用户名: 密码: 验证码:
基于光纤合束器的模式转换和控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤激光器具有转换效率高、光束质量好、结构紧凑、易散热、工作稳定性好等优点,已经广泛应用于工业和国防领域。然而,受光纤非线性效应及光学热损伤等机制的限制,单根光纤激光器的输出功率不可能无限提升。为了获得更大的光纤激光输出,对多个中等功率的光纤激光进行合束是一种有效手段,其中所需的关键元器件就是光纤合束器。目前,美国IPG公司基于光纤合束器的多模连续光纤激光输出功率已高达50kW,但是光束质量很差,M2约为32.7。如何利用光纤合束器在获得大功率激光输出的同时实现高光束质量,进一步扩大其应用范围,是本技术领域需要解决的关键问题。本文围绕光纤合束器模式转换与控制展开了相关理论和实验研究,主要内容包括:
     首先回顾了光纤合束器的发展及其在光纤激光系统上的应用,指出利用光纤合束器可以实现大功率光纤激光输出,但是输出光光束质量较差,严重限制了其应用范围。据此提出了本文研究内容——研究光纤合束器的模式转换,探索通过模式控制改善光纤合束器输出光束质量。
     进一步对光纤合束器在不同入射条件下的输出特性展开了数值模拟研究。应用模式分析法分析了多模光纤和71光纤合束器在理想入射、离轴偏移入射和倾斜入射条件下的输出光场和激发模式特性。引入功率谱密度分析方法分析了理想入射、离轴偏移入射和倾斜入射对多模光纤和71光纤合束器的输出光场强度分布和相位分布的影响,探索光纤合束器输出光光束质量退化的机理。
     根据光纤合束器的两个设计准则,实现了低损耗并可承受百瓦量级输出功率光纤合束器的研制。针对不同功能、不同类型的光纤合束器,提出了四种光纤组束方法。设计加工了一种新型的封装制冷装置,通过实验论证了在光纤合束器传输效率大于95%的前提下,这种热管理方式能够实现4kW的有效制冷。通过分析比较现有的几种光束质量评价方法,选择修正的BPF参数和M2因子一起作为评价合束器输出光光束质量的参考因子。定量分析了光纤熔锥束的占空比和相位误差对输出光光束质量的影响。
     修正了高增益耦合模型,分析了熔锥光纤束被动相干合成的机制,定量分析了随机相位大小对5路、10路和19路熔锥光纤束阵列锁相状态的影响,以及光纤阵列路数对随机相位的容忍度。
     最后提出了一种基于光纤合束器全光纤结构的主动相干自适应优化控制方案。实现了单根多模光纤的模式控制,验证了光束净化可以实现高亮度的输出。在光纤合束器相干锁相基础上,应用光束净化系统对光纤合束器的相干输出光场进行模式控制。对自制的21光纤合束器在非相干输入、相干输入锁相前和锁相后的光束净化进行了实验研究,验证了此模式控制方案可以实现高亮度激光输出的光纤合束器。
Fiber laser has become increasingly popular for industrial and defense applicationsdue to the advantages of high effciency, good beam quality, compactness, convenientheat management and high reliability. However, the power scaling of the fber laser islimited by the thermal damage and the nonlinear effects. The all-fiber fiber combiner,which merges the outputs of a multitude of single-mode fiber lasers, is the keycomponent for high power output. At present, multimode fiber lasers have been scaledto output power of50kW by IPG. However, the beam quality is poor and the M2factoris32.7. How to scale power while simultaneously achieving high brightness by a fbercombiner for more applications is a challenge. The mode transformation and modecontrol of the fiber combiner are investigated and analyzed in theory, simulation andexperiment in this thesis as follows.
     The paper begins with reviewing the history of fiber combiners and theirapplications on the fiber lasers. It puts forward that the fiber combiner is an effectiveapproach for high power output. Owing to the poor beam quality of the combiningoutput, the range of the applications are narrowed severely. Therefore, the modetransformation should be studied and the way of the mode control should be explored toimprove the beam quality.
     The output properties of the fiber combiner under different incidence are simulatedand studied numerically. The output field and mode properties of the single multimodefiber and the71fiber combiner are analyzed under perfect incidence, off-axisincidence and tilted incidence by the mode analysis method. The power spetral density(PSD) method is introduced, and the effect with different incidence on the intensitydistribution and phase distribution are researched. The mechanism that the beam qualityof output beam of the fiber combiner degenerates is explored
     According to two design rules, the low loss fiber combiners with hundreds wattpower available are fabricated. Four methods of bundling fibers are brought forwardaccording to the types of the fiber combiner. A new package for combiner with excellentcooling are devised and the package is tested for the capability of4kW output powerwhen the efficiency is larger than95%。Several methods for evaluating the beam qualityare compared and analyzed. The modified beam propagation factor (BPF) and M2factorare selected as the appropriate beam quality factors for the fiber combiner. Theinfluence of the TFB duty ratio and phase errors on the beam quality are studied indetail.
