用户名: 密码: 验证码:
可溶性含钌配合物和空穴传输基团聚酰亚胺光伏材料的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石能源的消耗和人们环保意识的加强,太阳能作为一种真正意义上的绿色能源引起了人们的高度重视。基于光生伏打效应的太阳能电池是开发和利用太阳能的最有效方法之一。在目前常用的太阳能电池材料中,聚合物太阳能电池因具质量轻,成本低和易大面积加工的特点而成为当今国际社会研究关注的热点。而聚合物的光吸收与太阳光谱不匹配,载流子迁移率较低以及材料的稳定性较差等是造成聚合物太阳能电池性能相对较差的主要原因。
     聚酰亚胺是一类具有很高热稳定性(一般玻璃化转变温度Tg高于200℃)、光化学稳定性较高、同时又具有电子给体/受体交替主链等特点的材料。本文通过分子设计,将金属钉配合物引入聚酰亚胺的主链或侧链以拓宽其光吸收性能;在主链中引入具有庞大侧基笏的9,9-二苯基芴二胺(FBPA)或三苯胺二胺单体M2(tpa)制备热稳定性和光化学稳定性较高、在可见光区有较强的光吸收、并具有较大电荷迁移率的新型聚合物光伏材料。
     1、首先合成了两个含螫合配体(L)二胺单体M1(bpy)和M3(tpa(bpy));然后M1、M3和FBPA或M2以1:0,3:1,1:1,1:3的比例与含氟二酐(6FDA)通过“高温一步法”进行共缩聚,合成了主链或侧链含联吡啶螫合配体和空穴传输基团的新型聚酰亚胺LHPI-1(bpyx.-FBPA-PI)(x:含螯合配体二胺占二胺单体的摩尔分数)、LHPI-2(bpyx-tpa-PI)和LHPI-3[tpa(bpy)χ-tpa-PI];通过"一锅煮'的方法,LHPI-1、LHPI-2和LHPI-3与钉金属配合物(Ru-complex)配位得到主链或侧链含金属配合物和空穴传输单元的聚酰亚胺DHPI-1、DHPI-2和DHPI-3。1H-NMR、IR、元素分析、GPC的表征结果表明,所得到的单体和聚合物与设计的化学结构一致。
     2. DHPI-1、DHPI-2和DHPI-3在高沸点、强极性溶剂DMSO、DMF等中具有较好的溶解性;在THF、CHCl3等低沸点、极性溶剂中的溶解性随着FBPA和tpa含量的增加而增加。TG表征结果显示LHPI和DHPI都有较好的热稳定性。通过UV-Vis吸收光谱表征结果显示金属钌配合物的引入将DHPI-1、DHPI-2和DHPI-3的吸收边带拓宽到了750 nm左右,有利于聚合物捕获可见光区的太阳光子。FL光谱表征结果显示,DHPI-1和DHPI-2的荧光强度除了bpy25Ru-tpa-PI之外荧光强度明显弱于相应的LHPI-1和LHPI-2,说明金属钉配合物对聚合物有荧光猝灭作用,荧光猝灭效应可以降低聚合物吸收光能的损失,有利于聚合物中激子的分离,提高光电转换效率;但是LHPI-3和DHPI-3具有几乎相同的荧光强度,也说明了侧链柔性挂接金属配合物不影响聚合物的光物理性能。
     3、通过循环伏安对LHPI-1、DHPI-1、tpa(bpy)100-PI和tpa(bpy)100Ru-PI的电化学性能进行了测试,结果表明,金属钉配合物的引入降低了聚合物的能带隙,提高了含金属钉配合物聚酰亚胺的给电子能力。
     4、以DHPI-1并(?)tpa(bpy)100Ru-PI或者DHPI-1(或tpa(bpy)100Ru-PI)与PCBM的混合物作为光活性材料,制备了太阳能电池器件。对其光电响应特性进行了初步表征,电流密度-电压(J-V)关系曲线显示典型的二极管特性。初步优化结果显示器件结构为ITO/PEDOT:PSS/DHPI:PCBM(1:1)/Al的器件具有相对较好的光伏性能。其中以tpa(bpy)100Ru-PI:PCBM(1:1) (w/w)为光电活性层的器件ITO/PEDOT:PSS/tpa(bpy)100Ru-PI:PCBM(1:1)/Al的光伏性能较好,在55 mWcm-2光照下,其Voc为0.30 V,Jsc为100.1μA cm-2,FF为0.31和ηc。为1.71×10-2%,特别是cη。值从没有阳极修饰的单层器件(ITO/tpa(bpy)100Ru-PI:PCBM(1:1)/Al)的2.67×10-5%提高到1.71×10-2%。
With the exhaustion of fossil energy resources and the increase of the environment consciousness of human beings, solar energy as a real sense of renewable and green energy sources has been paid much attention. Photovoltaic cells are one of attractive methods for harnessing inexhaustible clean energy from the sun. Polymeric solar cells (PSCs) have become a hot research topic over the past decade for their potential application in large-scale power generation based on materials that provide the possibilities of being flexible, light in weight and cheap in price. However, the power conversion efficiency (PCE) of PSCs needs to be improved for future commercial applications. The factors limiting the PCE of the PSCs include the low exploitation of the sunlight due to the narrower absorption band of the absorption spectra of polymers in comparison with the solar spectrum and the mismatch of the two spectra, and the low charge transport efficiency in the devices due to the low charge carrier mobility of polymer pbtotovoltaic materials. Therefore, the design and synthesis of polymers with broad absorption and high charge carrier mobility was an effective way to improve the power conversion efficiency.
     Polyimides have been proven to be very stable to thermal, chemical and photophysical actions. Polyimide chains consist of alternating electron acceptor diimide fragments (A) and electron donor arylene rests of starting diamines (D). Aiming to prepare photovoltaic materials with broad absorption, good thermal stability and high charge carrier mobility, we have proposed two stratagies in this paper. One of our efforts is to introduce ruthenium metal complex to extend the absorption in the visible region into polyimide main chain or side chain. And the other one is to introduce the cardo4,4'-(9H-fluoren-9-ylidene) bisphenylamine (FBPA) or 4,4'-diaminotriphenylamine (tpa) as hole transporting moieties (HTM) by copolycondensation to improve the solubility, thermal stability and charge carrier mobility into polyimide main chain. With such a molecular design, the light harvesting ability of ruthenium complexes would be combined with the excellent thermal stability of polyimide in one molecule.
