用户名: 密码: 验证码:
偶氮聚芳醚及其稀土配合物的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
偶氮聚合物因其在光存储、光开关、非线性光学材料、光调制和光机械等光子和光电信息领域表现出令人期待的应用潜力而备受关注。偶氮基团有很多独特的性能,如光致顺反异构和光致各向异性等,这些特性使偶氮聚合物具有了光诱导双折射和可形成光诱导表面起伏光栅等光响应性质。近年来,将偶氮基团引入到高玻璃化转变温度的聚合物体系成为一种提高偶氮聚合物光存储稳定性和热稳定性的有效策略。
     聚芳醚类聚合物是一类综合性能优异的特种工程塑料,因其具有耐热等级高、耐辐射、耐化学药品、耐疲劳、耐冲击、抗蠕变、耐磨、耐热水性好、阻燃性好、电性能优良等优异的综合性能,在热塑性聚合物领域占有极其重要的位置。聚芳醚材料在航空、航天、核能、信息、通讯、电子电信、生物医疗、石油化工、机械制造、交通运输等高技术领域得到了成功的应用和发展。功能性的聚芳醚材料已经在质子传导膜、非线性光学材料和光波导材料等领域得到初步研究。
     本论文从分子设计的角度出发,合成了一系列含有不同结构偶氮基团的单体,并通过亲核取代缩聚或接枝反应的方式,将偶氮基团引入到聚芳醚体系中,制备了一系列光响应偶氮聚芳醚材料。通过对所制备聚合物光致异构行为和光诱导双折射行为的研究,探讨了偶氮基团的结构和聚合物链段结构对偶氮聚芳醚材料光响应性能的影响。同时,我们也合成了一系列偶氮聚芳醚稀土配合物,并对其光响应性能和荧光性能进行了研究。具体研究内容如下:(1)通过磺酰氯和偶氮单酚的成酯反应合成了含单/双偶氮基团的双氟单体,基于所得双
     氟单体,经亲核取代缩聚反应制备了侧链含单/双偶氮聚芳醚共聚物。该系列偶氮聚芳醚光响应材料具有良好的热稳定性和较高的玻璃化转变温度。室温条件下,在532nm偏振激光照射下,所制备的侧链含单/双偶氮聚芳醚材料可产生稳定的光诱导双折射信号。其中,侧链含双偶氮聚芳醚产生的光稳态双折射值大于侧链含单偶氮聚芳醚产生的光稳态双折射值的2倍。同时,双偶氮聚芳醚材料的稳态保留值也大于单偶氮聚芳醚材料的稳态保留值。这是由于双偶氮基团比单偶氮基团共轭更长,位阻更大。双折射对温度的依赖性研究表明,侧链含双偶氮聚芳醚材料的光稳态双折射值随着测试温度的升高呈一个先上升后下降的趋势,这是偶氮基团光致取向和无规热运动共同作用的结果。在波长为355nm的干涉激光照射下,侧链含双偶氮聚芳醚薄膜可以形成规则的光诱导表面起伏光栅。
     (2)设计合成了一系列含有不同长度烷基溴的偶氮单体,并通过与含羟基聚醚砜进行亲核取代接枝反应制备了一系列含不同长度烷基侧链的偶氮聚芳醚材料。热力学性能测试结果表明,随着侧链烷基长度的增加和偶氮基团的引入,聚合物的玻璃化转变温度和热稳定性均相应下降。光致异构行为研究表明,随着烷基链长度的增加偶氮偶氮聚芳醚材料的光致异构化速率也相应增大。光诱导双折射测试表明,随着烷基链长度的增加,聚合物中偶氮基团的光取向速率也相应增加,光致取向稳定性稍有下降。得益于聚芳醚材料主链的刚性结构,所制备的含不同长度烷基侧链偶氮聚芳醚材料的稳态保留值均在82%以上。双折射信号多次写入和擦除实验结果表明,所制备的偶氮聚芳醚材料在信息存储方面有很好的抗疲劳性。
     (3)设计合成了含有烷基溴的偶氮羧酸单体,并通过与含羟基聚醚砜进行亲核取代接枝反应制备了侧链含偶氮羧酸聚芳醚材料。以所制备的侧链含偶氮羧酸聚芳醚为高分子配体,1,10’-邻菲罗啉为协同配体,稀土离子Eu3+为中心离子,合成了侧链含偶氮羧酸聚芳醚稀土配合物。光致异构行为研究表明,稀土的引入降低了偶氮聚芳醚材料光致异构化程度和速率。光诱导双折射测试表明,稀土的引入降低了偶氮聚芳醚材料光致取向速率和光致取向程度,但提高了偶氮聚芳醚材料的光致取向稳定性,即提高了双折射稳态保留值。
     (4)为了使偶氮基团的吸收峰与稀土离子的激发峰相分离,从在偶氮苯基团两侧增加推拉电子基团和增加偶氮基团共轭长度两种角度出发,设计并合成了两种新型偶氮双酚单体,并通过与含羧基的酚酞啉单体共聚制备了一系列侧链含羧基,主链含偶氮的聚芳醚材料。该系列主链含偶氮聚芳醚材料具有较高的玻璃化转变温度和良好的热稳定性。以该系列主链含偶氮聚芳醚材料为高分子配体,1,10’-邻菲罗啉为协同配体,稀土离子Eu3+为中心离子,成功制备了一系列主链含偶氮聚芳醚稀土配合物。紫外可见光谱测试表明,所制备的含萘基偶氮基团的聚芳醚稀土配合物中偶氮基团的吸收带与稀土配合物吸收带相分离。稳态荧光测试表明,相比于含苯基偶氮基团的聚芳醚稀土配合物,含萘基偶氮基团的聚芳醚稀土配合物的荧光强度有了很大提高。该系列主链含偶氮聚芳醚稀土配合物在干涉激光的照射下,可形成规则的光诱导表面起伏光栅。通过荧光显微镜可观察到规则的红色荧光光栅。
In recent years, polymers containing azobenzene units (azo-polymers) have attractedconsiderable attention owing to their potential application in optical data storage, opticalswitching and nonlinear optical materials. Because of the unique reversiblephotoisomerization and photoinduced anisotropy of the azobenzene chromophores,azo-polymers can show a variety of photoresponsive variations, such as photoinduced phasetransition, photoinduced surface-relief-gratings (SRGs), and photoinduced birefringence.Recently, the introduction of azobenzene chromophores to some high-Tgaromatic polymers isattractive, because this strategy is helpful to improve the stability of azobene chromophoresfor optical storage application. Poly(aryl ether)s (PAEs) are a family of high-performanceengineering thermoplastics with excellent thermal, mechanical and electrical properties.Functionalized poly(aryl ether)s have been widely studied as proton exchange membranes(PEMs), light emitting materials and optical materials.