     The model for high-gain fiber laser arrays is revised to analyze the passivecoherent combining of the tapered fused fiber bundles. The influence of the magnitudeof the phase errors on the output phase properties of the5-,10-and19-fused fiber bundle arrays are discussed. The relationship between the tolerance of the phase errorsand the number of the arrays is also caculated.
     A sheme for an all-fiber active coherent combining via a fiber combiner isillustrated. The feasibility of a single MMF laser cleanup is proved in experiment. Anexperimental system of the active combining and contol of the fiber combiner is built.The system carried on the mode control for the coherent output by beam cleanup systemafter phase-locking the fiber combiner. The beam cleanup of a home-made21fibercombiner are investigated in experiment under incoherent combining, coherentcombining without phase locking and coherent combining with phase locking. Theresluts proves the feasibility for high brightness output of the fiber combiner.
引文
[1] A. Galvanauskas. High power fiber lasers [J]. Optics&Photonics News,2004,15(7):42-47.
    [2] D. Richardson, J. Nilsson, W. Clarkson. High power fiber lasers: current status andfuture perspectives [J]. J. Opt. Soc. Am. B,2010,27(11): B63-B92.
    [3]姚建铨,任广军,张强等.掺镱双包层光纤激光器及其泵浦耦合技术[J].激光杂志,2008,27(5):1-7.
    [4]楼祺洪,周军,朱健强等.高功率光纤激光器研究进展[J].红外与激光工程,2006,35(2):135-138.
    [5]楼祺洪,周军,张海波等.大芯径光纤激光器的新进展[J].中国激光,2010,(9):2235-2241.
    [6] J. W. Dawson, M. J. Messerly, R. J. Beach, et al. Analysis of the scalability ofdiffraction-limited fiber lasers and amplifiers to high average power [J]. Opt. Express,2008,16(17):13240-13266.
    [7] J. W. Dawson, M. J. Messerly, R. J. Beach, et al. Ultimate power limits of opticalfibers [C]. OFC/NFOEC,2010, OMO6.
    [8] H. Injeyan, G. D. Goodno. High power laser handbook [M]. McGraw-HillProfessional,2011.
    [9] E. Snitzer. Optical Maser Action of Nd+3in a Barium Crown Glass [J]. Phys. Rev.Lett.,1961,7(12):444-446.
    [10] R. J. Mears, L. Reekie, I. M.Jauncey. Low-noise erbium-doped fibre amplifieroperating at1.54um [J]. Electron. Lett.,1987,23(19):1026-1028.
    [11] E. Desurvire, J. R. Simpson, P. C. Becker. High-gain erbium-doped traveling-wavefiber amplifier [J]. Opt. Lett.,1987,12(11):888-890.
    [12]楼祺洪.高功率光纤激光器及其应用[M].合肥:中国科学技术大学出版社,2010.
    [13] E. Snitzer, H. Po, F. Hakimi. Double cald, offset core Nd fiber laser [C]. OpticalFiber Sensors,1988,2: PD5.
    [14]李杰,周航,陈子伦等.高功率光纤激光器泵浦耦合技术的现状和发展[J].激光与光电子学进展,2012,49(2):020003.
    [15] H. M. Pask, J. L. Archambault, D. C. Hanna, et al. Operation of cladding-pumpedYb3+doped silica fibre lasers in1μm region [J]. Electron. Lett.,1994,30(11):863-865.
    [16] M. Muendel, B. Engstrom, D. Kea, et al.35-Watt CW single-mode ytterbium fiberlaser at1.1μm [J]. Optics&Photonics News,1997,8:51-52.
    [17] V. Dominic, S. MacCormack, R. Waarts, et al.110W fibre laser [J]. Electron. Lett.,1999,35(14):1158-1160.
    [18] J. Limpert, A. Liem, H. Zellmer.500W continuous wave fibre laser with excellentbeam quality [J]. Electron. Lett.,2003,39(8):645-647.
    [19] C.H. Liu, B. Ehlers, F. Doerfel, et al.810W continuous-wave andsingle-transverse-mode fibre laser using20μm core Yb-doped double-clad fibre [J].Electron. Lett.,2004,40(23):1471-1472..
    [20] Y. Jeong, J. Sahu, D. Payne, et al. Ytterbium-doped large-core fiber laser with1.36kW continuous-wave output power [J]. Opt. Express,2004,12(25):6088-6092.
    [21] V. Gapontsev, D. Gapontsev, N. Platonov, et al.2kW CW ytterbium fiber laserwith record diffraction-limited brightness [C]. CLEO/Europe,2005,508.
    [22] V. Fomin, A. Mashkin, M. Abramov.3kW Yb fibre lasers with a single-modeoutput [C]. Symp. High-Power Fiber Lasers Appl.,2006.
    [23] D. Gapontsev, IPG Photonics.6kW CW Single mode Ytterbium fiber laser inall-fiber format [J]. Solid State and Diode Laser Technology Review,2008.
    [24] IPG photonics successfully tests world’s first10kilowatt single-mode productionlaser.[EB/OL] http://www.ipgphotonics.com.
    [25]周朴.光纤激光相干合成技术研究[D].长沙:国防科学技术大学,2009.
