1991,11,620–627.
    11L fas, S.; Malmqvist, M.; R nnberg, I.; Stenberg, E.; Liedberg, B.; Lundstr m, I.Bioanalysis with surface plasmon resonance. Sensors and Actuators B1991,5,79–84.
    12Karlsson, R.; Stahleberg, R. Surface plasmon resonance detection and multispotsensing for direct monitoring of interactions involving low-molecular-weightanalytes and for determination of low affnities. Anal. Biochem.1995,228,274–280.
    13Pfeifer, P.; Aldinger, U.; Schwotzer, G.; Diekmann, S.; Steinrucke, P. Real timesensing of spfecc imolecular binding using surface plasmon resonancespectroscopy. Sensors and Actuators B1999,54,166–175.
    14Cullen, D. C.; Brown, R. G., Lowe, C. R. Detection of immunocomplexformation via surface plasmon resonance on goldcoated diffraction gratings.Biosensors1987,3,211–225.
    15Cullen, D. C.; Lowe, C. R. A direct surface plasmon-polariton immunosensor:preliminary investigation of the non-specifc adsorption of serum components tothe sensor interface. Sensors and Actuators B1990,1,576–579.
    16Vukusic, P. S.; Bryan-Brown, G. P.; Sambles, J. R. Surface plasmon resonance ongrating as novel m eans for gas sensing. Sensors and Actuators B1992,8,155–160.
    17Jory, M. J.; Vukusic, P. S.; Sambles, J. R. Development of a prototype gas sensorusing surface plasmon resonance on gratings, Sensors and Actuators B1994,17,1203–1209.
    18Slavik, R.; Homola, J.; Ctyroky, J. Novel surface plasmon resonance sensor basedon single-mode opticalfber. Chemical, Biochemical and Environmental FiberSensors IX, Munich, Germany, June1997, Proc. SPIE1997,3105,325–331.
    19Homola, J.; Slavik, R.; Ctyroky, J. Interaction betwefenber modes and surfaceplasmon waves: spectral properties. Opt. Lett.1997,22,1403–1405.
    20Jung, L. S.; Campbell, C. T.; Chinowsky, T. M.; Mar, M. N.; Yee, S. S.Quantitative interpretation of the response of surface plasmon resonance sensorsto adsorbedflms. Langmu ir1998.14,5636–48.
    21Haes, A. J., Van Duyne; R. P. A unifed view of propagating and localized surfaceplasmon resonance biosensors. Anal. Bioanal. Chem.2004,379,920–30.
    22Whitney, A. V.; Elam, J. W.; Zou, S.; Zinovev, A. V.; Stair, P. C. et al. Localizedsurface plasmon resonance nanosensor: a high-resolution distance-dependencestudy using atomic layer deposition. J. Phys. Chem. B2005,109,20522–28.
    23Haes, A. J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. Ananoscale optical biosensor:the long range distance dependence of the localized surface plasmon resonance ofnoble metal nanoparticles. J. Phys. Chem. B2004,108,109–16.
    24Abbe, E.; Beitr ge, Z. Theorie des Mikroskops und der mikroskopischenWahrnehmung. Arch. Mikroskop. Anat.1873,9,413–420.
    25Sommerfeld, A. Ueber die Fortpflanzung elektrodynamischer Wellen laengs einesDrahtes. Ann. Phys. Chem.1899,303,233–290.
    26Heisenberg, W. Ueber den anschaulichen Inhalt der quantentheoretischenKinematik und Mechanik. Z. Phys.1927,43,172–198.
    27Inouye, Y.; Kawata, S. Near-field scanning optical microscope with a metallicprobe tip. Opt. Lett.1994,19,159–161.
    28Furukawa, H.; Kawata, S. Local field enhancement with an aperturelessnear-field-microscope probe. Opt. Commun.1998,148,221–224.
    29Hayazawa, N.; Inouye, Y.; Sekkat, Z.; Kawata, S. Near-field Raman scatteringenhanced by a metalized tip. Chem. Phys. Lett.2001,335,369–374.
    30Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett.2000,85,3966–3969.
    31Smith, D. R.; Schurig, D.; Rosenbluth, M.; Schultz, S. Limitations onsubdiffraction imaging with a negative refractive index slab. Appl. Phys. Lett.2003,82,1506–1508.
    32Fang, N.; Lee, H.; Sun, C.; Zhang, X. Sub-diffraction-limited optical imagingwith a silver superlens. Science2005,308,534–537.
    33Liu, Z.; Lee, H.; Xiong, Y.; Sun, C.; Zhang, X. Far-field optical hyperlensmagnifying sub-diffraction-limited optics. Science2007,315,1686.