     In this work, we designed and synthesized a series of azobenzene monomers, which hadbeen introduced into poly(arylene ether)s by nucleophilic substitution polycondensationreaction or grafting reaction. Their trans-cis isomerization and optical properties wereinvestigated. We also synthesized a series of rare earth Eu3+complexes usingazobenzene-containing poly(arylene ether)s as macromolecular ligands, and theirphotoresponsive behavior and fluorescence properties were also investigated. The detailedresearches were summarized as the following:
     (1) A series of poly(arylene ether)s containing mono/bis-azobenzene moieties in the sidechain were successfully synthesized via a nucleophilic substitution polycondensationreaction. These polymers exhibit good thermal stability. Upon irradiation with a532nm Nd:YAG laser beam, the poly(arylene ether)s with bis-azobenzene pendantsshowed larger photoinduced birefringence intensity and better stability of thephotoinduced orientation than the poly(arylene ether)s with mono-azobenzenependants. The photoinduced birefringence of the PAEs with bis-azobenzene pendantsshowed a dependence on temperature: at the beginning, the birefringence valueincreased with temperature until reached its’ maximum, and then decreased. Byexposing their spin-coating films to an interference pattern of laser beam, tpoly(arylene ether)s with bis-azobenzene pendants could be used for fabrication ofsurface relief gratings (SRGs).
     (2) A series of azobenzene-containing side-chain poly(arylene ether)s with variousspacer lengths (2,6or12methylene units) were successfully synthesized via anucleophilic substitution grafting reaction between poly(ether sulfone)s withhydroxylphenyl side groups and azobenzene monomers AZOi. These azo-polymersshow good thermal stability with glass transition temperatures and5%weight-losstemperatures above119oC and347oC, respectively. The results ofphotoisomerization experiments indicated that the polymer with longer spacerscorrespond to higher photoisomerization rates. Upon irradiation with a532nmneodymium doped yttrium aluminum garnet (Nd:YAG) laser beam, they presentedremnant values of birefringence larger than82%of the saturation value ofbirefringence, indicating the good stability of the photoinduced orientation. Nofatigue phenomena have been observed after several cycles ofinscription–erasure–inscription sequences.
     (3) Poly(arylene ether)s containing azobenzene chromophores and carboxyl groups inthe side chain was synthesized via a nucleophilic substitution grafting reaction. Thecarboxyl-containing azo-PAE was used as macromolecular ligands. Using europium (Eu3+) as the central ion and1,10-phenanthroline (Phen) as co-ligand, a novel rareearth coordination polymer was prepared. The introduction of rare ions decreased thephotoisomerization rates. Upon irradiation with a532nm neodymium doped yttriumaluminum garnet (Nd:YAG) laser beam, the rare earth coordination polymer showedbetter stability of the photoinduced orientation and less value of photoinducedbirefringence than the carboxyl-containing azo-PAE.
     (4) A series of novel rare earth Eu3+coordination polymers were prepared by usingmain-chain azobenzene-containing poly(arylene ether)s as macromolecular ligand,and1,10-phenanthroline and DMF as co-ligands. The main-chainazobenzene-containing poly(arylene ether)s was synthesized via a nucleophilicsubstitution polycondensation reaction. The rare earth complexes were confirmed bymeans of IR and WAXD. The UV–vis spectra of the lanthanide complexes usingmain-chain phenylazo naphthalen poly(aryl ether)s as macromolecular showed thatthe absorption wavelength of the azobenzene chromophore was separated from theexcitation and emission wavelengths of the lanthanide ions. By exposing the films ofthe lanthanide complexes to an interference pattern laser beam, surface relief gratings(SRGs) could be formed on the films. Under the excitation, fluorescent patterns ofthe SRGs could be observed by the measurement of fluorescence microscopy.