     Firstly, two monomers M1 (bpy) and M3 [tpa(bpy)] containing bipyridine ligand (L) were synthesized. Then, the three series of polyimides, which were named LHPI {LHPI-1 (bpyx-FBPA-PI) (x:mol%of diamine containing bipyridine ligand), LHPI-2 (bpyx-tpa-PI), and LHPI-3 [tpa(bpy)x-tpa-PI]}, were prepared by the cololymerization of 4,4'-(Hexafluoroisopropylidene)-diphthalic anhydride (6FDA) with two diamine monomers in different ratio. These polyimides were synthesized by a one-step polymerization in m-cresol with isoquinoline as catalyst at 200℃and purged with argon flow. Then, the polyimides containing ruthenium complexes DHPI (DHPI-1, DHPI-2, and DHPI-3) were synthesized by the reaction LHPI with ruthenium complex using a "one-pot" method. The difference of DHPI-1, DHPI-2 and DHPI-3 is that the Ru-complexes of the former is in the main chain of polyimides, the later is on the side chain. The chemical structures of the monomers and polymers were confirmed by1H NMR, IR, and elemental analysis. The Mn of the ligand polymer LHPI was measured by GPC.
     LHPI and DHPI showed good solubility in common aprotic organic solvents such as DMSO and DMF. While, DHPI showed somewhat poorer solubility than LHPI, especially in low boiling point solvents, such as CHCl3 and THF. And, the solubility were increased with increasing the FBPA or tpa unit content. These copolyimides containing ruthenium complexes were thermaly stable as measured by TG analysis. UV-Vis measurements revealed that DHPI exhibited very broad absorptions in the range 350-750 nm due to the introduction of ruthenium complexes. Such absorption enhancement would enable the polymer to harvest solar light in the visible region. The fluorescence spectra of all polyimides solution were investigation. The results showed that the emissions from polyimides containing Ru-complexes in the main chains were quenched signigicantly compared with metal-free polymers. This may be due to the presence of an energy transfer process from the main chain to the ruthenium complex with lowlying energy levels, which could reduce the loss of polymer absorption sunlight energy, facilitate separation of excitons, and improve photoelectric conversion efficiency. While, the emissions from polyimides containing Ru-complexes on the side chains had the same fluorescence intensities with their corresponding to metal-free polyimides.
     The onset oxidation potential of DHPI-1 and tpa(bpy)100Ru-PI were lower than that of LHPI-1 and tpa(bpy)100-PI as measured by cyclic voltammetry. This result suggested that the introduction of Ru-complexes made the DHPI easier to oxidize than the ligand polymer LHPI. The band gaps of DHPI-1 and tpa(bpy)100Ru-PI were 1.55-1.77 eV, which were narrower than that of polyimides of metal free, LHPI-1 and tpa(bpy)100-PI.
     Polymer photovoltaic cells were fabricated by using DHPI-1 and tpa(bpy)100Ru-PI or the blend of DHPI-1 (or tpa(bpy),ooRu-PI) and PCBM as the photoactive materials. Current density-voltage (J-V) measurement of the devices showed a typical rectifying behavior under a 55 mW cm-2 compact white arc lamp. The results showed that pure polymers in all cases exhibited very poor photovoltaic performances, which may be result from the molecular internal lower carrier mobility of polyimide. The structure, ITO/PEDOT:PSS/DHPI:PCBM(1:1)/Al, showed better Photovoltaic Properties. Especially, when the blend tpa(bpy)100Ru-PI and PCBM (1:1) (w/w)as the photoactive material, the performances of device were best compared with other same structure devices. The Voc, Jsc, FF, andηe were 0.30 V,100.1 uA/cm2,0.31 andηe 1.71×10-2%, respectively. Optimization in device structure and molecular design will be a part of our future work for the improvement of device performance with materials combining polyimide and ruthenium complexes.
引文
[1]Schultz O, Glunz S W, Willeke G P. Multicrystalline silicon solar cells exceeding 20% efficiency[J]. Progress in Photovoltaics:Research and Applications,2004,12:553-558
    [2]Riccardo P, Michele M, Nadia C, Polymer solar cells:Recent approaches and achievements[J]. J. Phys. Chem. C 2010,114:695-706
    [3]Wojtczuk S, Chiu P, Zhang X, et al. InGaP/GaAs/InGaAs concen-trators using Bi-facial epigrowth[J].35th IEEE PVSC, Honolulu, HI, June 2010
    [4]McCambridge J D, Steiner M A, Unger B A, et al. Compact spectrum splitting photovoltaic module with high efficiency[J]. Prog Photovolt:Res Appl, (published on-line on 24 September 2010)
    [5]Hoppe H, Sariciftci N S. Organic solar cells:An overview[J]. J Mater Res,2004,19: 1924-1945
    [6]Spanggaard H, Krebs F C, Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate[J]. Sol Energy Mater Sol Cells,2004,83:293-300
    [7]Gunes S, Neugebauer H, Sariciftci N S, Conjugated polymer-based organic solar cells[J]. Chem Rev,2007,107:1324-1338
    [8]Helgesen M, Sondergaard R, Krebs F C, Advanced materials and processes for polymer solar cell devices[J], J Mater Chem,2010,20:36-60
    [9]Krebs F C. Fabrication and processing of polymer solar cells:a review of printing and coating techniques [J], Sol. Energy Mater Sol Cells,2009,93:394-412
    [10]Han L, Fukui A, Fuke N, et al. High efficiency of dye sensitized solar cell and module[J],4th World Conference on Photovoltaic Energy Conversion (WCEP-4), Hawaii, May 2006.
    [11]Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (version 37) [J], Prog. Photovolt:Res. Appl.2011; 19:84-92
    [12]Peumans P, Yakimov A, Forrest S R, Micropatterning of small molecular weight organic semiconductor thin films using organic vapor phase deposition[J]. J Appl Phys,2003,93(7): 4005-4016
    [13]SchOn J H, Kloc Ch, Batlogg B. Single crystalline pentacene solar cells[J]. Synt Met,2000, 115:177-180
    [14]Chen F C, Tseng H C, Ko C J. Solvent mixtures for improving device efficiency of polymer photovoltaic devices[J]. Appl Phys Lett,2008,92:103316.