    34Smolyaninov, I. I.; Hung, Y. J.; Davis, C. C. Magnifying superlens in the visiblefrequency range. Science2007,315,1699–1701.
    35Shvets, G.; Trendafilov, S.; Pendry, J. B.; Sarychev, A. Guiding, focusing, andsensing on the subwavelength scale using metallic wire arrays. Phys. Rev. Lett.2007,99,53903.
    36Kawata, S.; Ono, A.; Verma, P. Subwavelength colour imaging with a metallicnanolens. Nature Photon.2008,2,438–442.
    37Born, M; Wolf, E. Principles of Optics.7th edn, Ch.8(Cambridge Univ. Press,1999).
    38Takahara, J.; Yamagishi, S.; Taki, H.; Morimoto, A.; Kobayashi, T. Guiding of aone-dimensional optical beam with nanometer diameter. Opt. Lett.1997,22,475–477.
    39Nerkararyan, K. V. Superfocusing of a surface polariton in a wedge-like structure.Phys. Lett. A1997,237,103–105.
    40Le Ru, E.C.; Etchegoin, P. G. Principles of Surface-Enhanced RamanSpectroscopy and related plasmonic e ects, Elsevier,2009.
    41Raman, C. V. K. K. S. A new type of secondary radiation. Nature1928,121,501.
    42Fleischmann, M.; Hendra, P. J.; Mcquillan, A. J. Raman spectra from electrodesurfaces. J. Chem. Soc., Chem. Commun.1973,80-81.
    43Fleischmann, M.; Hill, I. R.; White, R. E.; Bockris, J. O.; Conway, B. E.; Yeager,E., E. In ComprehensiVe Treatise of Electrochemistry. Plenum Press: New York,1984,8,373.
    44Jeanmaire, D. J.; Van Duyne, R. P. Surface Raman Spectroelectrochemistry Part I.Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized SilverElectrode. J. Electroanal. Chem.1977,84,1-20.
    45Van Duyne, R. P. In Chemical and Biochemical Applications of Lasers; Moore, C.B., Eds.; Academic Press: New York,1979,4,101.
    46Albrecht, M. G.; Creighton, J. A. Anomalously intense Raman spectra of pyridineat a silver electrode. J. Am. Chem. Soc.1977,99,5215.
    47Chang, R. K., Furtak, T. E. Surface Enhanced Raman Scattering; Plenum Press:New York,1982.
    48Chang, R. K. Surface Enhanced Raman Scattering at electrodes: A status report.Ber. Bunsen-Ges. Phys. Chem.1987,91,296.
    49Cotton, M. T. AdV. Spectrosc.1988,16,91.
    50Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Ultrasensitivechemical analysis by Raman spectroscopy. Chem. ReV.1999,99,2957.
    51Le Ru, E. C. et al. Surface Enhanced Raman Scattering Enhancement Factors: AComprehensive Study. J. Phys. Chem. C,2007,111,13794–803.
    52Pettinger, B. In Adsorption at Electrode Surface; Lipkowski, J., Ross, P. N., Eds.;VCH: New York,1992,285.
    53Schrotter, W. H.; Klochner, H. W. In Raman Spectroscopy of Gases and Liquids;Weber, A., Ed.; Springer-Verlag: Berlin,1979,11,123.
    54Creighton, J. A.; Blatchford, C. G. Albrecht M. G. Plasma resonanceenhancement of Raman scattering by pyridine adsorbed on silver or gold solparticles of size comparable to the excitation wavelength. J. Chem. Soc., FaradayII1979,75,790.
    55Pettinger, B.; Wenning, U. Chem. Phys. Lett.1978,56,263.
    56Campion, A. In Vibrational Spectroscopy of Molecules on Surface; Yates J. T.,Madey T. E., Eds.; Plenum: New York,1987; Chapter5,345.
    57Moskovits, M. The Dependence of the Metal-Molecule Vibrational Frequency onthe Mass of the Adsorbate and its Relevance to the Role of Adatoms inSurface-Enhanced Raman Scattering. Chem. Phys. Lett.1983,98,498.
    58Dorain, P. B.; Von Raben, K. V.; Chang, R. K.; Laube, B. L. Catalytic formationof sulfite and sulfate ions from sulfur dioxide on silver observed bysurface-enhanced Raman scattering. Chem. Phys. Lett.1981,84,405-9.
    59Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann, W. Surface-enhanced Ramanscattering. J. Phys. Chem. Condens. Matter1992,4,1143.
    60Moskovits, M. Surface-enhanced spectroscopy. ReV. Mod. Phys.1985,57,783.
    61Otto, A. Light Scattering in Solid. Springer-Verlag: Berlin,1984,4,289.