    [26] E. Stile. New developments in IPG fiber laser technology [C]. Proceedings of the5th International Workshop on Fiber Lasers,2009.
    [27] A. Ferin, V. Gapontsev, V. Fomin.17kW CW laser with50μm delivery fiber [C].Laser Optics2012.
    [28] J. Zhu, P. Zhou, Y. Ma. Power scaling analysis of tandem-pumped Yb-doped fiberlaser and amplifiers [J]. Opt. Express,2011,19(19):18645-18654.
    [29]卢慧玲,冯锦玲,曾鹏.2010年美国高能激光武器的进展[J].飞航导弹,2011,7:20-24.
    [30]黄芩,龚新刚,沈丽娟.2011年美国高能激光武器研发进展[J].飞航导弹,2012,5:48-53.
    [31]牛中兴,孙亚力.光纤激光武器装备防空平台的试验[J].飞航导弹,2011,1:53-58.
    [32]文建国,张景贵.一种用作武器的高亮度光纤激光器实现方案[J].应用激光,2005,25(6):397-400.
    [33] Review of Directed Energy Technology for Countering Rockets, Artillery, andMortars (RAM).[EB/OL] http://www.nap.edu/catalog.php?record_id=12008.
    [34] F. Gonthier, L. Martineau, N. Azami, et al. High-power all-Fiber components: Themissing link for high power fiber lasers [C]. Proc. of SPIE,2004,5335:266-276.
    [35] http://www.ipgphotonics.com/apps_materials_multi_yls.htm.
    [36] L. Quintino, A. Costa, R. Miranda, et al. Welding with high power fiberlasers-A preliminary study [J]. Materials&Design,2007,28:1231-1237
    [37]剖析光纤激光焊接[EB/OL] http://laser.ofweek.com/2012-11/ART-240015-11000-28649576.html.
    [38] IPG光子公司2万瓦光纤激光器在厚板焊接中的应用.[EB/OL] http://www.opticsjournal.net/Post/Details/PT100108000003w4z7.
    [39] IPG高功率光纤激光器推动船舶制造业发展.[EB/OL] http://www.opticsjournal.net/Post/Details/PT1006090000189EbH.
    [40] IPG20KW超高功率光纤激光器成功用于通用的HLAW系统.[EB/OL] http://www.opticsjournal.net/Post/Details/PT110704000007EaHdJ.
    [41]光纤激光打标机和其他打标机的比较.[EB/OL] http://laser.ofweek.com/2011-01/ART-240004-8500-28437426.html.
    [42]厂商为何对光纤激光趋之若鹜?[EB/OL] http://laser.ofweek.com/2012-09/ART-240015-11000-28638557.html.
    [43]高动态光纤激光切割机.[EB/OL] http://laser.ofweek.com/2012-11/ART-240015-8110-28649491.html.
    [44]激光美容:给皮肤一个轻轻的问候.[EB/OL] http://health.people.com.cn/GB/228835/229362/16042781.html.
    [45]光纤激光器独霸材料加工仍有挑战.[EB/OL] http://www.lightfc.com/html/guangxuezixun/xingyefenxi/2012/0303/137929.html.
    [46] S. D. Jackson, A. Lauto. Diode-pumped fiber lasers: A new clinical tool?[J].Lasers in Surgery and Medicine,2002,30:184-190.
    [47]楼祺洪,周军,王之江.光纤激光作为激光武器的能力分析[J].激光技术,2003,27(3):161-165.
    [48]刘泽金,周朴,许晓军.高能光纤激光系统浅析[J].强激光与粒子束,2008,20(11):1761-1767.
    [49] P. Sprangle, A. Ting, J. Penano, et al. Incoherent combining of high-power fiberlaser for directed-energy applications [J]. Naval Reaserch Laboratory,2008,NRL/MR16790--16708-90966.
    [50] P. Sprangle, J. Pe ano, B. Hafizi, et al. Incoherent Combining of high-Power FiberLasers for Long-Range Directed Applications [J]. Journal of Directed Energy,2007,2:273-284.
    [51] C. Kopp. High Energy Laser Directed Energy Weapons [J]. US Air Force,2008,APA-TR-2008-0501.
    [52]李伟,赵勇,陈曦等.大功率光纤激光器在销毁弹药中的应用[J].激光与光电子学进展,2008,45(7):39-43.
    [53] Sieff M. Raytheon tests new laser weapon.[EB/OL] http://www.spacedaily.com/reports/Raytheon_Tests_New_Laser_Weapon_999.html.
    [54] Peter Felstead. Raytheon targets Q4shootdown of mortar round in flight.[EB/OL]http://www.janes.com/products/janes/defence-security-report.aspx?ID=1065927742.
    [55] S. J. McNaught, J. E. Rothenberg, P. A. Thielen, et al. Coherent combining of a1.26-kW Fiber Amplifier [C]. Advanced Solid-State Photonics,2010, AMA2.
    [56] G. D. Goodno, S. J. McNaught, J. E. Rothenberg, et al. Active phase andpolarization locking of a1.43kW fiber amplifier [J]. Opt. Lett.,2010,35(10):1542-1544.