    [15]Mihailetchi V D, Xie H X, Boer B D, et al. Origin of the enhanced performance in poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester solar cells upon slow drying of the active layer[J]. Appl Phys Lett,2006,89:012107
    [16]Tang C W, Two-layer organic photovoltaic cell[J]. Appl Phys Lett,1986,48(2):183-185
    [17]Yu G, Gao J, Hummelen J C, et al. Polymer photovoltaic cells:enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science,1995,270(5243):1789-1791
    [18]Chen H Y, Hou J H, Zhang S Q, et al. Polymer solar cells with enhanced open-circuit voltage and efficiency[18]. Nat Photonics,2009,649-653
    [19]Sariciftci N S, Silowitz L, Heeger A J, et al. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene[J]. Science,1992,258:1474-1476
    [20]Yu G, Gao J, Hummelen J C, Wudl F, et al. Polymer photovoltaic cells:enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science,1995,270:1789-1791
    [21]Coakley K, McGehee M D. Conjugated polymer photovoltaic cells[J]. Chem Mater 2004,16: 4533-4542
    [22]Brabec C J, Sariciftci N S, Hummelen J C. Plastic solar cells[J]. Adv Funct Mater,2001,11: 15-26
    [23]Thompson B C, Frechet J M J. Polymer-fullerene composite solar cell[J]. Angew Chem, Int Ed,2008,47:58-77
    [24]Brabec C J, Sariciftci N S, Hummelen J C. Plastic solar cells[J]. Adv. Funct Mater,2001,11: 15-26
    [25]Li Y, Zou Y. Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility[J]. Adv. Mater.2008,20:2952-2958
    [26]Hoppe H, Sariciftci N S. Morphology of polymer/fullerene bulk heterojunction solar cells[J]. J Mater Chem,2006,16:45-61
    [27]Kim J Y, Lee K, Coates N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing. Science,2007,317:222-225
    [28]Gunes S, Neugebauer H S, Sariciftci N S. Conjugated polymer-based organic solar cells[J]. Chem Rev,2007,107:1324-1338
    [29]Van Duren J K J, Dhanabalan A, Van Hal P A, et al. Low-bandgap polymer photovoltaic cells[J]. Synth Met 2001,121:1587-1588
    [30]Brabec C J, Winder C, Sariciftci N S, et al. A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes[J]. Adv Funct Mater,2002,12:709-712
    [31]Hou Q, Xu Y, Yang W, et al. Novel red-emitting fluorene-based copolymers[J]. J Mater Chem, 2002,12:2887-2892
    [32]Zhou Q, Hou Q, Zheng L, et al. Fluorene-based low band-gap copolymers for high performance photovoltaic devices[J]. Appl Phys Lett,2004,84:1653-1655
    [33]Wang E, Wang L, Lan L, et al. High-performance polymer heterojunction solar cells of a polysilafluorene derivative[J]. Appl Phys Lett,2008,92:033307
    [34]Yang R, Tian R, Yan J, et al. Deep-red electroluminescent polymers:synthesis and characterization of new low-band-gap conjugated copolymers for light-emitting diodes and photovoltaic devices[J]. Macromolecules,2005,38:244-253
    [35]Blouin N, Michaud A, Leclerc M. A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells[J]. Adv Mater,2007,19:2295-2300
    [36]Blouin, N.; Leclerc, M. Poly(2,7-carbazole)s:structure-property relationships[J]. Acc Chem Res,2008,41:1110-1119
    [37]Boudreault P L T, Michaud A, Leclerc M. a new poly(2,7-dibenzosilole) derivative in polymer solar cells[J]. Macromol Rapid Commun,2007,28:2176-2179
    [38]Zhou E, Nakamura M, Nishizawa T, et al. Synthesis and photovoltaic properties of a novel low band gap polymer based on N-substituted dithieno[3,2-b:2',3'-d]pyrrole[J]. Macromolecules,2008,41:8302-8305
    [39]Lu J, Liang F, Drolet N, et al. Crystalline low band-gap alternating indolocarbazole and benzothiadiazole-cored oligothiophene copolymer for organic solar cell applications. Chem Commun,2008,42:5315-5317
    [40]Chen C P, Chan S H, Chao T C, et al. Low-bandgap poly(thiophene-phenylene-thiophene) derivatives with broaden absorption spectra for use in high-performance bulk-heterojunction polymer solar cells[J]. J Am Chem Soc,2008,130:12828-12833
    [41]Muhlbacher D, Scharber M, Morana M, et al. High photovoltaic performance of a low-bandgap polymer[J]. Adv Mater,2006,18:2884-2889
    [42]Peet J, Kim J Y, Coates N E, et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols[J]. Nat Mater,2007,6:497-500
    [43]Lee J K, Ma W L, Brabec C J, et al. Processing additives for improved efficiency from bulk heterojunction solar cells[J]. J Am Chem Soc,2008,130:3619-3623
    [44]Wang W, Wu H, Yang C, et al. High-efficiency polymer photovoltaic devices from regioregular-poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl-C61-butyric acid methyl ester processed with oleic acid surfactant[J]. Appl Phys Lett,2007,90:183512
    [45]Hou J, Chen H Y, Zhang S, et al. Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole[J]. J Am Chem Soc,2008,130:16144-16145
    [46]Baek N S, Hau S K, Yip H L, et al. High performance amorphous metallated π-conjugated polymers for field-effect transistors and polymer solar cells[J]. Chem Mater,2008,20: 5734-5736
    [47]Hou J, Tan Z, Yan Y, et al. Synthesis and photovoltaic properties of two-dimensional conjugated polythiophenes with bi(thienylenevinylene) side chains[J]. J Am Chem Soc,2006, 128:4911-4916
    [48]Hou J, Park M H, Zhang S, et al. Bandgap and molecular energy level control of conjugated polymer photovoltaic materials based on benzo[1,2-b:4,5-b']dithiophene[J]. Macromolecules, 2008,41:6012-6018
    [49]Liang Y, Wu Y, Feng D, et al. Development of new semiconducting polymers for high performance solar cells[J]. J Am Chem Soc,2009,131:56-57
    [50]Chan S H, Chen C P, Chao T C, et al. Synthesis, characterization, and photovoltaic properties of novel semiconducting polymers with thiophene-phenylene-thiophene (TPT) as coplanar units[J]. Macromolecules,2008,41:5519-5526