    62Kerker, M. Electromagnetic model for surface-enhanced Raman scattering (SERS)on metal colloids. Acc. Chem. Res.1984,17,271.
    63Persson, B. N. On the theory of surface-enhanced Raman scattering. J. Chem.Phys. Lett.1981,82,561.
    64Moskovits, M.; Tay, L. L.; Yang, J.; Haslett, T. SERS and the single molecule.Top. Appl. Phys.2002,82,215.
    65Otto, A. Theory of First Layer and Single Molecule Surface Enhanced RamanScattering (SERS). Phys. Stat. Sol. A2001,188,1455.
    66Kerker, M.; Wang, S.; Chew, H. Surface enhanced Raman scattering (SERS) bymolecules adsorbed at spherical particles: errata. Appl. Opt.1980,19,4159.
    67Lombardi, J. R.; Birke, R. L.; Lu, T. H.; Xu, J. Charge-Transfer Contributions toSERS. J. Chem. Phys.1986,84,4174
    68Otto, A. International Conference on Raman Spectroscopy XVI, Kapstadt, SouthAfrica,1998.
    69Campion, A. Surface-enhanced Raman scattering. Chem. Soc. Rev.1998,4,241.
    70Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann, W. Surface-enhanced Ramanscattering. J. Phys. Chem. Condens. Matter1992,4,1143.
    71Sun, G. G. Surface-enhanced Raman spectroscopy investigation of surfaces andinterfaces in thin films on metals. PhD thesis of the Ruhr-University Bochum,2007.
    72Kerker, M.; Siiman, O.; Bumm, L. A.; Wang, D. S. Surface enhanced Ramanscattering (SERS) of citrate ion adsorbed on colloidal silver. Appl. Opt.1980,19,3253-5.
    73Wang, D. S.; Kerker, M. Enhanced Raman scattering by molecules adsorbed atthe surface of colloidal spheroids. Phys. Rev. B1981,24,1777-90.
    74Moskovits, M. Surface roughness and the enhanced intensity of Raman scatteringby molecules adsorbed on metals. J. Chem. Phys.1978,69,4159.
    75Moskovits, M. Enhanced Raman scattering by molecules adsorbed onelectrodes--a theoretical model. Solid State Commun.1979,32,59.
    76Inoue, M.; Ohtaka, K. Surface enhanced Raman scattering by metal spheres. J.Phys. Soc. Jpn.1983,52,3853.
    77Zeman, E. J.; Schatz, G. C. An accurate electromagnetic theory study of surfaceenhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium,indium, zinc, and cadmium. J. Phys. Chem.1987,91,634-43.
    78Garcia-Vidal, F. J.; Pendry, J. B. Collective Theory for Surface Enhanced RamanScattering. Phys. Rev. Lett.1996,77,1163-6.
    79Xiao, T.; Ye, Q.; Sun, L. Hunting for the Active Sites of Surface-EnhancedRaman Scattering: A New Strategy Based on Single Silver Particles. J. Phys.Chem. B1997,101,632-8.
    80Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Van Duyne, R. P. Surface-EnhancedRaman Spectroscopy. Annu. Rev. Anal. Chem.,2008,1,601–626.
    81Biggs, K. B.; Camden, J. P.; Anker, J. N.; Van Duyne, R. P. Surface-enhancedRaman spectroscopy of benzenethiol adsorbed from the gas phase onto silver filmover nanosphere surfaces: determination of the sticking probability and detectionlimit time. J. Phys. Chem. A,2009,113,4581–4586.
    82Zhang, X.; Young, M. A.; Lyandres, O.; Van Duyne, R. P. Rapid Detection of anAnthrax Biomarker by Surface-Enhanced Raman Spectroscopy. J. Am. Chem.Soc.,2005,127,4484–4489.
    83Atwater, H. A., Polman, A. Plasmonics for improved photovoltaic devices. Nat.Mater.,2010,9,205–213.
    84Nie, S.; Emory, S. R. Surface-Enhanced Raman Scattering Nanoparticles. Science,1997,275,1102–1106.
    85Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld,M. S. Single Molecule Detection Using Surface-Enhanced Raman Scattering(SERS). Phys. Rev. Lett.,1997,78,1667–1670.
    86Michaels, A. M.; Nirmal, M.; Brus, L. E. Surface Enhanced Raman Spectroscopyof Individual Rhodamine6G Molecules on Large Ag Nanocrystals. J. Am. Chem.Soc.,1999,121,9932–9939.
    87Michaels, A. M.; Jiang, J.; Brus, L. Ag Nanocrystal Junctions as the Site forSurface-Enhanced Raman Scattering of Single Rhodamine6G Molecules. J. Phys.Chem. B,2000,104,11965–11971.