引文
[1] T. Ikeda, O. Tsutsumi, Optical switching and image storage by means of azobenzeneliquid-crystal films [J]. Science,1995,268:1873-1875.
    [2] T Ikeda, S Horiuchi, DB Karanjit, et al. Photochemically induced isothermal phasetransition in polymer liquid crystals with mesogenic phenyl benzoate side chains.1.Calorimetric studies and order parameters [J]. Macromolecules,1990,23:36-42.
    [3] Y.L. Yu, M Nakano, T. Ikeda, Directed bending of a polymer film by light-Miniaturizing a simple photomechanical system could expand its range of applications [J].Nature,2003,425:145.
    [4] M. Yamada, M. Kondo, J. Mamiya, et al. Photomobile polymer materials: towards light‐driven plastic motors [J]. Angew. Chem. Int. Ed.,2006,45:1378-1382.
    [5] K. Han, W. Su, M. Zhong, et al. Reversible photocontrolled swelling‐shrinking behaviorof micron vesicles self‐assembled from azopyridine‐containing diblock copolymer [J].Macromol. Rapid Commun.,2008,29:1866-1870.
    [6] J. Zhou, J. Yang, Y. Ke, et al. Fabrication of polarization grating and surface relief gratingin crosslinked and non-crosslinking azopolymer by polarization holography method [J].Opt. Mater.,2008,30:1787-1795.
    [7] N.K. Viswanathan, D.Y. Kim, S. Bian, et al. Surface relief structures on azo polymer films[J]. J. Mater. Chem.,1999,9:1941-1955.
    [8] J. Zhou, J. Shen, J. Yang, et al. All-optical bandpass microwave filter based onanelectro-optic phase modulator [J]., Opt. Lett.2006,31:1370-1372.
    [9] N.B. Holland, T. Hugel, G. Neuert, et al. Single molecule force spectroscopy ofazobenzene polymers: switching elasticity of single photochromic macromolecules [J].Macromolecules.,2003,36:2015-2023.
    [10] S.K. Yesodha, C. K. S. Pillai, N. Tsutsumi, Stable polymeric materials for nonlinearoptics: a review based on azobenzene systems [J]. Prog. Polym. Sci.,2004,29:45-74.
    [11] R. Hagen, T. Bieringer, Photoaddressable polymers for optical data storage [J]. Adv.Mater.2001,13:1805-1810.
    [12] Q Yan, Y Wu, X Wang, et al. Effects of absorption overlap on the modulation of thepolarized fluorescence of Eu(DBM)3Phen-doped azobenzene polymer films [J]. Chin.Phys. Lett.,2004,21:2445-2447.
    [13] J.P. Liu, Y.N. He, X.G. Wang. Photoinduced deformation of amphiphilic azo polymercolloidal spheres [J]. Langmuir,2009,25:5974-5979.
    [14] Y. Luo, Z. Li, R. Zheng, et al. Birefringent azopolymer long period fiber gratingsinduced by532nm polarized laser [J]. Opt. Commun.,2009,282,2348-2353.
    [15]薛小强.新型偶氮苯功能化聚合物的合成及其光学性能研究[D].苏州:苏州大学化学学院,2010.
    [16]吴思.光响应偶氮苯聚合物复合材料的制备及性能研究[D].长沙:中国科技大学化学学院,2010.
    [17]江涛.信息存储新领域-全息存储及其材料[J].信息记录材料,2006,7(6):32-36.
    [18] Rau, H., Photochemistry and Photophysics. CRC Press: Boca Raton, FL,1990,11:119–141.
    [19] S. Xie, A. Natansohn, P. Rochon. Recent developments in aromatic azo polymersresearch [J]. Chem. Mater.1993,5,403-411.
    [20] Bian, S., Robinson, D., Kuzyk, M.G. Optically activated cantilever usingphotomechanical effects in dye-doped polymer fibers [J]. J. Opt. Soc. Am.,2006,23:697-708.
    [21] G.S. Kumar, D. Neckers. Photochemistry of azobenzene-containing polymers [J].Chemical Reviews.,1989,89:1915-1925.
    [22] Wang, S., Wang, X., Li, L., et al. Design, synthesis, and photochemical behavior ofpoly(benzyl ester) dendrimers with azobenzene groups throughout their architecture [J]. J.Org. Chem.,2004,69:9073-9084.
    [23] Buruiana, T., Buruiana, E.C., Synthesis and characterization of polyurethane anionomerswith bisazoaromatic chrornophores and carboxylate groups [J]. J. Polym. Sci. Pol. Chem.,2004,42:5463–5470.
    [24]王罗新,王晓工.偶氮苯顺反异构化机理研究进展[J].化学通报,2008,71:243-248.
    [25] I M.S. Ho, A. Natansohn, P. Rochon. Azo polymers for reversible optical storage.8. Theeffect of polarity of the azobenzene groups [J]. Canadian journal of chemistry,1995,73:1773-1778.
    [26] FTIME G, LABARTHET F, NATANSOHN A, ROCHON P, MURTI K. Mainchain-containing azo-tetraphenyldiaminobiphenyl photorefractive polymers [J]. Chem.Mater.,2002,14:168-174.