    [51]Wienk M M, Turbiez M, Gilot J, et al. Narrow-bandgap diketo-pyrrolo-pyrrole polymer solar cells:the effect of processing on the performance[J]. Adv Mater,2008,20:2556-2560
    [52]Zhang F, Mammo W, Andersson L M, et al. Low-bandgap alternating fluorene copolymer/methanofullerene heterojunctions in efficient near-infrared polymer solar cells[J]. Adv Mater,2006,18:2169-2173
    [53]Ashraf R S, Shahid M, Klemm E, et al. Thienopyrazine-based low-bandgap poly(heteroaryleneethynylene)s for photovoltaic devices [J]. Macromol Rapid Commun, 2006,27:1454-1459
    [54]Wienk M M, Turbiez M G R, Struijk M P, et al. Low-band gap poly(di-2-thienylthienopyrazine):fullerene solar cells[J]. Appl Phys Lett,2006,88:153511
    [55]Gadisa A, Mammo W, Andersson L M, et al. A new donor-acceptor-donor polyfluorene copolymer with balanced electron and hole mobility[J]. Adv Funet Mater,2007,17: 3836-3842
    [56]Blouin N, Miehaud A, Gendron D, et al. Toward a rational design of poly(2,7-carbazole) derivatives for solar cells[J]. J Am Chem Soc,2008,130:732-742
    [57]Chen J, Cao Y. Silole-containing polymers:chemistry and optoelectronic properties [J]. Macromol Rapid Commun,2007,28:1714-1742
    [58]Wang F, Luo J, Yang K, et al. Conjugated fluorene and silole copolymers:synthesis, characterization, electronic transition, light emission, photovoltaic cell, and field effect hole mobility[J]. Macromolecules,2005,38:2253-2260
    [59]Chen J W, Cao Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices[J]. Ace Chem Res,2009,42 (11):1709-1718
    [60]Gebeyehu D, Brabec C J, Padinger F, et al. The interplay of efficiency and morphology in photovotaic devices based on interpenetrating networks of conjugated polymers with fullerenes[J]. Synth Met,2001,118:1-9
    [61]Zheng L P, Zhou Q M, Deng X Y, et al. methanofullerenes used as electron acceptors in polymer photovoltaic devices[J]. J Phys Chem B,2004,108:11921-11926
    [62]Zhou Q M, Zheng L P, Sun D K, et al. Efficient polymer photovoltaic devices based on blend of MEH-PPV and C60 derivatives [J]. Synth Met,2003,135/136:825-826
    [63]Riedel, Martin N, Giacalone F, et al. Polymer solar cells with novel fullerene-based acceptor[J]. Thin Solid Films,2004,451/452:43-47
    [64]Riedel Ⅰ, Hauff E V, Parisi J, et al. Diphenylmethanofullerenes:new and efficient acceptors in bulk-heterojunction solar cells[J], Adv Funct Mater,2005,15(12):1979-1987
    [65]Yang C H, Li Y J, Hou J H, et al. Thinner-film plastic photovoltaic cells based on different C60 derivatives [J]. Polym Adv Technol,2006,17:500-505
    [66]Kooistra F B, Knol J, Kastenberg F, et al. Increasing the open circuit voltage of bulk-heterojunction solar cells by raising the LUMO level of the acceptor[J]. Org Lett,2007, 9:551-554
    [67]Feng W, Fujii A, Lee S, et al. Electrical and optical properties of new soluble conducting polymer/dye composite and junction device[J]. Synth Met,2001,121:1595-1596
    [68]Dittmer J J, Petritsch K, Marseglia E A, et al. Photovoltaic properties of MEH-PPV/PPEI blend devices[J], Synth Met,1999,102:879-880
    [69]Dittmer J J, Marseglia E A, Friend R H, Electron trapping in dye/polymer blend photovoltaic cells[J]. Adv Mater,2000,12; 1270-1274
    [70]Sicot L, Fiorini C, Lorin A, et al. Improvement of the photovoltaic properties of polythiophene-based cells[J]. Sol Energy Mater Sol Cells,2000,63:49-60
    [71]Tan Z A, Zhou E J, Zhan X W, et al. Efficient all-polymer solar cells based on blend of tris(thienylenevinylene) substituted polythiophene and poly(perylene diimide-alt-bis(dithienothiophene))[J]. Appl Phys Lett,2008,93:073309
    [72]Zou Y P, Hou J H, Yang C H, et al. A novel n-type conjugated polymer docn-ppv:synthesis, optical, and electrochemical properties[J]. Macromolecules,2006,39:8889-8891
    [73]Sang G Y, Zhou E J, Huang Y, et al. Incorporation of thienylenevinylene and triphenylamine moieties into polythiophene side chains for all-polymer photovoltaic applications[J]. J Phys Chem C,2009,113:5879-5885
    [74]Sang G Y, Zou Y P, Huang Y, et al. All-polymer solar cells based on a blend of poly[3-(10-n-octyl-3-phenothiazine-vinylene)thiophene-co-2,5-thiophene] and poly[1,4-dioctyloxyl-ρ-2,5-dicyanophenylenevinylene[J]. Appl Phys Lett,2009,94:193302
    [75]Huo L J, Zhou Y, Li Y F., Synthesis and absorption spectra of two novel n-type conjugated polymers based on perylene diimide[J]. Macromol Rapid Commun,2008,29:1444-1448
    [76]Veronica M, Elisabeth H, Ulrich S S. Polymeric ruthenium bipyridine complexes:new potential materials for polymer solar cells[J]. J Polym Sci, Part A:Polym Chem,2004,42: 374-385
    [77]黎立柞,鲁广吴,杨小牛等.聚合物太阳能电池研究进展[J].科学通报,2006,51:2457-2468
    [78]Arango A C, Johnson L R, Bliznyuk V N, et al. Efficient titanium oxide/conjugated polymer photovoltaics for solar energy conversion[J]. Adv Mater,2000,12:1689-1692
    [79]Sun B Q, Eike Marx, Greenham N C, Photovoltaic devices using blends of branched cdse nanoparticles and conjugated polymers[J]. Nano Letters,2003,3:961
    [80]O'Regan B, Gratzel M, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature,1991,353:737-740
    [81]Hagfeldt A, Boschloo G, Sun L C, et al. Dye-sensitized solar cells[J]. Chem Rev,2010,110: 6595-6663
    [82]Nazeeruddin M K, Pechy P, Renouard T, et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells[J]. J Am Chem Soc,2001,123: 1613-1624
    [83]Wang P, Humphry-B R, Moser J E, et al. Amphiphilic polypyridyl ruthenium complexes with substituted 2,2'-dipyridylamine ligands for nanocrystalline dye-sensitized solar cells[J]. Chem Mater,2004,16:3246-3251