    [57] H. Zimer, M. Kozak, A. Liem, et al. Fibers and fiber-optic components forhigh-power fiber lasers [C]. Proc. of SPIE,2011,7914.
    [58] C. X. Yu, S. J. Augst, S. M. Redmond, et al. Coherent combining of a4kW,eight-element fiber amplifier array [J]. Opt. Lett.,2011,36(14):2686-2688.
    [59] IPG Photonics offers world's first10kW single-mode production laser.[EB/OL]http://www.ipgphotonics.com.
    [60] YLR—HP Series:1-50kW ytterbium fiber lasers.[EB/OL] http://www. ipgphotonics.com/apps_mat_multi_YLR.htm.
    [61] Kilowatt laser amplifier platform.[EB/OL] http://www. nufern.com/kilowatt–amp.php.
    [62]西安中科梅曼激光推出首台国产化1000W工业光纤激光器.[EB/OL]http://laser.ofweek.com/2012-05/ART-240002-8110-28611033.html.
    [63]赵鸿,周寿桓,朱辰等.大功率光纤激光器输出功率超过1.2kW [J].中国激光,2006,33(10):1359-1359.
    [64] P. Yan, S. Yin, J. He, et al.1.1kW Ytterbium Monolithic Fiber Laser withAssembled End-pump Scheme to Couple High Brightness Single Emitters [J]. Photon.Technol. Lett.,2011,23(11):697-699.
    [65]楼祺洪,何兵,薛宇豪.1.75kW国产掺Yb双包层光纤激光器[J].中国激光,2009,36(5):1277-1277.
    [66] Y. Ma, X. Wang, J. Leng, et al. Coherent beam combination of1.08kW fiberamplifier array using single frequency dithering technique [J]. Opt. Lett.,2011,36(6):951-953.
    [67]刘泽金,王小林,周朴等.9路光纤激光相干合成实现1.56kW高功率输出[J].中国激光,2011,38(7):195-195.
    [68] D. J. DiGiovanni, A. J. Stentz. Tapered fiber bundles for coupling light into and outof cladding-pumped fiber devices [P]. US Patent:58646444,1999.
    [69] B. G. Fidric, V. G. Dominic, S. Sander. Optical couplers for multimode fibers [P].US Patent:6434302B1,2002.
    [70] M. H. Rasmusen. Fiber bundles and methods of making fiber bundles [P]. USPatent:7236671B2,2007.
    [71] S. G. Anikitchev, K. E. Lindsay, A. Starodoumov. Method for manufacturing amultimode fiber pump power combiner [P]. US Patent:7272956B1,2007.
    [72] S. Lewis, G. Edwards. Device for coupling radiation into or out of an optical fiber[P]. US Patent:7720340B2,2010.
    [73] F. Gonthier, L. Martineau, F. Seguin, et al. Optical coupler comprising multimodefibers and method for making the same [P]. US Patent:7046875B2,2006.
    [74] A. Salokatve. Means of coupling light into optical fibers and methods ofmanufacturing a coupler [P]. US Patent:2009/0154879A1,2009.
    [75] W. R. Holland. Fiber based laser combiners [P]. US Patent:2010/0278486A1,2010.
    [76] M. Faucher, B. Sevigny, R. Perreault, et al. All-fiber32x1pump combiner withhigh isolation for high power fiber laser [C]. CLEO/QELS2008, CMA5.
    [77] A. Wetter. Optical fiber component package for high power dissipation [P]. USPatent:7373070B2,2008.
    [78] F. Gonthier, M. Garneau, N. Vachon. Multimode fiber outer cladding coupler formulti-clad fibers [P]. US:7933479B2,2011.
    [79] A. Wetter, M. Faucher, M. Lovelady, et al. Tapered fused-bundle splitter capableof1kW CW operation [C]. Proc. of SPIE,2007,6453:645301
    [80] P. Yan, S. Yin, M. Gong.175-W continuous-wave master oscillator power amplifierstructure ytterbium-doped all-fiber laser [J]. Chin. Opt. Lett.,2008,6(8):580-582.
    [81] S. Yin, P. Yan, M. Gong. End-pumped300W continuous-wave ytterbium-dopedall-fiber laser with master oscillator multi-stage power amplifiers configuration [J]. Opt.Express,2008,16(22):17864-17869.
    [82]闫平,肖起榕,付晨等.1.6kW全光纤掺镱激光器[J].中国激光,2012,39(4):218-218.
    [83] P. Yan, M. Gong, C. Li, et al. Distributed pumping multifiber series fiber laser [J].Opt. Express,2005,13(7):2699-2706.
    [84] T. Theeg, H. Sayinc, J. Neumann, et al. All-Fiber Counter-Propagation PumpedSingle Frequency Amplifer Stage With300-W Output Power [J]. Photon. Technol. Lett.,2012,24(20):1864-1868.
    [85] T. Theeg, H. Sayinc, J. Neumann, et al. Pump and signal combiner forbi-directional pumping of all-fiber lasers and amplifiers [J]. Opt. Express,2012,20(27):28125-28141.