    [27] CHEN J, LABARTHET F, NATANSOHN A, ROCHON P. Highly stable opticalinduced birefringence and holographic surface gratings on a new azocarbazole-basedpolyimide [J]. Macromolecules,1999,32:8572-8579.
    [28] ROCHON P, BATALLA E, NATANSOHN A. Optical induced surface gratings onazoaromatic polymer films [J]. Appl. Phys. Lett.,1995,66:136-138.
    [29] NATANSOHN A, ROCHON P, BARRETT C, HAY A. Stability of photoinducedorientation of an azo compound into a high-Tg polymer [J]. Chem. Mater.,1995,7:1612-1615.
    [30] WU Y, NATANSOHN A, ROCHON P. Photoinduced birefringence and surface reliefgratings in polyurethane elastomers with azobenzene groups in the hard segment [J].Macromolecules,2004,37:6090-6095.
    [31] KIM D, TRIPATHY S, LI L, KUMAR J. Laser-induced holographic surface reliefgratings on nonlinear optical films [J]. Appl. Phys. Lett.,1995,66:1166-1168.
    [32] WANG X, KUMAR J, TRIPATHY S, et al. Heteroaromatic chromophore functionalizedepoxy-based nonlinear optical polymers [J]. Macromolecules,1998,31:4126-4134.
    [33] YANG S, KUMAR J, TRIPATHY S, et al. Synthesis and characterization of novelazobenzene-modified polymers: azocellulose [J]. Macromolecules,2001,34:9193-9196.
    [34] OKANO K, SHISHIDO A, IKEDA T. An azotolane liquid-crystalline polymerexhibiting extremely large birefringence and its photoresponsive behavior [J]. Adv. Mater.,2006,18:523-527.
    [35] YU Y, IKEDA T. Soft actuators based on liquid-crystalline elastomers [J]. Angew.Chem. Int. Ed.,2006,45:5416-5418.
    [36] BARRETT C, MAMIYA J, YAGER K, IKEDA T. Photo-mechanical effects inazobenzene-containing soft materials [J]. Soft Matter,2007,3:1249-1261.
    [37] KEREKES A, LORINCZ E, RAMANUJAM P, HVILSTED. Light scattiering of thinazobenzene side-chain polyester layers [J]. Opt. Commun.,2002,206:57-65.
    [38] RAMANUJAM P, HOLME N, PEDERSEN M, HVILSTED S. Fabrication of narrowsurface relief features in a side-chain azobenzene polyester with a scanning near-fieldmicroscope [J] J. Photoch. Photobio. A:2001,145:49-52.
    [39] RASMUSSEN P, RAMANUJAM P, HVILSTED S, et al. A remarkably efficientazobenzene peptide for holographic information storage [J]. J. Am. Chem. Sco.,1999,121:4738-4743.
    [40] KULIKOVSKA O, GOLDENBERG L, STUMP J, et al. Smart ionic sol-gel-basedazobenzene materials for optical generation of microstructures [J]. Chem. Mater.,2008,20:3528-3534.
    [41] GOLDERBERG L, GRITSAI Y, KULIKOVSKA O, STUMPE J. Three-dimensionalplanarized diffraction structures based on surface relief gratings in azobenzene materials[J]. Optics letter,2008,33:1309-1311.
    [42] GRITSAI Y, GOLDERBERG L, KULIKOVSKA O, STUMPE J.3D structures usingsurface relief gratings of azobenzene materials [J]. J. Opt. A: Pure Appl. Opt.,2008,10:125304.
    [43] LIU B, HE Y, WANG X. Fabrication of photoprocessible azo polymer microwiresthrough a soft lithographic approach [J]. Langmuir,2006,22:10233-10237.
    [44] DENG Y, LI N, HE Y, WANG X. Hybrid colloids composed of two amphiphilic azopolymers: Fabrication, characterization, and photoresponsive properties [J].Macromolecular,2007,40:6669-6678.
    [45] LIU B, WANG M, HE Y, WANG X. Duplication of photoinduced azo polymersurface-relief gratings through a soft lithographic approach [J]. Langmuir,2006,22:7405-7410.
    [46] LI Y, HE Y, TONG X, WANG X. Photoinduced deformation of amphiphilic azopolymer colloidal spheres [J]. J. Am. Chem. Soc.,2005,127:2402-2403.
    [47] GAO J, HE Y, XU H, et al. Azobenzene-containing supramolecular polymer films forlaser-induced surface relief gratings [J]. Chem. Mater.,2007,19:14-17.
    [48] GAO J, HE Y, LIU F, ZHANG X, WANG Z, WANG X. Azobenzene-containingsupramolecular side-chain polymer films for laser-induced surface relief gratings [J].Chem. Mater.,2007,19:3877-3881.
    [49] CHEN X, HONG L, YOU X, ZHANG Q, et al., Photo-controlled molecular recognitionof alpha-cyclodextrin with azobenzene containing polydiacetylene vesicles [J]. Chem.Commun.,2009,11:1356-1358.
    [50] WU S, NIU L, SHEN J, ZHANG Q, BUBECK C. Aggregation-induced reversiblethermochromism of novel azo chromophore-functionalized polydiacetylene cylindricalmicelles [J]. Macromolecules,2009,42:362-367.