    88McMahon, J. M.; Li, S.; Ausman, L. K.; Schatz, G. C. Modeling the Effect ofSmall Gaps in Surface-Enhanced Raman Spectroscop. J. Phys. Chem. C,2011,116,1627–1637.
    89Xu, Y. L. Electromagnetic scattering by an aggregate of spheres. Appl. Opt.,1995,34,4573–4588.
    90McMahon, J.; Henry, A.-I.; Wustholz, K.; Natan, M.; Freeman, R.; Van Duyne, R.P.; Schatz, G. Gold nanoparticle dimer plasmonics: finite element methodcalculations of the electromagnetic enhancement to surface-enhanced Ramanspectroscopy. Anal. Bioanal. Chem.,2009,394,1819–1825.
    91Rojas, V R.; Claro, F. Theory of surface enhanced Raman scattering in colloids. J.Chem. Phys.,1993,98,998–1006.
    92Xu, H.; Aizpurua, J.; Kall, M.; Apell, P. Electromagnetic contributions tosingle-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E:Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.,2000,62,4318–4324.
    93Zou, S.; Schatz, G. C. Silver nanoparticle array structures that produce giantenhancements in electromagnetic fields. Chem. Phys. Lett.,2005,403,62–67.
    94Hao, E.; Schatz, G. C. Electromagnetic fields around silver nanoparticles anddimers. J. Chem. Phys.,2004,120,357–366.
    95Camden, J. P.; Dieringer, J. A.; Zhao, J.; Van Duyne, R. P. Controlled PlasmonicNanostructures for Surface-Enhanced Spectroscopy and Sensing. Acc. Chem.Res.,2008,41,1653–1661.
    96Kleinman, S. L.; Frontiera, R. R.; Henry, A.-I.; Dieringer, J. A.; Van Duyne, R. P.Creating, Characterizing, and Controlling Chemistry with SERS Hot Spots. Phys.Chem. Chem. Phys.,2013,15,21.
    97Diebold, E. D.; Peng, P.; Mazur, E. Isolating surface-enhanced Raman scatteringhot spots using multiphoton lithography. J. Am. Chem. Soc.,2009,131,16356–16357.
    98Yang, M.; Alvarez-Puebla, R.; Kim, H.-S.; Aldeanueva-Potel, P.; Liz-Marzan; L.M.; Kotov, N. A. SERS-Active Gold Lace Nanoshells with Built-in Hotspots.Nano Lett.,2010,10,4013–4019.
    99Theiss, J., Pavaskar, P., Echternach, P. M.; Muller, R. E.; Cronin, S. B. PlasmonicNanoparticle Arrays with Nanometer Separation for High-Performance SERSSubstrates. Nano Lett.,2010,10,2749–2754.
    100Qin, L.; Zou, S.; Xue, C.; Atkinson, A.; Schatz, G. C.; Mirkin, C. A. Designing,fabricating, and imaging Raman hot spots. Proc. Natl. Acad. Sci. U. S. A.,2006,103,13300–13303.
    101Ward, D. R.; Grady, N. K.; Levin, C. S.; Halas, N. J.; Wu, Y.; Nordlander, P.;Natelson, D. Electromigrated Nanoscale Gaps for Surface-Enhanced RamanSpectroscopy. Nano Lett.,2007,7,1396–1400.
    102Alexander, K. D.; Hampton, M. J., Zhang, S.; Dhawan, A.; Xu, H.; Lopeza, R. Ahigh-throughput method for controlled hot-spot fabrication in SERS-active goldnanoparticle dimer arrays. J. Raman Spectrosc.,2009,40,2171–2175.
    103Hu, M.; Ou, F. S.; Wu, W.; Naumov, I.; Li, X.; Bratkovsky, A. M.; Williams, R. S.;Li, Z. Gold Nanofingers for Molecule Trapping and Detection. J. Am. Chem. Soc.,2010,132,12820–12822.
    104Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.;Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q.Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature,2010,464,392–395.
    105Dieringer, J. A.; McFarland, A. D.; Shah, N. C.; Stuart, D. A.; Whitney, A. V.;Yonzon, R.; Young, M. A.; Zhang, X.; Van Duyne, R. P. Surface enhanced Ramanspectroscopy: new materials, concepts, characterization tools, and applications.Faraday Discuss.,2006,132,9–26.
    106Van Duyne, R. P.; Hulteen, J. C.; Treichel, D. A. Atomic Force Microscopy andSurface-Enhanced Raman Spectroscopy. I. Ag Island Films and Ag Film OverPolymer Nanosphere Surfaces Supported on Glass. J. Chem. Phys.,1993,99,2101–2115.