    [86]刘江,王璞.瓦级输出全光纤结构2.0微米掺铥皮秒脉冲光纤激光器[J].中国激光,2012,39(8):17-20.
    [87]刘江,王潜,王璞.20W全光纤结构掺铥皮秒脉冲光纤激光器[J].中国激光,2012,39(6):209-209.
    [88] J. Liu, Q. Wang, P. Wang. High average power picosecond pulse generation from athulium-doped all-fiber MOPA system [J]. Opt. Express,2012,20(20):22442-22447.
    [89] M. H. Muendel, R. Farrow, K. H. Liao, et al. Fused fiber pump and signalcombiners for a4-kW ytterbium fiber laser [C]. Proc. of SPIE,2011,7914:791431.
    [90] D. A. V. Kliner, K. Chong, J. Franke, et al.4-kW fiber laser for metal cutting andwelding [C]. Proc. of SPIE,2011,7914:791418.
    [91]武汉锐科最新高功率光纤激光器亮相光博会.[EB/OL] http://laser.ofweek.com/2012-11/ART-240002-8120-28651222.html.
    [92]肖虎.掺镱光纤激光级联泵浦技术研究[D].国防科学技术大学,2012.
    [93] V. P. Gapontsev, V. Fomin, N. Platonov. Powerful fiber laser system [P]. US Patent:2010/0002730A1,2010.
    [94] R. Paschotta, J. Nilsson, A. Tropper, et al. Yttrerbium-doped fiber amplifiers [J].IEEE J. Sel. Top. Quantum Electron.,1997,33(7):1049-1056.
    [95] A. Ferin, V. Gapontsev, V. Fomin, et al.17kW CW laser with50μm delivery fiber
    [[C]. Laser Optics2012.
    [96] M. Meleshkevich, N. Platonov.415W Single-Mode CW Thulium Fiber Laser inall-fiber format [C]. CLEO,2007.
    [97] M. Jebali, J. Maran, S. LaRochelle, et al. A103W Highly efficient in-bandcladding-pumped1593nm all-fiber erbium-doped fiber laser [C]. CLEO,2012, JTh1I.
    [98]肖虎,冷进勇,吴武明,王小林,马阎星,周朴,许晓军,赵国民,同带抽运高效率光纤放大器[J].物理学报,2011,60(12).
    [99]肖虎,董小林,周朴,许晓军,赵国民,1018nm光源及光纤激光同带抽运实验研究[J].光学学报,2012,32(3).
    [100] M. D. Nielsen, M. H. S rensen, A. Liem, et al. High-power PCF-based pumpcombiners [C]. Proc. of SPIE,2007,6453:64532C.
    [101] K. P. Hansen, C. B. Olausson, J. Broeng, et al. airclad fiber laser technology [C].Proc. of SPIE,2008,6873:687307.
    [102] K. P. Hansen, C. B. Olausson, J. Broeng, et al. Airclad fiber laser technology [J].Opt. Eng.,2011,50(11):111609.
    [103] D. Noordegraaf, M. D. Nielsen, P. M. Skovgaard, et al. Pump combiner forair-clad fiber with PM single-mode signal feed-through [C]. CLEO/IQEC,2009,CThGG6.
    [104] D. Noordegraaf, M. Maack, P. M. W. Skovgaard, et al.7+1to1pump/signalcombiner for air-clad fiber with15m MFD PM single-mode signal feed-through [C].Proc. of SPIE,2010,7580:75801A.
    [105] D. Noordegraaf, M. D. Maack, P. M. W. Skovgaard, et al. Mode field diameterpreserving fiber tapers [J]. Opt. Lett.,2011,36(23):4524-4526.
    [106] B. G. Ward, D. L. Sipes Jr, J. D. Tafoya. A monolithic pump signal multiplexer forair-clad photonic crystal fiber amplifiers [C]. Proc. of SPIE,2010,7580:75801C.
    [107] D. L. Sipes Jr, J. D. Tafoya, D. S. Schulz, et al. Advanced components formulti-kW fiber amplifiers [C]. Proc.of SPIE,2012,8237:82370P.
    [108] D. L. Sipes Jr, J. D. Tafoya, D. S. Schulz, et al.1.5micron MOPA deep spacedownlink transmitter [J]. Proc. of SPIE,2012,8246:82460J.
    [109] J. K. Kim, C. Hagemann, T. Schreiber, et al. Monolithic all-glass pump combinerscheme for high-power fiber laser systems [J]. Opt. Express,2010,18(12):13194-13203.
    [110] J. K. Kim, C. Hagemann, T. Schreiber, et al. monolithic all-glass devicecombining pump coupling and end cap scheme for high-power fiber lasers [C]. Proc. ofSPIE,2010,7580:75802F.
    [111] D. Noordegraaf, M. D. Maack, P. M. W. Skovgaard, et al. All-fiber7x1signalcombiner for incoherent laser beam combining [C]. Proc. of SPIE,2011,7914:79142L.