    [51] HAN K, SU W, ZHONG M, et al. Reversible photocontrolled swelling-shrinkingbehavior of micron vesicles self-assembled from azopyridine-containing diblockcopolymer [J]. Macromol. Rapid Comm.,2008,29:1866-1870.
    [52] YU X, LUO Y, WU W, et al. Synthesis and reversible thermochromism ofazobenzene-containing polydiacetylenes [J]. European Polymer Journal,2008,44:3015-3021.
    [53] ZHANG Y Y, XU J X, CHENG F T, et al. Photoinduced bending behavior ofcrosslinked liquid-crystalline polymer films with a long spacer [J]. Journal of MaterialsChemistry,2010,20:7123-7130.
    [54] YIN R Y, XU W X, KONDO M, et al. Can sunlight drive the photoinduced bending ofpolymer films [J]. Journal of Materials Chemistry,2009,19:3141-3143.
    [55] CHENG F T, ZHANG Y Y, YIN R Y, et al. Visible light induced bending andunbending behavior of crosslinked liquid-crystalline polymer films containing azotolanemoieties [J]. Journal of Materials Chemistry,2010,20:4888-4896.
    [56] WU W, YAO L M, YANG T S, et al. NIR-light-induced deformation of crosslinkerliquid crystal polymers using upconversion nanophosphors[J]. Journal of the AmericanChemical Society,2011,133:15810-15813.
    [57] YU L, ZHANG Z, CHEN X, et al. Synthesis and Tetrazole-Containing Azo Polymerswith Properities of Photo-Induced Birefringence and Surface-Relief-Gratings via RAFTPolymerization [J]. J. Polym. Sci. A,2008,46:682-691.
    [58] ZHANG Y, CHENG Z, ZHU X, et al. Synthesis and Photorespinsive Behaviors ofWell-Defined Azobenzene-Containing Polymers via RAFT Polymerization [J].Macromolecules,2007,40:4809-4817.
    [59] Zhang Y.X., Zhang H.B., Jiang Z.H., et al. Synthesis, characterization, andphotoresponsive behaviour of a series of azobenzene-containing side-chain poly(ethersulfone)s with various lengths of flexible spacers., Dyes and Pigments,2013,99:1117-1123.
    [60] Jiang XY, Chen XB, Yue XG, Zhang JJ, Guan SW, Zhang HB, Zhang WY, Chen D.Synthesis and characterization of photoactive poly(arylene ether sulfone)s containingazobenzene moieties in their main chains [J]. React. Funct. Polym.,2010,70:616–621.
    [61] Jiang XY, Wang H, Chen XB, Li XJ, Mu JX, Zhang SL. A novel photoactivehyperbranched poly(aryl ether ketone)with azobenzene end groups for optical storageapplications [J]. React. Funct. Polym.,2010,70:699–705.
    [62] Zhang JJ, Zhang HB, Chen XB, Pang JH, Zhang YX, WangYP, Chen QD, Pei SH, PengWX, Jiang ZH. Synthesis and photoresponsive behaviors of novel poly(arylene ether)swith di-azobenzene pendants [J]. React. Funct. Polym.,2011,71:553–560.
    [63] WANG S, ZHAO L, YANG S, et al. Fabrication of photo-cross-linked stableorganic-inorganic hybrid second-order nonlinear optical films [J]. Mater. Lett.,2009,63:292-294.
    [64] SHI Z, ZHANG X, CUI Z. Synthesis and characterization of thiophene-containingchromophores for nonlinear optical (NLO) materials [J]. Journal of Nonlinear OpticalPhysics&Materials,2008,17:243-254.
    [65] WANG Y, WANG X, GUO Y, et al. Electric-field-induced layer-by-layer fabrication ofsecond-order nonlinear optical films with high thermal stability [J]. Langmuir,2004,20:8952-8954.
    [66] WANG Y, WANG X, CHUAI X, et al. Synthesis and properties of novel crosslinkablesecond-order nonlinear optical polymers based on2,3,4,5,6-pentafluorostyrene [J].Polymer International,2004,53:1106-1112.
    [67] Weigert, F. Verh. Phys. Ges. A. Jacquart, P. Tauc, E. Ishow, et al. Formation offluorescence reliefs photocontrolled by collective mass migration J. Mater. Chem.,2009,19:8999–9005.
    [68] B.S. Neporent, O.V. Stolbova, Opt. Spectrosc.,1961,10:146.
    [69] T. Todorov, N. Tomova, L. Nikolova, High-sensitivity material with reversiblephoto-induced anisotropy [J]. Opt. Commun.,1983,47:123-126.
    [70] Y. Wu, Y. Demachi, O. Tsutsumi, Photoinduced alignment of polymer liquid crystalscontaining azobenzene moieties in the side chain l. Effect of light intensity on alignmentbehavior [J]. Macromolecules,1998,31:349-354.
    [71] T. Bufeteau, M. Pézolet, Photoinduced orientation in azopolymers studied by infraredspectroscopy: cooperative and biaxial orientation in semi crystalline polymers [J].Macromolecules,1998,31:2631-2635.
    [72] L.P. Yu, Z.B. Zhang, X.L. Zhu, et al. Synthesis of tetrazole-containing azo polymerswith properties of photo-induced birefringence and surface-relief-gratings via RAFTpolymerization [J]. Journal of Polymer Science: Part A: Polymer Chemistry,2008,46:682–691.