    [84]Schmidt-M L, Bach U, Humphry-Baker R, et al. Organic dye for highly efficient solid-state dye-sensitized solar cell[J]. Adv Mater,2005,17:813-815
    [85]Chen R, Yang X, Tian H N, et al. Tetrahydroquinoline dyes with different spacers for organic dye-sensitized solar cells[J]. J Photochem Photobiol A Chem 2007,189:295-300
    [86]Burrell A K, Officer D L, Plieger P G, et al. Synthetic routes to multiporphyrin arrays[J], Chem. Rev.2001,101:2751-2796
    [87]Odobel F, Blart E, Lagree M, et al. Porphyrin dyes for TiO2 sensitization, J. Mater Chem, 2003,13:502-510
    [88]Li Y N, Ding J F, Day M, et al. Synthesis and properties of random and alternating fluorene/carbazole copolymers for use in blue light-emitting devices[J]. Chem Mater,2004, 16:2165-2173
    [89]Li Z A, Liu Y Q, Yu G, et al. A new carbazole-consrructed hyperbranched polymer: convenient one-pot synthesis, hole-transporting ability, and field-effect transistor properties[J]. Adv Funct Mater,2009,19:2677-2683
    [90]Drolet N, Morin J-F, Leclerc N, et al.2,7-Carbazolenevinylene-based oligomer thin-film transistors:high mobility through structural ordering[J]. Adv Funct Mater,2005,15: 1671-1682
    [91]Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ⅱ) charge-transfer sensitizers (X=C1, Br-, I-, CN- and SCN-) on nanocrystalline TiO2 electrodes [J]. J Am Chem Soc,1993,115: 6382-6390
    [92]Nazeeruddin M K, Pechy P, Graetzel M. Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato ruthenium complex[J]. Chem Commun,1997,18:1705-17056
    [93]Nazeeruddin M K, Zakeeruddin S M, Humphry-Baker, et al. Acid-base equilibria of (2, 2'-bipyridyl-4,4.-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania [J]. Inorg. Chem.,1999,38: 6298-6305
    [94]Wang P, Zakeeruddin S M, Exnar I, et al. High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte[J]. Chem Commun,2002,2972-2973
    [95]Gao F, Wang Y, Shi D, et al. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells[J]. J Am Chem Soc,2008,130:10720-10728
    [96]Wang P, Zakeeruddin S M, Moser J E, et al. Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells[J]. Adv Mater,2004,16,1806-1811
    [97]Arakawa, H., Yamaguchi, T., Agatsuma, S., et al. Proceedings of the 23rd European Photo Voltaic Solar Energy Conference, Valencia, Spain,2008.
    [98]Yiming Cao, Yu Bai, Qingjiang Yu, et al. Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(hexylthio)thiophene conjugated bipyridine [J]. J Phys Chem C,2009,113:6290-6297
    [99]Hara K, Sugihara H, Singh L P, et al. New Ru(Ⅱ) phenanthroline complex photosensitizers having different number of carboxyl groups for dye-sensitized solar cells [J]. J Photochem Photobiol,A,2001,145:117-122
    [100]Hara K, Sugihara H, Tachibana Y, et al. Dye-sensitized nanocrystalline TiO2 solar cells based on ruthenium(Ⅱ) phenanthroline complex photosensitizers [J]. Langmuir,2001,17: 5992-5999.
    [101]Sauve G, Cass M E, Doig S J, et al. High quantum yield sensitization of nanocrystalline titanium dioxide photoelectrodes with cis-dicyanobis(4,4'-dicarboxy-2,2'-bipyridine) osmium(II) or tris(4,4'-dicarboxy-2,2'-bipyridine)osmium(II) complexes[J]. J Phys Chem B, 2000,104:3488-3491
    [102]Altobello S, Argazzi R, Caramori S, et al. Sensitization of nanocrystalline TiO2 with black absorbers based on os and Ru polypyridine complexes[J]. J Am Chem Soc,2005,127: 15342-15343
    [103]Islam A, Sugihar H, Hara K, et al. Dye sensitization of nanocrystalline titanium dioxide with square planar platinum(Ⅱ) diimine dithiolate complexes[J]. Inorg Chem,2001,40: 5371-5380
    [104]Geary E A M, Yellowlees L J, Jack L A, et al. Synthesis, structure, and properties of [pt(II)(diimine)(dithiolate)] dyes with 3,3'-,4,4'-, and 5,5'-disubstituted bipyridyl: applications in dye-sensitized solar cells[J]. Inorg Chem,2005,44:242-250
    [105]Alonso-Vante N, Nierengarten J -F, Sauvage J P, et al. Spectral sensitization of large-band-gap semiconductors (thin films and ceramics) by a carboxylated bis(1,10-phenanthroline)copper(Ⅰ) complex[J]. J Chem Soc, Dalton Trans.1994,1649-1654
    [106]Sakaki S, Kuroki T, Hamada T. Synthesis of a new copper(Ⅰ) complex, Cu(tmdcbpy=4,4',6,6'-tetramethyl-2,2'-bipyridine-5,5'-dicarboxylic acid), and its application to solar cells[J]. J Chem Soc, Dalton Trans.2002,840-842
    [107]Bessho T, Constable E C, Gratzel M, et al. An element of surprise-efficient copper-functionalized dye-sensitized solar cells[J]. Chem Commun,2008,3717-3719
    [108]Arimoto F S, Haven A C, Derivatives of dicyclopentadienyliron[J]. J Am Chem Soc,1955, 77:6295-6297
    [109]Chan W K, Gong X, Ng W Y. Photoconductivity and charge transporting properties of metal-containing poly.p-phenylenevinylene)s[J]. Appl Phys Lett,1997,71:2919-2921
    [110]Yuan S W, Jaramillo R, Yu L P, et al. Synthesis and Characterization of Conjugated Polymers Containing First Row Transition Metal Complexes[J]. Macromolecules,2006, 39(25):8652-8658
    [111]Peng Z H, Yu L P. Synthesis of Conjugated polymers containing ionic transition metal complexes[J]. J Am Chem Soc,1996,118:3777-3778
    [112]Peng Z H, Gharavi A R, Yu L P. Synthesis and characterization of photorefractive polymers containing transition metal complexes as photosensitizer[J]. J Am Chem Soc,1997,119: 4622-4632
    [113]Wang Q, Wang L M, Yu L P. Synthesis and unusual physical behavior of a photorefractive polymer containing tris(bipyridyl)ruthenium(Ⅱ) complexes as a photosensitizer and exhibiting a low glass-transition temperarure[J]. J Am Chem Soc,1998,120:12860-12868.