    [112] Y. Shamir, Y. Sintov, M. Shtaif. Beam quality analysis and optimization in anadiabatic low mode tapered fiber beam combiner [J]. J. Opt. Soc. Am. B,2010,27(12):2669-2676.
    [113] Y. Shamir, Y. Sintov, M. Shtaif. Incoherent beam combining of multiplesingle-mode fiber lasers utilizing fused tapered bundling [C]. Proc. of SPIE,2010,7580:75801R.
    [114] Y. Shamir, Y. Sintov, M. Shtaif. Large-mode-area fused-fiber combiners, withnearly lowest-mode brightness conservation [J]. Opt. Lett.,2011,36(15):2874-2876.
    [115] Y. Shamir, Y. Sintov. All fiber low mode beam combiner for high power and highbeam quality [P]. US Patent:20120281948,2012.
    [116] Y. Shamir, R. Zuitlin, Y. Sintov, et al. Spatial beam properties of combined-lasers'delivery fibers [J]. Opt. Lett.,2012,37(9):1412-1414.
    [117] Y. Shamir, R. Zuitlin, Y. Sintov, et al.3kW-level incoherent and coherent modecombining via all-fber fused Y-couplers [J]. Proc.of SPIE,2012, FW6C.1.
    [118] R. Zuitlin, Y. Shamir, Y. Sintov, et al. Modeling the evolution of spatial beamparameters in parabolic index fibers [J]. Opt. Lett.,2012,37(17):3636-3638.
    [119] M. L. Minden, S. Wang. All-fiber laser coupler with high stability [P]. US Patent:7738751B1,2010.
    [120]季家镕,冯莹.高等光学教程——非线性光学与导波光学[M].北京:科学出版社,2008.
    [121]廖延彪.光纤光学[M].北京:清华大学出版社,2000.
    [122] M. D. Feit, J. A. Fleck. Light propagation in graded-index optical fibers [J]. Appl.Opt.,1978,(17):3990-3998.
    [123] D. Yevick. A guide to electric field propagation techniques for guided-wave optics[J]. Opt. and Quant. Elec.,1994,26(3): S185-S197.
    [124] R. Scarmozzino, A. Gopinath, R. Pregla, et al. Numerical Techniques forModeling Guided-Wave Photonic Devices [J]. J. Selected Topics in QuantumElectronics,2000,6(1):150-162.
    [125] L. Thylen, K. D. Yevic. Beam propagation method in anisotropic media [J]. Appl.Opt.,1982,21(15):2751-2754.
    [126] B. Hermanssor, D. Yevick. A propagating Beam Method Analysis of NomlinearEffects in Optical Waveguide [J]. Opt. Quantum Electron.,1984,(16):525-534.
    [127] T. B. Koch, J. B. Davies. Wickramasinghe D. Finite element/finite differencepropagation algorithm for integrated optical device [J]. Electron. Lett.,1989,25(8):514-516.
    [128] L. B. Soldano, E. C. M. Pennings. Optical multi-mode interference devices basedon self-imaging: principles and applications [J]. J. Lightwave Technol.,1995,13(4):615-627.
    [129] G. R. Hadley. Wide-angle beam propagation using Pade approximant operators [J].Opt. Lett.,1992,17(20):1426-1428.
    [130] G. R.Hadley. Multistep method for wide-angle beam propagation [J]. Opt. Lett.,1992,17(24):1743-1745.
    [131] C. L. Xu, W. P. Huang, S. K.Chaudhuri. Efficient and accurate vector modecalculations by beam propagation method [J]. J. Lightwave Technol.,1993,11(7):1209-1215.
    [132] R. Clauberg, P. V. Allmen. Vectorial beam propagation method for integratedoptics [J]. Electron. Lett.,1991,27(8):654-655.
    [133] W. P. Huang, C. L. Xu. Simulation of three-dimensional optical waveguides by afull-vector beam propagation method [J]. J. Quantum Electron.,1993,29(10):2639-2649.
    [134] P. Kaczmarski, P. E. Lagasse. Bidirectional beam propagation method [J].Electron. Lett.,1988,24(11):675-676.
    [135] H. Rao, R. Scarmozzino, J. R.M. Osgood. A bidirectional beam propagationmethod for multiple dielectric interfaces [J]. Photon. Technol. Lett.,1999,11(7):830-832.
    [136] G. R. Hadley. Wide-angle beam propagation using Pade approximant operators [J].Opt. Lett.,1992,17(20):1426-1428.
    [137] S. Jungling, J. C. Chen. A study and optimization of eigenmode calculations usingthe imaginary-distance beam-propagation method [J]. J. Quantum Electron.,1994,30(9):2098-2105.
    [138] X. Zhu, A. Schülzgen, H. Li, et al. Coherent beam transformations usingmultimode waveguides [J]. Opt. Express,2010,18(7):7506-7520.
    [139] W. S. Mohammed, P. W. E. Smith, X. Gu. All-fiber multimode interferencebandpass filter [J]. Opt. Lett.,2006,31(17):2547-2549.