    107Lemma, T.; Aroca, R. F. Single molecule surface-enhanced resonance Ramanscattering on colloidal silver and Langmuir–Blodgett monolayers coated withsilver overlayers. J. Raman Spectrosc.,2002,33,197–201.
    108Hulteen, J. C.; Treichel, D. A.; Smith, M. T.; Duval, M. L.; Jensen, T. R.; VanDuyne, R. P. Nanosphere Lithograph yS:ize-Tunable Silver Nanoparticle andSurface Cluster Arrays. J. Phys. Chem. B,1999,103,3854–3863.
    109Orendorff, C. J.; Gearheart, L.; Jana, N. R.; Murphy, C. J. Aspect ratiodependence on surface enhanced Raman scattering using silver and gold nanorodsubstrates. Phys. Chem. Chem. Phys.,2006,8,165–170.
    110Halas, N. Playing with Plasmons: Tuning the Optical Resonant Properties ofMetallic Nanoshells. MRS Bull.2005,362–367.
    111Fang, Y.; Seong, N.; Dlott, D. D. Measurement of the Distribution of SiteEnhancements in Surface-Enhanced Raman Scattering. Science,2008,321,388–392.
    112Diebold; E. D.; Mack, N. H.; Doorn, S. K.; Mazur, E. FemtosecondLaser-Nanostructured Substrates for Surface-Enhanced Raman Scattering.Langmuir,2009,25,1790–1794.
    113Gunnarsson, L.; Bjerneld, E. J.; Xu, H.; Petronis, S.; Kasemo, B.; Kall, M.Interparticle coupling effects in nanofabricated substrates for surface-enhancedRaman scattering. Appl. Phys. Lett.,2001,78,802–804.
    114Atay, T.; Song, J.-H.; Nurmikko, A. V. Strongly Interacting Plasmon NanoparticlePairs: From Dipole DipoleInteractiontoConductively CoupledRegime. NanoLett.,2004,4,1627–1631.
    115Yu, Q.; Guan, P.; Qin, D.; Golden, G.; Wallace, P. M. Inverted Size-Dependenceof Surface-Enhanced Raman Scattering on Gold Nanohole and Nanodisk Arrays.Nano Lett.,2008,8,1923–1928.
    116Lee, S. J.; Morrill, A. R.; Moskovits, M. Hot Spots in Silver Nanowire Bundlesfor Surface-Enhanced Raman Spectroscopy. J. Am. Chem. Soc.,2006,128,2200–2201.
    117Qin, L.; Park, S.; Huang, L.; Mirkin, C. A. n-Wire Lithography. Science,2005,309,113–115.
    118Gopinath, A.; Boriskina, S. V.; Premasiri, W. R.; Ziegler, L.; Reinhard, B. M.; DalNegro, L. Plasmonic Nanogalaxies: Multiscale Aperiodic Arrays forSurface-Enhanced Raman Sensing. Nano Lett.,2009,9,3922–3929.
    119Kleinman, S. L.; Ringe, E.; Valley, N.; Wustholz, K. L.; Phillips, E.; Scheidt, K.A.; Schatz, G. C.; Van Duyne, R. P. Single-Molecule Surface-Enhanced RamanSpectroscopy of Crystal Violet Isotopologues: Theory and Experiment. J. Am.Chem. Soc.,2011,133,4115–4122.
    120Lim, D.-K.; Jeon, K.-S.; Kim, H. M.; Nam, J.-M.; Suh, Y. D.Nanogap-engineerable Raman-active nanodumbbells for single-moleculedetection. Nat. Mater.,2010,9,60–67.
    121Lim, D.-K.; Jeon, K.-S.; Hwang, J.-H.; Kim, H.; Kwon, S.; Suh, Y. D.; Nam, J.-M.Highly uniform and reproducible surface-enhanced Raman scattering fromDNA-tailorable nanoparticles with1-nm interior gap. Nat. Nanotechnol.,2011,6,452–460.
    122Kim, N. H.; Lee, S. J.; Moskovits, M. Reversible Tuning of SERS Hot Spots withAptamers. Adv. Mater.,2011,23,4152–4156.
    123Gehan, H.; Fillaud, L.; Chehimi, M. M.; Aubard, J.; Hohenau, A.; Felidj, N.;Mangeney, C. Thermo-induced Electromagnetic Coupling in Gold/PolymerHybrid Plasmonic Structures Probed by Surface-Enhanced Raman Scattering.ACS Nano,2010,4,6491–6500.
    124Alvarez-Puebla, R. A.; Contreras-Caceres, R.; Pastoriza-Santos, I.; Perez-Juste, J.;Liz-Marzan, L. M. Au@pNIPAM Colloids as Molecular Traps forSurface-Enhanced, Spectroscopic, Ultra-Sensitive Analysis. Angew. Chem., Int.Ed.,2009,48,138–143.