    [114]Wang Q, Yu L P. Conjugated polymers containing mixed-ligand ruthenium(Ⅱ) complexes, synthesis, characterization, and investigation of photoconductive properties[J]. J Am Chem Soc,2000,122:11806-11811
    [115]Wang B, Wasielewski M R. Design and synthesis of metal ion-recognition-induced conjugated polymers:an approach to metal ion sensory materials[J]. J Am Chem Soc,1997, 119:12-21
    [116]McQuade D T, Dullen A E, Swager T M. Conjugated polymer-based chemical sensors[J]. Chem Rev,2000,100:2537-2574
    [117]Pickup P G. Conjugated metallopolymers. Redox polymers with interacting metal based redox sites[J]. J. Mater Chem,1999,9:1641-1653
    [118]Zhu S S, Swager T M. Conducting polymetallorotaxanes:metal ion mediated enhancements in conductivity and charge localization[J].J Am Chem Soc,1997,119:12568-12577
    [119]Kraft A, Grimsdale A C, Holmes A B. Electroluminescent conjugated polymers-seeing polymers in a new light[J]. Angew Chem Int Ed Engl,1998,37:402-428
    [120]Wang J, Wang R, Zheng Z, et al. First oxadiazole-functionalized terbium(Ⅲ)β-diketonate for organic electroluminescence[J]. J Am Chem Soc,2001,123:6179-6180
    [121]Liu Y, Li Y, Schanze K S. Photophysics of π-conjugated oligomers and polymers that contain transition metal complexes[J]. J Photochem Photobiol C,2002,3:1-23
    [122]Rothberg L T, Yan M, F, Miller T M, et al. Photophysics of phenylenevinylene polymers[J]. Synth Met,1996,80:41-58
    [123]Williams K A, Boydston A J, Bielawski C W. Main-chain organometallic polymers: synthetic strategies, applications and perspectives[J]. Chem Soc Rev,2007,36:729-744
    [124]Chan W K, Hui C S, Man K Y K. Understanding binding interactions of cationic porphyrins with B-form DNA[J]. Coord Chem Rev,2005,249:1351-1359
    [125]Cheng K W, MAK C S C, Chan W K. Synthesis of conjugated polymers with pendant ruthenium terpyridine trithiocyanato complexes and their applications in heterojunction photovoltaic cells[J]. J Polym Sci:Part A, Polym Chem,2008,46:1305-1317
    [126]Chan W K, Metal containing polymers with heterocyclic rigid main chains[J]. Coord Chem Rev,2007,251:2104-2118
    [127]Wong CT, Chan W K, Yellow Light-Emitting Poly(phenylenevinylene) Incorporated with Pendant Ruthenium Bipyridine and Terpyridine Complexes[J].Adv. Mater.1999,11: 455-459
    [128]Man K Y K, Wong H L, Chan W K, C et al. Efficient photodetectors fabricated from a metal-containing conjugated polymer by a multilayer deposition process[J]. Chem Mater, 2004,16:365-367
    [129]Man K Y K, Wong H L, Chan W K, C et al. Use of a ruthenium-containing conjugated polymer as a photosensitizer in photovoltaic devices fabricated by a layer-by-layer deposition process[J]. Langmuir,2006,22:3368-3375
    [130]Duprez V, Biancardo M, Spanggaard H. Synthesis of conjugated polymers containing terpyridine-ruthenium complexes[J]. Photovoltaic Appl,2005,38:10436-10448
    [131]Hagemann O, Jφrgensen M. Krebs F C. Synthesis of an all-in-one molecule (for organic solar cells) [J]. J Org Chem,2006,71:5546-5559
    [132]Wong W Y, Wang X Z, He Z, et al. Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells[J]. Nat Mater,2007,6:521-527
    [133]Mosurkal R, Roy S, Kumar J, et al. Biocatalytic synthesis a ruthenium macromolecular complex for photovoltaics[J]. J Macromol. Sci Part A-Pure and Appl Chem,2002, A39(10): 1195-1206
    [134]Li B Z, He T B, Ding M X. Study of molecular order in organo-soluble polyimide thin films[J]. Chem Phys Lett,1997,275(3-4):222-226
    [135]Hasegawa M, Horie K. Photophysics, photochemistry, and optical properties of polyimides[J]. Prog Polym Sci,2001,26:259-335
    [136]Lin J Q, Zhong Z B, Li C X, et al. On the electroluminescent spectrum of polyimide film in DC high electric field[J]. Chinese Journal of materials research,2006,4,366-368
    [137]Jung S H, Ha C S, Syntheses and characterization of polyimide containing metal phthalocyanine for organic electroluminescent devices[J]. High Perform Polym,2006,18(5): 679-696
    [138]Wu A P, Akagi T, Mitsutoshi J K, et al. New fluorescent polyimides for electroluminescent devices based on 2,5-distyrylpyrazine[J]. Thin Solid Films,1996,273(1-2):214-217
    [139]Ng W Y, Gong X, Chan W K. Electronic and light-emitting properties of some polyimides based on bis(2,2':6',2"-terpyridine) ruthenium(Ⅱ) complex[J] Chem Mater,1999,11: 1165-1170
    [140]Kang H, Wu W, Wu P J. Nonlinear optical polyimide with high thermal stability prepared by simultaneous poling and polymerization[J]. Chin Sci Bull,2001,46(1):1-4
    [141]Li G Y, Tang C A; Ren L. Nonlinear optical fluorinated polyimide/inorganic composites for optical interconnections and devices [J]. Electronic Packaging Technology & High Density Packaging. ICEPT-HDP 2008. International Confeence,2008,1-5
    [142]Kuo W J, Chang M C, Juang T Y, et al. Stable second-order NLO semi-IPN system based on bipyridine-containing polyimide and alkoxysilane dye[J]. Polym Adv Technol,2005; 16: 515-523
    [143]Belfield K D, Najjar O, Sriram S R. Synthesis of polyurethanes and polyimides for photorefractive applications[J]. Polymer,2000,41:5011-5020
    [144]Vannikov A V, Grishina A D, Pereshivko L Y, et al. Infrared photorefractive composites based on polyimide and j-aggregates of cyanine dye[J]. J Nonlinear Opt Phys,2005,14(03): 439-447
    [145]Mitschke, R H, Bauerle P J. The electroluminescence of organic materials[J]. Mater Chem, 2000,10:1471-1507