    [73] L. Hesselink, S. S. Orlov, M. C. Bashaw, Proc. IEEE,2004,92:1231–1279.
    [74] TODOROV T, NIKALAVA L, TOMOVA N. Polarization holography.1: A newhigh-efficiency organic material with reversible photoinduced birefringence [J]. Appl.Opt.,1984,23:4309-4312.
    [75] BIAN S, HE J, LI L, KUMAR J, TRIPATHY S. Large photoinduced birefringence in azodye/polyion films assembled by electrostatic sequential adsorption [J]. Adv. Mater.,2000,12:1202-1205.
    [76]苏育志,梁兆熙.光致变色液晶聚合物的光致再取向性能研究进展.[J].感光科学与光化学,2002,20:292-302.
    [77] X.B. Chen, Y.H. Zhang, Z.H. Jiang, et al. Novel photoactive hyperbranched poly(arylether)s containing azobenzene chromophores for optical storage [J]. J. Mater. Chem.,2008,18:5019-5026.
    [78] Lagugne Labarthet, F. Sourisseau, C. New J. Chem.1997,21:879-887.
    [79] O.K. Song, C.H. Wang, M.A. Pauley, Dynamic processes of optically inducedbirefringence of azo compounds in a morphous polymers below Tg[J]. Macromolecules,1997,30:6913-6919.
    [80] A. Natasohn, P. Rochon, Comments on the Paper “Dynamic Processes of OpticallyInduced Birefringence of Azo Compounds in Amorphous Polymers below Tg” by O.-K.Song, C. H. Wang, and M. A. Pauley (Macromolecules1997,30,6913)[J].Macromolecules,1998,31:7960-7961.
    [81] P. Rochon, E. Batalla, A. Natansohn, Optically induced surface gratings on azoaromaticpolymer films [J]. Appl. Phys. Lett.,1995,66:136-138.
    [82] D.Y. Kim, S.K. Tripathy, L. Li, et al. Laser‐induced holographic surface relief gratingson nonlinear optical polymer films [J]. Appl. Phys. Lett.,1995,66:1166–1168.
    [83] ISHOW E, BROSSEAU A, CLAVIER G, et al. Two-photon fluorescent holographicrewritable micropatterning [J]. J. Am. Chem. Soc.,2007,129:8970-8971.
    [84] KIM D, TRIPATHY S, LI L, KUMAR J. Laser-induced holographic surface reliefgratings on nonlinear optical films [J]. Appl. Phys. Lett.,1995,66:1166-1168.
    [85] J. Kumar, L. Li, X.L. Jiang, et al. Gradient force: The mechanism for surface reliefgratings formation in azobenzene functionalized polymers [J]. Appl. Phys. Lett.,1998,72:2096-2098.
    [86] C.J. Barrett, P.L. Rochon, A. Natansohn, Model of laser-driven mass transport in the thinfilms of dye-functionalized polymers [J]. J. Chem. Phys.,1998,109:1505-1516.
    [87] C.J. Barratt, A. Natansohn, P. Rochon, Mechanism of optically inscribed high-efficiencydiffraction gratings in azo polymer films [J]. J. Phys. Chem.,1996,100:8836-8842.
    [88] T.G. Pedersen, P.M. Johansen, N. Holme, et al. Mean-field theory of photoinducedformation of surface reliefs in side-chain azobenzene polymers [J]. Phys. Rev. Lett.,1998,80:89-92.
    [89] K.G. Yager, C.J. Barrett, All-optical patterning of azo polymer films [J]. Current Opinionin Solid State and Materials Science,2001,5:487-494.
    [90] T. Ikeda, Photomodulation of liquid crystal orientations for photonic applications [J]. J.Mater. Chem.,2003,13:2037-2057.
    [91] M. Eich, J. H. Wendorff, B. Reck, et al. Reversible digital and holographic opticalstorage in polymeric liquid crystals[J]. Makromol. Chem. Rapid Commun.,1987,8:59-63.
    [92] S. Ivanov, I. Yakovlev, S. Kostromin, et al. Laser-induced birefringence in homeotropicfilms of photochromic comb-shaped liquid-crystalline copolymers with azobenzenemoieties at different temperatures [J]. Makromol. Chem. Rapid Commun.,1991,12:709-715.
    [93] J. Stumpe, L. Müller, D. Kreysig, et al. Photoreaction in mesogenic media,5.Photoinduced optical anisotropy of liquid-crystalline sidechain polymers withazochromophores by linearly polarized light of low intensity [J]. Makromol. Chem. RapidCommun.1991,12:81-87.
    [94] A. Natansohn, P. Rochon, J. Gosselin, et al. Azo polymers for reversible optical storage.1. Poly[4'-[[2-(acryloyloxy)ethyl]ethylamino]-4-nitroazobenzene][J]. Macromolecules,1992,25:2268.
    [95] T. Seki, Dynamic photoresponsive functions in organized layer systems comprised ofazobenzene-containing polymers [J]. Polym. J.,2004,36:435-454.
    [96] S. Gorkhali, S. Cloutier, G. Crawford, Two-dimensional vectorial photonic crystalsformed in azo-dye-doped liquid crystals [J]. Opt. Lett.,2006,31:3336-3338.