    [140] C. Yoon, Y. Choi, M. Kim, et al. Experimental measurement of the number ofmodes for a multimode optical fiber [J]. Opt. Lett.,2012,37(21):4558-4560.
    [141] W. S. Mohammed, A. Mehta, E. G. Johnson. Wavelength tunable fiber lens basedon multimode interference [J]. J. Lightwave Technol.,2004,22(2):469-477.
    [142]斯奈德,洛夫,周幼威.光波导理论[M].北京:人民邮电出版社,1991.
    [143]周朴,侯静,陈子伦等.多芯光纤激光器的超模及模式选择问题研究[J].光学学报,2007,27(10):1812-1816.
    [144] J. A. Besley, J. D. Love. Supermode analysis of fibre transmission [C].1997,144(6):411-419.
    [145]彭志涛,景峰,刘兰琴等.自聚焦激光束光束质量评价的功率谱密度方法[J].物理学报,2003,52(1):87-90.
    [146]刘红婕,景峰,左言磊等.激光波前功率谱密度与焦斑旁瓣的关系[J].中国激光,2006,33(4):504-508.
    [147]张蓉竹,蔡邦维,杨春林等.功率谱密度的数字计算方法[J].强激光与粒子束,2000,12(6):661-664.
    [148]任寰,卓志云,蒋晓东.波前功率谱密度函数评价方法探讨[J].强激光与粒子束,2002,14(2):279-282.
    [149] B. Sevigny, P. Poirier, M. Faucher. Pump combiner loss as a function of inputnumerical aperture power distribution [C]. Proc. of SPIE,2009,7195:719523.
    [150]李立波,楼祺洪,周军.大模场面积光纤激光器拉锥法模式选择[[J].中国激光,2007,34(12):1625-1628.
    [151] L. L, L. Q, Z. J. High power single transverse mode operation of a taperedlarge-mode-area fiber laser [J]. Opt. Commun.,2008,281(4):655-657.
    [152] T. A. Birks, Y. W. Li. The shape of fiber tapers [J]. J. Lightwave Technol.,1992,10(4):432-438.
    [153] J. Love, W. Henry. Quantifying loss minimisation in single-mode fibre tapers [J].Electron. Lett.,1986,22(17):912-914.
    [154] B. Wang, E. Mies. Review of fabrication techniques for fused fiber componentsfor fiber lasers [C]. Proc. of SPIE,2009,7195:71950A.
    [155] A. W. Snyder, J. D. Love. Optical waveguide theory [M]. Springer,1983.
    [156] J. Love. Spot size, adiabaticity and diffraction in tapered fibres [J]. Electron. Lett.,1987,23(19):993-994.
    [157] W. Guo, Z. Chen, J. Li, et al. An Unusual Method for Stripping Cladding Lights inthe High Power Fiber Laser [J]. Appl. Opt.,2013sumbmitted.
    [158]吕百达.激光光学(第三版)[M].北京:高等教育出版社,2003.
    [159]冯国英,周寿恒.激光光束质量综合评价的探讨[J].中国激光,2009,36(7):11.
    [160] A. Siegman. How to (maybe) measure laser beam quality [C]. OSA Trends inOptics and Photonics,1998,17: MQ1.
    [161] A. E. Siegman. Defining, measuring, and optimizing laser beam quality [C]. Proc.of SPIE,1993,1868:2-12.
    [162] A. E. Siegman. New developments in laser resonators [C]. Proc. of SPIE,1990,1224:2-14.
    [163] S. Wielandy. Implications of higher-order mode content in large mode area fiberswith good beam quality [J]. Opt. Express,2007,15(23):15402-15409.
    [164] H. Yoda, P. Polynkin, M. Mansuripur. Beam quality factor of higher order modesin a step-index fiber [J]. J. Lightwave Technol.,2006,24(3):1350-1355
    [165]赵海川.大功率光纤激光模场自适应优化控制研究[D].长沙:国防科学技术大学,2012.
    [166] M. Wrage, P. Glas, D. Fischer, et al. Phase locking in a multicore fiber laser bymeans of a Talbot resonator [J]. Opt. Lett.,2000,25(19):1436-1438.
    [167] T. M. Shay. Theory of Electronically phased coherent beam combination withouta reference beam [J]. Opt. Express,2006,14(25):12189-12195.
    [168] T. Shay, V. Benham, J. Baker, et al. Self-synchronous and self-referenced coherentbeam combination for large optical arrays [J]. IEEE J. Sel. Top. Quantum Electron.,2007,13(3):480-486.
    [169] Y. Ma, Z. Liu, P. Zhou, et al. Coherent beam combining of three fiber amplifierswith multi-dithering technique [J]. Chin. Phys. Lett.,2009,26(4):044204.
    [170] M. Vorontsov, G. Carhart, J. Ricklin. Adaptive phase-distortion correction basedon parallel gradient-descent optimization [J]. Opt. Lett.,1997,22(12):907-909.
    [171] M. A. Vorontsov, G. W. Carhart, M. Cohen, et al. Adaptive optics based on analogparallel stochastic optimization: analysis and experimental demonstration [J]. J. Opt.Soc. Am. A,2000,17(8):1440-1453.