    [146]Okuda R, Miyoshi K, Arai N, et al. Polyimide coatings for OLED applications[J]. J Photopolym Sci Technol,2004,17(2):207-213
    [147]Sun Y, Lacour S P, Brooks R A, et al. Assessment of the biocompatibility of photosensitive polyimide for implantable medical device use[J]. J Biomed Mater Res A.2009,90(3): 648-655
    [148]Jiang X S, Li H, Wang H Y, et al. A novel negative photoinitiator-free photosensitive polyimide[J]. Polymer,2006,47 (9):2942-2945
    [149]Cheang P, Christensen L, Reynaga C. Optimization of photosensitive polyimide process for cost effective packaging[J]. Surface Mount Technology Seminar,1996,1-18
    [150]Lee L-H. Molecular bonding and adhesion at polymer-metal interphases[J]. J Adhesion, 1994,46:15-38
    [151]Ouhlal A, Selmani A, Yelon A. copper/polyimide interaction-a local spin-density study[J]. J Adhesion Sci Technol,1995,9:971-982
    [152]Inagaki N, Tasaka S, Ohmori H. et al. Improvement in the adhesion between copper metal and polyimide substrate by plasma polymer deposition of cyano compounds onto polyimide[J]. J Adhesion Sci Technol,1996,10(3):243-256
    [153]Southward R E, Thompson D S, Thompson D W, et al. Articlesurface modification studies of polyimide films using rutherford backscattering and forward recoil spectrometry[J].Chem Mater,1997,9:1691-1699
    [154]Rubira A F, Rancourt J D, Taylor L T, et al. chemical factors that influence the production of conductive and/or reflective silver-doped polyimide films[J]. J Macromol Sci, part A:Pure Appl Chem,1998,35(4):621-636
    [155]Caplan M L, Stoakley D M, St Clair A K. Synthesis and characterization of self-metallizing gold-doped polyimide films[J]. J Appl Polym Sci,1995,56(8):995-1006
    [156]Lam L S M, Chan S H, Chan W K, A novel type of metal-containing polyimides based on tricarbonylrhenium(I) diimine complexes[J]. Macromol Rapid Commun,2000,21: 1081-1085
    [157]Muhlbacher D, Brabee C J, Sariciftci N S, et al. Sensitization of photoconductive polyimides for photovoltaic application [J]. Synth Met,2001,121:1609-1610
    [158]Niu H J, Mu J S, Zhang M L, et al. Naphthalene-containing polyimides:Synthesis, characterization and photovoltaic properties of novel donor-acceptor dyes used in solar cell, Trans. Nonferrous Met Soc China,2009,19:587-593
    [159]Zafer C, Kus M, Turkme G, et al. New perylene derivative dyes for dye-sensitized solar cells [J]. Sol Energy Mater Sol Cells,2007,91:427-431
    [160]牛海君,白续铎,黄玉东等.含有p-n单元的苝聚酰亚胺的合成及其敏化电池的性能研究[J].化学学报,2005,15:1391-1396
    [161]Li W J, Osora H, Otero L, et al. Photoelectrochemistry of a Substituted-Ru(bpy)32+-Labeled Polyimide and Nanocrystalline[J]. Phys Chem A 1998,102:5333-5340
    [162]Osora H, Li W J, Otero L, et al. Photosensitization of nanocrystalline TiO2 thin films by a polyimide bearing pendent substituted-Ru(bpy)32+ groups[J]. J Photochem Photobio B:Biol, 1998,43:232-238
    [163]Kang J W, Choi K, Jo W H, et al. Structure-property relationships of polyimides:a molecular simulation approach[J]. Polymer,1998,39 (26):7079-7087
    [164]杨金旧,计兵.可溶性聚酰亚胺的分子设计和合成探索[J].湖州师范学院学报,2005,18(2):43-46
    [1]Chen H Y, Hou J H, Zhang S Q, et al. Polymer solar cells with enhanced open-circuit voltage and efficiency[J]. Nat photonics,2009,3:649-653
    [2]Hou J H, Chen H Y, Zhang S Q, et al. Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole[J]. J Am Chem Soc,2008,130(48):16144-16145
    [3]Hou J H, Chen H Y, Zhang S Q, et al. Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells[J]. J Am Chem Soc,2009,131(43):15586-15587
    [4]Huo L J, Hou J H, Chen H-Y, et al. Bandgap and molecular level control of the low-bandgap polymers based on 3,6-dithiophen-2-y1-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione toward highly efficient polymer solar cells[J]. Macromolecules,2009,42 (17):6564-6571
    [5]Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ⅱ) charge-transfer sensitizers (X= Cl, Br-, I-, CN- and SCN-) on nanocrystalline TiO2 electrodes[J]. J Am Chem Soc,1993,115: 6382-6390
    [6]Nazeeruddin M K, Pechy P, Gratzel M. Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato ruthenium complex[J]. Chem Commun, 1997,18:1705-17056
    [7]Wong W Y, Wang X Z, He Z, et al. Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells[J]. Nat Mater,2007,6:521-527
    [8]Ikeda N, Miyasaka T, A solid-state dye-sensitized photovoltaic cell with a poly(N-vinyl-carbazole) hole transporter mediated by an alkali iodide[J]. Chem Commun, 2005,14:1886-1888
    [1]吴晓宏,杨占成,秦伟等.钯碳催化法合成4,4’-二甲基-2,2’-联吡啶[J].有机化学[J],2006,26(2):260-262
    [2]孙世国,彭孝军,徐勇前等.两种含铼、钌的太阳能电池光敏染料的合成研究[J].高等学校化学学报,2004,1:67-70
    [3]Gillaizeau G I, Odobel F, Alebbi M, et al. Phosphonate-based bipyridine dyes for stable photovoltaic devices[J]. Inorg Chem,2001,40:6073-6079
    [4]Jeong M J, Park J H, Lee C j, et al. Discotic liquid crystalline hydrazone compounds:synthesis and mesomorphic properties [J]. Org Lett,2006,8 (11):2221-2224
    [5]Velu S E, Luan C H, Delucas L J, et al. Tethered dimer inhibitors of nad synthetase:parallel synthesis of an aryl-substituted sar library[J]. J Comb Chem,2005,7:898-904
    [7]Liou G S, Hsiao S H, Ishida M, et al. Synthesis and properties of new aromatic poly(amine-imide)s derived from N,N-bis(4-aminophenyl)-N,N-diphenyl-1,4-phenylenediamine[J]. J Polym Sci Part A:Polym. Chem.,2002,40:3815-3822
    [8]孟祥丽,黄玉东,牛海军等.4,4'-二氨基三苯胺的合成与纯化[J].有机化学,2007,27(5):682-684.