    125Doering, W.; Piotti, M.; Natan, M.; Freeman, R. SERS as a Foundation forNanoscale, Optically Detected Biological Labels. Adv. Mater.,2007,19,3100–3108.
    126Gratton, S. E. A.; Williams, S. S.; Napier, M. E.; Pohlhaus, P. D.; Zhou, Z.; Wiles,K. B.; Maynor, B. W.; Shen, C.; Olafsen, T.; Samulski, E. T.; DeSimone, J. M.The pursuit of a scalable nanofabrication platform for use in material and lifescience applications. Acc. Chem. Res.,2008,41,1685–1695.
    127Ou, F. S.; Hu, M.; Naumov, I.; Kim, A.; Wu, W.; Bratkovsky, A. M.; Li, X.;Williams, R. S.; Li, Z. Hot-Spot Engineering in Polygonal NanofingerAssemblies for Surface Enhanced Raman Spectroscopy. Nano Lett.,2011,11,2538–2542.
    128Domke, K. F.; Zhang, D.; Pettinger, B. Toward Raman fingerprints of single dyemolecules at atomically smooth Au(111). J. Am. Chem. Soc.,2006,128,14721–14727.
    129Neacsu, C. C.; Dreyer, J.; Behr, N.; Raschke, M. B. Scanning-probe Ramanspectroscopy with single-molecule sensitivity. Phys. Rev. B: Condens. Matter,2006,73,193406.
    130Sonntag, M. D.; Klingsporn, J. M.; Garibay, L. K.; Roberts, J. M.; Dieringer, J. A.;Seideman, T.; Scheidt, K. A.; Jensen, L.; Schatz, G. C.; Van Duyne, R. P.Single-Molecule Tip-Enhanced Raman Spectroscopy. J. Phys. Chem. C,2012,116,478–483.
    131Anema, J. R.; Li, J.-F.; Yang, Z.-L.; Ren, B.; Tian, Z.-Q. Enhancement Strategies:Borrowing SERS Activity Core-Shell Nanoparticle (NP). Annu. Rev. Anal.Chem.,2011,4,129–150.
    132Sundaramurthy, A.; Schuck, P. J.; Conley, N. R.; Fromm, D. P.; Kino, G. S.;Moerner, W. E. Toward Nanometer-Scale Optical Photolithography:Utilizingthe Near-Field of Bowtie Optical Nanoantennas. Nano Lett.,2006,6,355–360.
    133Grubisha, D. S.; Lipert, R. J.; Park, H. Y.; Driskell, J.; Porter, M. D. FemtomolarDetection of Prostate-Specific Antige n:An Immunoassay Based onSurface-Enhanced Raman Scattering and Immunogold Labels. Anal. Chem.,2003,75,5936–5943.
    134Rohr, T. E.; Cotton, T.; Fan, N.; Tarcha, P. J. Immunoassay employingsurface-enhanced Raman spectroscopy. Anal. Biochem.,1989,182,388–398.
    135Han, X.; Zhao, B.; Ozaki, Y. Surface-enhanced Raman scattering for proteindetection. Anal. Bioanal. Chem.,2009,394,1719–1727.
    136Qian, X. M.; Peng, X. H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Shin, D.;Yang, M. L.; Young, A. N.; Wang, M. D.; Nie, S. M. In vivo tumor targeting andspectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat.Biotechnol.,2008,26,83–90.
    137Matsubara, K.; Kawata, S.; Minami, S. A Compact Surface Plasmon ResonanceSensor for Measurement of Water in Process. Appl. Spectrosc.1988,42,1375.
    138Zhang, L. M.; Uttamchandan, D. Optical chemical sensing employing surfaceplasmon resonance. Electron. Lett.1988,24,1469.
    139Li, H. B.; Xu, S. P.; Liu, Y.; Gu, Y. J.; Xu, W. Q. Directional emission ofsurface-enhanced Raman scattering based on a planar-film plasmonic antenna.Thin Solid Films,2012,520,6001.
    140McFarland, A. D.; Young, M. A.; Dieringer, J. A.; Van Duyne, R. P.Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J. Phys.Chem. B,2005,109,11279.
    141Alvarez-Puebla, R. A. Effects of the Excitation Wavelength on the SERSSpectrum. J. Phys. Chem. Lett.,2012,3,857.
    142Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated Absorptionand Scattering Properties of Gold Nanoparticles of Different Size, Shape, andComposition: Applications in Biological Imaging and Biomedicine. J. Phys.Chem. B,2006,110,7238.
    143Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. Surface Enhanced RamanScattering Enhancement Factor s:A Comprehensive Study. J. Phys. Chem. C,2007,111,13794.