    [97] GOLDERBERG L, GRITSAI Y, KULIKOVSKA O, STUMPE J. Three-dimensionalplanarized diffraction structures based on surface relief gratings in azobenzene materials[J]. Optics letter,2008,33:1309-1311.
    [98] S. Yang, K. Yang, J. Kumar, et al. Patterning of substrates using surface relief structureson an azobenzene-functionalized polymer film [J]. Adv. Mater.,2004,16:693-696.
    [99] B. Liu, M. Wang, X. Wang, et al. Duplication of photoinduced azo polymersurface-relief gratings through a soft lithographic approach [J]. Langmuir,2006,22:7405-7410.
    [100] E. Ishow, A. Brosseau, G. Clavier, et al. Two-photon fluorescent holographic rewritablemicropatterning [J]. J. Am. Chem. Soc.,2007,129:8970-8971.
    [101] X.B. Chen, B.J. Liu, Z.H. Jiang, et al. Fabrication of fluorescent holographicmicropatterns based on azobenzene-containing host guest complexes [J]. Langmuir,2009,25:10444–10446.
    [102] Ikeda T., Horiuchi S., Karanji D., et al. Photochemically induced isothermal phasetransition in polymer liquid crystals with mesogenic phenyl benzoate side chains.1.Calorimetric studies and order parameters [J]. Macromolecules,1990,23:36-42.
    [103] Ikeda T., Tsutsumi O. Optical switching and image storage by means of azobenzeneliquid-crystal films [J]. Science,1995,268:1873-1875.
    [104] Tsutsumi O, Shiono T., Ikeda T., Galli G. Photochemical phase transition behavior ofnematic liquid crystals with azobenzene moieties as both mesogens and photosensitivechromophores [J]. J. Phys. Chem. B,1997,101:1332-1337.
    [105] Yamada M., Kondo M., Ikeda T., et al. Photomobile polymer materials-variousthree-dimensional movements [J]. Journal of Materials Chemistry,2009,19:60-62.
    [106] Cheng F.T.,, ZHANG Y.Y., Yu Y.L., et al. Fully plastic microrobots manipulate objectsonly by visible light [J]. Soft Matter,2010,6:3447-3449.
    [107] Wolff N E, Pressley R J. Optical maser action in Eu3+-containing organic matrix [J].Appl. Phys. Lett.,1963,2:152-154.
    [108] Yin W Q, Chen M Q, Lu T H, et al. Study on interaction between Tb (III) andpoly(N-isopropylacrylamide)[J]. Eur. Polym. J.,2006,42:1305-1312.
    [109] Liu L, Lu Y L, He L, et al. Novel europium-complex/nitrile-butadiene rubbercomposites [J]. Adv. Funet. Mater.,2005,15(2):309一314.
    [110] Quang A.Q.L, Hierle R., Zyss J., et al. Demonstration of net gain at1550nm in anerbium-doped polymer single mode rib waveguide [J]. Appl. Phys. Lett.,2006,89(14):141124-1-141124-3.
    [111] T. Attwook, P. Dawson, J. Freeman, et al. Synthesis and properties ofpolyaryletherketones [J]. Polymer,1981,22:1096-1103.
    [112]陈兴波.含偶氮聚芳醚光响应材料的制备及其性能研究[D].长春:吉林大学化学学院,2009.
    [113] B.J. Liu, G.B. Wang, W. Hu, et al. Poly(aryl ether ketone)s with (3-methyl)phen-yland(3-trifluoromethyl)phenyl side groups [J]. J. Poly. Sci. A,2002,40:3392-3398.
    [114] H.B. Zhang, J.H Pang, Z.H. Jiang, et al. Sulfonated poly(arylene ether nitrile ketone)and its composite with phosphotungstic acid as materials for proton exchangemembranes[J]. J. Membr. Sci.,2005,264:56-64.
    [115] J.H Pang, H.B. Zhang, Z.H. Jiang, et al. Novel wholly aromatic sulfonated poly(aryleneether) copolymers containing sulfonic acid groups on the pendants for proton exchangemembrane materials [J]. Macromolecules,2007,40:9435-9442.
    [116] X.B. Chen, J.J. Zhang, Z.H. Jiang, et al. Preparation and nonlinear optical studies of anovel thermal stable polymer containing azo chromophores in the side chain [J] Dyes andPigments,2008,77:223–228.
    [117] Y. LI, C. Cao, S. Kulprthipanja, et al. The effects of polymer chain rigidification,zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrixmembranes [J] J. Membr. Sci.,2005,260:45-55.
    [118] L. Chen, Y. Yu, W. Zhang, et al. Synthesis of a new electroactive poly(aryl ether ketone)[J]. Polymer,2005,46:2825-2829.
    [119] X.Y. MA, G.B. Wang, Z.H. Jang, et al. Crosslinkable fluorinated poly(aryl etherketone)s containing pendent phenylethynyl moieties for optical waveguide devices [J]. J.Photochem. Photobio. A,2007,188:43-50.
    [120] Y.H. Zhang, X.B. Sun, Z.H. Jang, et al. Synthesis and characterization of novelpoly(aryl ether ketone)s with metallophthalocyanine pendant unit from a new bisphenolcontaining dicyanophenyl side group [J]. Polymer,2006,47:1569-1574.