    [9]Akimoto S, Jikei M, Kakimoto M A. Preparation and properties of novel aromatic polyimides from 4,4'-diamino-4"-hydroxytriphenylamine and aromatic tetracarboxylic dianhydrides[J]. High Perform Polym,2000,12:197-203
    [10]Belfielda K D, Najjar O, Sriram S R. Synthesis of polyurethanes and polyimides for photorefractive application[J]. Polymer,2000,41:5011-5020
    [11]Oishi Y, Takado H, Yoneyama M, et al. Preparation and properties of novel aromatic polyimides from 4,4'-diamino-4"-hydroxytriphenylamine and aromatic tetracarboxylic dianhydrides[J]. J Polym Sci:Part A:Polym Chem,1990,28,1763-1769.
    [12]潘华君.白藜芦醇的合成研究[M].[硕十学位论文].南京:南京理工大学,2006
    [13]Furue M, Yoshidzumi T, Kinoshita S, et al. Intramolecular energy transfer in covalently linked polypyridine ruthenium(Ⅱ) binuclear complexes. Ru(Ⅱ)(bpy)2Mebpy(CH2)-MebpyOs(bpy)2 (n= 2,3,5 and 7)[J]. Bull Chem Soc Jpn,1991,64: 1632-1640
    [14]Berg K E, Tran A, Raymond M K, et al. Covalently linked Ruthenium(Ⅱ)-Manganese(Ⅱ) complexes:distance dependence of quenching and electron transfer[J]. Eur J Inorg Chem, 2001,1019-1029
    [15]Dorta R, Shimon L J W, Rozenberg H, et al. A new ligand system based on a bipyridine-functionalized calix[4]arene backbone leading to mono-and bimetallic complexes [J]. Inorg Chem,2003,42:3160-3167
    [16]Cardinali F, Gallani J L, Schergna S, et al. An amphiphilic C60 derivative with a tris(2,2'-bipyridine)ruthenium(Ⅱ) polar head group:synthesis and incorporation in Langmuir films[J]. Tetrahedron Lett,2005,46:2969-2972.
    [17]Ko C C, Wu L X, Wong K M C, et al. Synthesis, Characterization and photochromic studies of spirooxazine-containing 2,2'-bipyridine ligands and their rhenium(Ⅰ) tricarbonyl complexes[J]. Chem Eur J,2004,10:766-776
    [18]Dorta Reto, Dorta Romano, Shimon L J W, et al. New ligand systems incorporating two and three 4,4'-bipyridine units.characterization of bi-and trimetallic rhodium and indium complexes[J]. Inorg Chem,2004,43:7180-7186
    [19]Wang P, Zakeeruddin S M, Moser J. E, et al. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte[J]. Nat Mater,2003, 2:402-407
    [20]张青莲,谢高阳.无机化学丛书[M].第九卷,北京:科学出版社,1998.412-415
    [1]廖学明,吕兴军,余万能等.聚酰亚胺合成方法的比较研究[J].绝缘材料,2008,41(4):33-41
    [2]柏春燕,唐旭东,张家鹤.聚酰亚胺的合成方法与改性[J].杭州化工 2009,39(4):12-14
    [3]丁孟贤.聚酰亚胺-化学、结构与性能的关系及材料[M].北京:科学出版社,2006,15-57
    [4]Pyun E, Mathisen R J, Park C S S. Kinetics and mechanisms for thermal imization of a polymaric acid studied by ultraviolet-visible spectroscopy[J]. Macromolecules,1989, 22(3):1174-1183
    [5]Thelakkat M, Posch P, Schmidt H W. Synthesis and characterization of highly fluorescent main-chain copolyimide containing perylene and quinoxaline units[J]. Macromolecules,2001, 34:7441.7447
    [6]Dotcheva D, Klapper M, Mullen K. Soluble polyimdes containg perylene units[J]. Macromol Chem Phys,1994,195:1905-1901
    [7]Xu S G, Jin Y X, Yang M J, et al. Highly soluble diphenylfluorene-based cardo copolyimides containing perylene units[J]. Polym Adv Technol 2006; 17:556-561
    [8]Xu S G, Yang M J, Cao S K. Synthesis and optical properties of two series of soluble acridine-containing copolyimides[J]. Polymer,2007,48:2241-2249
    [9]徐慎刚.主链含荧光染料可溶性聚酰亚胺的合成、表征和发光性能[D].[博士学位论文].浙江:浙江大学,2003
    [10]Wang P, Zakeeruddin S M, Moser J. E, et al. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte[J]. Nat Mater,2003, 2:402-407
    [11]Yu S C, Gong X, Chan W K, Synthesis and characterization of poly(benzobisoxazole)s and poly(benzobisthiazole)s with 2,2'-bipyridyl units in the backbone[J]. Macromolecules,1998, 31(17):5639-5646
    [12]Leeuw de D M, Simenon M M J, Brown A R et al. Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices[J]. Synth Met,1997, 87(1):53-59
    [13]Krebs F C, Spanggaard H. Significant improvement of polymer solar cell stability[J]. Chem Mater,2005,17(21):5235-5237
    [14]Hasegawa M, Horie K, Photophysics, photochemistry, and optical properties of polyimides[J]. Prog Polym Sci,2001,26:259-335
    [1]徐清.含三本胺基团有机空穴传输材料的合成与性能研究[D].[博十学位论文].浙江:浙江大学,2004
    [2]Andersson M R, Berggren M, Inganaes O, et al. Electroluminescence from Substituted Poly(thiophenes):From Blue to Near-Infrared[J]. Macromolecules,1995,28(22):7525-7529
    [3]Toriu S, Kaneko T, Nishide H, et al. Electrochemical study of the nitroxyl radical derivatives built in the π-conjugated poly(phenylenevinylene) skeleton[J]. Polym Adv Technol,1995,6: 707-710
    [4]Xia Y J, Ouyang J Y. Significant conductivity enhancement of conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films through a treatment with organic carboxylic acids and inorganic acids[J]. Applied Materials & Interfaces,2010,2(2): 474-483
    [5]Bernsten A, Croonen Y, Liedenbaum C, et al. Stability of polymer LEDs[J]. J. Opt. Mater, 1998,9:125-133
    [6]Fung M K, Lai S L, Tong S W, et al. Anode modifcation of polyuorene-based polymer light-emitting devices[J]. Appl Phys Lett,2002,81(8):1497-1499
    [7]Gang L, Vishal S, Jinsong H, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends[J]. Nat Mater,2005,4:864-868
    [8]於黄忠,彭俊彪.溶剂及器件结构对MEH-PPV与PCBM电池性能影响[J].物理化学学报[J].2007,23(10):1637-1641

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700