    144Liu, Y.; Xu, S. P.; Tang, B.; Wang, Y.; Zhou, J.; Zheng, X. L.; Zhao, B.; Xu, W. Q.Note: Simultaneous measurement of surface plasmon resonance andsurface-enhanced Raman scattering. Rev. Sci. Instrum.,2010,81,036105.
    145Liu, Y.; Xu, S. P.; Li, H. B.; Jian, X. G.; Xu, W. Q. Localized and propagatingsurface plasmon co-enhanced Raman spectroscopy based on evanescent fieldexcitation. Chem. Commun.,2011,47,3784.
    146Xuan, X. Y.; Xu, S. P.; Liu, Y.; Li, H. B.; Xu, W. Q.; Lombardi, J. R. ALong-Range Surface Plasmon Resonance/Probe/Silver Nanoparticle(LRSPR-P-NP) Nanoantenna Configuration for Surface-Enhanced RamanScattering. J. Phys. Chem. Lett.,2012,3,2773.
    147Zhang, Y.; Gu, C.; Schwartzberg, A. M.; Zhang, J. Z. Surface-enhanced Ramanscattering sensor based on D-shaped fiber. Appl. Phys. Lett.,2005,87,123105.
    148Kocabas, A.; Ertas, G.; Senlik, S. S.; Aydinli, A. Plasmonic band gap structuresfor surface-enhanced Raman scattering. Opt. Express,2008,16,12469.
    149Wang, X. N.; Wang, Y. Y.; Cong, M.; Li, H. B.; Gu, Y. J.; Lombardi, J. R.; Xu, S.P.; Xu, W. Q. Propagating and Localized Surface Plasmons in HierarchicalMetallic Structures for Surface-Enhanced Raman Scattering. Small,2013,9,1895-1899.
    150McKee, K. J.; Meyer, M. W.; Smith, E. A. Near IR scanning angle total internalreflection Raman spectroscopy at smooth gold films. Anal. Chem.,2012,84,4300-6.
    151Meyer, S. A.; Auguie, B.; Le Ru, E. C.; Etchegoin, P. G. Combined SPR andSERS Microscopy in the Kretschmann Configuration. J. Phys. Chem. A,2012,116,1000-7.
    152Chen, Y. J.; Chen, W. P.; Burstein, E. Surface Electromagnetic Wave EnhancedRaman Scattering by Overlayers on Metals. Phys. Rev. Lett.1976,36,1207-1210.
    153Futamata, M. Application of attenuated total reflection surface plasmon polaritonRaman spectroscopy to gold and copper. Appl. Opt.,1997,36,364-371.
    154Futamata, M. Highly-sensitive Raman spectroscopy to characterize adsorbates onthe electrode. Surf. Sci.1997,386,89-92.
    155Meyer, S. A.; Le Ru, E. C.; Etchegoin, P. G. Combining surface plasmonresonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS).Anal. Chem.2011,83,2337–2344.
    156Yih, J. N.; Chen, S. J.; Huang, K. T.; Su, Y. T.; Lin, G. Y. A compact surfaceplasmon resonance and surface-enhanced Raman scattering sensing device.Proceeding of SPIE,2004,5327,5.
    157Liu, Y.; Xu, S. P.; Xuan, X. Y.; Zhao, B.; Xu, W. Q. Long-Range Surface PlasmonField-Enhanced Raman Scattering Spectroscopy Based on Evanescent FieldExcitation. J. Phys. Chem. Lett.2011,2,2218–2222.
    158Xuan, X. Y.; Xu, S. P.; Liu, Y.; Li, H. B.; Xu, W. Q.; Lombardi, J. R. ALong-Range Surface Plasmon Resonance/Probe/Silver Nanoparticle(LRSPR-P-NP) Nanoantenna Configuration for Surface-Enhanced RamanScattering. J. Phys. Chem. Lett.2012,3,27732778.
    159Taminiau, T. H.; Stefani, F. D.; van Hulst, N. F. Optical Nanorod AntennasModeled as Cavities for Dipolar Emitters: Evolution of Sub-and Super-RadiantModes. Nano Lett.,2011,11,1020.
    160Zhang, Z.; Weber-Bargioni, A.; Wu, S. W.; Dhuey, S.; Cabrini, S.; Schuck, P. J.Manipulating Nanoscale Light Fields with the Asymmetric BowtieNano-Colorsorter. Nano Lett.,2009,9,4505.
    161Baumberg, J. J.; Kelf, T. A.; Sugawara, Y.; Cintra, S.; Abdelsalam, M. E.; Bartlett,P. N.; Russell, A. E. Angle-Resolved Surface-Enhanced Raman Scattering onMetallic Nanostructured Plasmonic Crystals. Nano Lett.,2005,5,2262-2267.