    [172] P. Cheo, A. Liu, G. King. A high-brightness laser beam from a phase-lockedmulticore Yb-doped fiber laser array [J]. Photon. Technol. Lett.,2001,13(5):439-441.
    [173] E. J. Bochove, P. K. Cheo, G. G. King. Self-organization in a multicore fiber laserarray [J]. Opt. Lett.,2003,28(14):1200-1202.
    [174] A. Shirakawa, T. Saitou, T. Sekiguchi, et al. Coherent addition of fiber lasers byuse of a fiber coupler [J]. Opt. Express,2002,10(21):1167-1172.
    [175] H. Bruesselbach, D. C. Jones, M. S. Mangir, et al. Self-organized coherence infiber laser arrays [J]. Opt. Lett.,2005,30(11):1339-1341.
    [176] B. Wang, E. Mies, M. Minden, et al. All-fiber passive Coherent Arrays CombiningFour High Power Fiber Lasers [J]. Solid State and Diode Laser Technology Review,2009.
    [177] B. Wang, A. Sanzhez. All-fiber Passive Coherent Beam Combining of FiberLasers and Challenges [C]. Solid State and Diode Laser Technology Review,2012,FTh3A.2.
    [178] V. Kozlov, J. Hernandez-Cordero, T. Morse. All-fiber coherent beam combiningof fiber lasers [J]. Opt. Lett.,1999,24(24):1814-1816.
    [179] M. L. Minden, H. Bruesselbach, J. L. Rogers, et al. Self-Organized Coherence InFiber Laser Arrays [J]. Proc. of SPIE,2004,5335:89-97.
    [180] M. Minden, H. Bruesselbach, J. Rogers, et al. Coherent combining of fbreamplifers and lasers [C]. Solid State and Diode Laser Technology Review,2005.
    [181] A. A. Ishaaya, N. Davidson, A. A. Friesem. Passive laser beam combining withintracavity interferometric combiners [J]. J. Sel. Top. Quantum Eletron.,2009,15(2):301-311.
    [182] A. Ishaaya, V. Eckhouse, L. Shimshi, et al. Improving the output beam quality ofmultimode laser resonators [J]. Opt. Express,2005,13(7):2722-2730.
    [183] X. Zhang, X. Zhang, Q. Wang, et al. In-phase supermode selection in ring-typeand concentric-type multicore fibers using large-mode-area single-mode fiber [J]. J. Opt.Soc. Am. A,2011,28(5):924-923.
    [184] L. Michaille, C. Bennett, D. Taylor, et al. Phase locking and supermode selectionin multicore photonic crystal fiber lasers with a large doped area [J]. Opt. Lett.,2005,30(13):1668-1670.
    [185] L. Li, A. Schülzgen, S. Chen, et al. Phase locking and in-phase supermodeselection in monolithic multicore fiber lasers [J]. Opt. Lett.,2006,31(17):2577-2579.
    [186] L. Li, A. Schülzgen, H. Li, et al. Phase-locked multicore all-fiber lasers: modelingand experimental investigation [J]. J. Opt. Soc. Am. B,2007,24(8):1721-1728.
    [187] A. Shirakawa, K. Matsuo, K. Ueda. Fiber laser coherent array for power scaling ofsingle-mode fiber laser [C]. Proc. of SPIE,2004,5662:482-487.
    [188] J. L. Rogers, S. Peles, K. Wiesenfeld. Model for high-gain fiber laser arrays [J].Quantum Electron.,2005,41(6):767-773.
    [189] S. Pele, J. L. Rogers, K. Wiesenfeld. Robust synchronization in fiber laser arrays[J]. Phys. Rev. E,2006,73(2):026212.
    [190] W. P. Huang. Coupled-mode theory for optical waveguides: an overview [J]. J.Opt. Soc. Am. A,1994,11(3):963-983.
    [191] S. Zhao, Z. Wang. Scalability and stability of a coherent fiber laser array usingfiber couplers [J]. J. Opt. Soc. Am. B,2010,27(5):1131-1138.
    [192] E. J. Bochove, S. A. Shakir. Analysis of a spatial-filtering passive fiber laser beamcombining system [J]. J. Sel. Top. Quantum Eletron.,2009,15(2):320-327.
    [193] M. Fridman, M. Nixon, N. Davidson, et al. Passive phase locking of25fiberlasers [J]. Opt. Lett.,2010,35(9):1434-1436.
    [194] H. Bruesselbach, M. Minden, J. L. Rogers, et al.200W self-organized coherentfiber arrays [C]. CLEO,2005,1:532-534.
    [195]王小林.激光相控阵中的优化式自适应光学研究[D].长沙:国防科学技术大学,2011.
    [196]马阎星.光纤激光抖动法相干合成技术研究[D].长沙:国防科学技术大学,2012.
    [197] H. C. Zhao, H. T. Ma, P. Zhou, et al. Multimode fiber laser beam cleanup based
    on stochastic parallel gradient descent algorithm [J]. Opt. Commun.,2011,284(2):
    613-615.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700