    [121] Kim J Y, Fukuda T, Barada D, et al. Optical characteristics of novel bisazo polymer forrewritable holographic data storage. Proc. of SPIE.,2006,6335:63350U-1-8.
    [122] Meng X, Natansohn A, Rochon P. Azo polymers for reversible optical storage:13.Photoorientation of rigid side groups containing two azo bonds [J]. Polymer.1997,38:2677-2682
    [123]张静静光响偶氮聚芳醚材料的制备、表征及其性能研究[D]长春:吉林大学化学学院2011
    [124] L Pan, Q Yang, M Jin, et al. Temperature dependence of photo-induced birefringence inazo-doped polymers containing different substitutions [J]. J. Phys. D: Appl. Phys.,2004,37:1002-1006.
    [125] Fernando F. Dall’Agnol, O. N. Oliveira, Jr., Jose A. Giacometti, Influence from the freevolume on the photoinduced birefringence in azocompound-containing polymers[J].Macromolecules2006,39:4914-4919.
    [126] M. Schonhoff, M. Mertesdorf, M. Losche, Mechanism of photoreorientation ofazobenzene dyes in molecular films [J]. J. Phys. Chem.,1996,100:7558-7565.
    [127] M. JIN, Q.X. YANG, R. LU, ea lt. Syntheses of bisazo-containing polymethacrylatesusing atom transfer radical polymerization and the photoalignment behavior [J]. J. Polym.Sci. Part A: Polym. Chem.,2004,42:4237–4247.
    [128] M.J. Kim, E.M.Seo, Dong-Yu Kim, et al. Photodynamic properties of azobenzenemolecular films with triphenylamines [J]. Chem. Mater.,2003,15:4021-4027.
    [129] Y.Y. Zhang, Z.P, Cheng, X.L. Zhu, et al. Synthesis and photoresponsive behaviors ofwell-defined azobenzene-containing polymers via RAFT polymerization [J].Macromolecules,2007,40:4809-4817.
    [130] Wu YL, Demachi Y, Tsutsumi O, Kanazawa A, Shiono T, Ikeda T. Photoinducedalignment of polymer liquid crystals containing azobenzene moieties in the sidechain.1.effect of light intensity on alignment behavior [J]. Macromolecules,1998,31:349-354.
    [131] Cha S.W., Choi D.H., Oh D.K., Han D.Y., Lee C.E., Jin J I. Reversible polarizationgratings on thin films of polyoxetanes bearing4-(N,N-Diphenyl)amino-4’-nitroazobenzene chromophores [J]. Adv. Funct. Mater.,2002,12:670–678.
    [132] G.S. Kumar, D.C. Neckers, Photochemistry of azobenzene-containing polymers[J].Chem.Rev.,1989,89:1915-1925.
    [133] X.Q. Xue, W. Zhang, X.L, Zhu, et al. A novel azo-containing dithiocarbamate used forliving radical polymerization of methyl acrylate and styrene [J]. J. Polym. Sci. Part A:Polym. Chem.,2008,46:5626-5637.
    [134] X.Q. Xue, J. Zhu, X.L, Zhu, et al. Preparation and characterization of novel main-chainazobenzene polymers via step-growth polymerization based on click chemistry [J].Polymer,2009,50:4512-4519.
    [135] Y.L. Luo, Q.P. Ran, S.S. Wu, et sl. Synthesis and characterization of a poly(acrylicacid)-graft-methoxy poly(ethylene oxide) comblike copolymer [J]. J. Appl. Polym. Sci.,2008,109:3286–3291.
    [136] Q. Yan, W. Su, Y.L. Chen, Y.H. Luo, Q.J. Zhang. Reversible modulation inluminescence intensity of a single vesicle composed of diblockazo-copolymer and tris(dibenzoylmethanate)(phenanthroline)europium(III)[J].Spectrochimica Acta Part A,2009,71:1644–1647.
    [137] W. Su, K.Y. C Wang, Y.H. Luo, Q.J. Zhang, et al. Optically controllable polarizedluminescence from azopolymer films doped with a lanthanide complex [J]. J. Mater.Chem.,2008,18:3223-3229.
    [138] D. Liu, Z.G. Wang, Novel polyaryletherketones bearing pendant carboxyl groups andtheir rare earth complexes, Part I: Synthesis and characterization [J]. Polymer,2008,49:4960–4967.
    [139]刘丹.新型聚芳醚酮稀土配合物的制备及其荧光性能[D]大连:大连理工大学化学学院2010.
    [140] A. Jacquart, P. Tauc, E. Ishow, et al. Formation of fluorescence reliefs photocontrolledby collective mass migration [J]. J. Mater. Chem.,2009,19:8999–9005.
    [141] Q. Yan, Y.P. Wu, Q.J. Zhang, et al. Effects of absorption overlap on the modulation ofthe polarized fluorescence of Eu(DBM)3Phen-doped azobenzene polymer films [J]. J.Polym. Res.,2010,17:707–712.
    [142] F.D. Saev. Tautomeric Behavior Comparison of4-Phenylazo-naphthol and1-Phenylazo-2-naphthol Systems by Nuclear Magnetic Resonance [J]. J. Org. Chem.,1971,36:3842-3843

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700