    162Li, H. B.; Gu, Y. J.; Guo, H. Y.; Wang, X. N.; Liu, Y.; Xu, W. Q.; Xu, S. P.Tunable Plasmons in Shallow Silver Nanowell Arrays for DirectionalSurface-Enhanced Raman Scattering. J. Phys. Chem. C,2012,116,23608-23615.
    163Taminiau, T. H.; Stefani, F. D.; Van Hulst, N. F. Single emitters coupled toplasmonic nano-antennas: angular emission and collection efficiency. New J.Phys.,2008,10,105005.
    164Giannini, V.; Fernandez-Dom nguez, A. I.; Heck, S. C.; Maier, S. A. PlasmonicNanoantennas: Fundamentals and Their Use in Controlling the RadiativeProperties of Nanoemitters. Chem. Rev.,2011,111,3888.
    165Zhang, J. H.; Chen, Z.; Wang, Z. L.; Zhang, W. Y.; Ming, N. B. Preparation ofmonodisperse polystyrene spheres in aqueous alcohol system. Mater. Lett.,2003,57,4466.
    166Li, Y. F.; Zhang, J. H.; Zhu, S. J.; Dong, H. P.; Jia, F.; Wang, Z. H.; Sun, Z. Q.;Zhang, L.; Li, Y.; Li, H. B.; Xu, W. Q.; Yang, B. Biomimetic Surfaces forHigh-Performance Optics. Adv. Mater.,2009,21,4731.
    167Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A. Extraordinaryoptical transmission through sub-wavelength hole arrays. Nature,1998,391,667.
    168Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings,Springer-Verlag, Hamburg, Germany,1986, ch.2.
    169Kleinman, S. L.; Ringe, E.; Valley, N.; Wustholz, K. L.; Phillips, E.; Scheidt, K.A.; Schatz, G. C.; Van Duyne, R. P. Single-Molecule Surface-Enhanced RamanSpectroscopy of Crystal Violet Isotopologues: Theory and Experiment. J. Am.Chem. Soc.2011,133,41154122.
    170Qin, L.; Park, S.; Huang, L.; Mirkin, C. A. On-Wire Lithography. Science2005,309,113115.
    171Ward, D. R.; Grady, N. K.; Levin, C. S.; Halas, N. J.; Wu, Y.; Nordlander, P.;Natelson, D. Electromigrated Nanoscale Gaps for Surface-Enhanced RamanSpectroscopy. Nano Lett.2007,7,13961400.
    172Dodson, S.; Haggui, M.; Bachelot, R.; Plain, J.; Li, S. Z.; Xiong, Q. H.Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae. J.Phys. Chem. Lett.2013,4,496501.
    173Le Ru, E. C.; Grand, J.; Sow, I.; Somerville, W. R. C.; Etchegoin, P. G.;Treguer-Delapierre, M.; Charron, G.; Felidj, N., Levi, G.; Aubard, J. A Schemefor Detecting Every Single Target Molecule with Surface-Enhanced RamanSpectroscopy. Nano Lett.2011,11,50135019.
    174Jain, P. K.; Huang, W.; El-Sayed, M. A. On the Universal Scaling Behavior of theDistance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A PlasmonRuler Equation. Nano Lett.2007,7,20802088.
    175Genov, D. A.; Sarychev, A. K.; Shalaev, V. M.; Wei, A. Resonant FieldEnhancements from Metal Nanoparticle Arrays. Nano Lett.2004,4,153158.
    176Shen, H. M., Lu, G. W., Zhang, T. Y.; Liu, J.; Gu, Y.; Perriat, P.; Martini, M.;Tillement, O.; Gong, Q. H. Shape Effect on a Single-Nanoparticle BasedPlasmonic Nanosensor. Nanotechnology2013,24,285502.
    177Tian, J. H.; Liu, B.; Li, X. L.; Yang, Z. L.; Ren, B.; Wu, S. T.; Tao, N. J.; Tian, Z.Q. Study of Molecular Junctions with a Combined Surface-Enhanced Raman andMechanically Controllable Break Junction Method. J. Am. Chem. Soc.2006,128,1474814749.
    178Qin, L. D.; Zou, S. L.; Xue, C.; Atkinson, A.; Schatz, C. G.; Mirkin, A. C.Designing, Fabricating, And Imaging Raman Hot Spots. Proc. Natl. Acad. Sci.U.S.A.2006,103,1330013303.
    179Lee, P. V.; Meisel D. Adsorption and Surface-Enhanced Raman of Dyes on Silverand Gold Sols. J. Phys. Chem.1982,86,33913395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700