用户名: 密码: 验证码:
苯并唑类聚合物光伏材料的设计合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以拓宽聚合物的吸收光谱、改善其溶解性能和提高载流子迁移率为目的,设计与合成了三个系列的新型苯并唑类共轭聚合物。再分别以它们为活性层材料,制备了本体异质结光伏器件,讨论了光活性材料、形貌等与光伏器件性能的关系。具体内容包括:
     (1)在苯并噻二唑的5,6位引入辛氧基,在其4,7位引入不同个数的噻吩单元(0,1,2),得到相应的单体M1,M2,M3。再将它们与苯并二噻吩二锡通过Stille偶联得到三种新型窄带隙共轭聚合物(P1,P2,P3)。鉴于这三种聚合物材料较宽的吸收光谱(300-820 nm),我们制备了基于P1,P2,P3为给体材料和PCBM为受体材料的本体异质结太阳能电池。初步的器件结果显示P3的能量转换效率高达4.02%,是一种很有商业前景的光伏材料。
     (2)以5,6-辛氧基-二噻吩苯并噻二唑(DODTBT)为受体单元,芴或2,7-咔唑为给体单元,通过Suzuki偶联反应得到两种新的聚合物—P4和P5,再加上前一章的P3,考察不同给体单元对此类聚合物材料光伏性能的影响。
     (3)首次将含烷氧链的苯并噁二唑单元引入聚合物光伏材料中,合成了四种新型窄带隙聚合物(PBDT-BX, PBDT-DTBX, PC-DTBX和PF-DTBX),并对其进行了详细表征。研究发现,它们具有良好的溶解性能、较好的热稳定性和较窄的带隙,且它们的光电性能由于其给体单元不同而各有差异。在AM 1.5 G,80mW/cm2光照下,器件结构ITO/PEDOT:PSS/polymer:PC61BM(1:2)/Ca/Al,基于PBDT-DTBX和PC-DTBX光伏器件的能量转换效率分别为2.90%和1.31%。结果表明苯并嗯二唑(BX)基共轭聚合物是一类很有前景的光伏材料。
In order to broaden the absorption spectrum of conjugated polymer donor materials, improve their solubility and hole mobility, three new series of new benzoxazolyl conjugated polymers were designed and synthesized in this dissertation. Bulk heterojunction(BHJ) polymer solar cells were fabricated using these conjugated polymers blended with PCBM as active layers. Furthermore the relationship between active layers, morphology and photovoltaic performance were also discussed. The main results are as follows:
     (1) Three alternating conjugated copolymers, comprised of benzodithiophene(BDT) and 5,6-dioctyloxy-benzothiadiazole(DOBT) derivatives with (0,1,2) thiophene unit, were synthesized via Stille cross-coupling reaction. These copolymers seemed promising for the application in BHJ solar cells due to their good solubility and high hole mobility as well as their low bandgap. The photovoltaic properties of the copolymers were investigated based on the blend of different the polymer/PC71BM weight ratio under AM1.5G illumination at 100 mW/cm2. The device with ITO/PEDOT:PSS/P3:PC71BM(1:2, w/w)/Ca/Al gave the best performance, with a power conversion efficiency of 4.02%.
     (2) Using 5,6-bis(octyloxy)-4,7-di(thiophen-2-yl)benzothiadiazole (DODTBT) as an electron-deficient moiety and fluorene or 2,7-carbazole as an electron-rich moiety, we synthesized two new low bandgap copolymers with good solubility, P4 and P5, respectively. Combined with P3 from the previous chapter, we investigated different donor moiety effect on photovoltaic properties of such kind of conjugated polymer materials.
     (3) Four D-A alternating low bandgap copolymers, using 5, 6-bisalkoxylbenzooxadiazole (BX) as an electron-deficient moiety and benzodithiophene or 2,7-carbazole or fluorene as an electron-rich unit, were synthesized and well characterized. The copolymers possess good solubility, high thermal stability, broad absorption as well as low bandgap ranging from 1.52 eV to 1.73 eV. Their electronic and photovoltaic properties can be easily tuned by incorporating different donor moieties into the polymer backbone. The preliminary photovoltaic device based on PBDT-DTBX:PC61BM gave a PCE value of 2.90%, which showed that BX probably is a promising electron accepting building block in organic electronics.
引文
[1]Goetzberger A, Hebling C. Photovoltaic materials, past, present, future. Solar Energy Materials and Solar Cells,2000,62, (1-2),1-19.
    [2]Brabec C J, Sariciftci N S, Hummelen J C. Plastic Solar Cells. Advanced Functional. Materials,2001,11, (1),15-26.
    [3]邹应萍.共轭聚合物的合成及其在光伏电池和离子检测上的应用:[博士论文].北京:中科院化学研究所,2008.
    [4]Crobert F. Outlook Brightens for Plastic Solar Cells. Science,2011,332, (6027), 293.
    [5]Johansson M, Andersson M R, Hummelen J C, et al. Polymer photovoltaic cells with conducting polymer anodes. Advanced Materials,2002,14, (9),662-665.
    [6]Brabec C J, Shaheen S E, Winder C, et al. Effect of LiF/metal electrodes on the performance of plastic solar cell. Journal of Physics D:Applied Physics,2002,80, (7),1288-1290.
    [7]Kanicki J, Fedorko, P. Electrical and Photovoltaic Properties of trans-Polyacetylene. Journal of Physics D:Applied Physics,1984,17, (4),805-817.
    [8]Marks R N, Halls J J M, Bradley D D C, et al. Photovoltaic Response in Poly(p-phenylenevinylene) Thin-Film Devices. Journal of Physics:Condensed Matter,1994,6, (7),1379-1394.
    [9]Tang C W. Two-layer organic photovoltaic cell. Applied Physics Letters,1986,48, (2),183-185.
    [10]Sariciftci N S, Braun D, Zhang C, et al. Semiconducting polymer-hetero junctions:Diodes, photodiodes, and photovoltaic cells. Applied Physics Letters, 1993,62, (6),585-587.
    [11]Pettersson L A A, Roman L S, Inganas O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. Journal of Applied Physics, 1999,86,487-496.
    [12]Yu G, Gao J, Heeger A J, et al. Polymer photovolatic cells-enhanced efficiencies via a network of interal donor-acceptor heterojunctions. Science,1995,270, (5243),1789-1791.
    [13]Shaheen S E, Brabec C J, Sariciftci N S, et al.2.5% efficient organic plastic solar cells. Applied Physics Letters,2001,78, (6),841-843.
    [14]Padinger F, Rittberger R, Sariciftci N S. Effects of Postproduction Treatment on Plastic Solar Cells. Advanced Functional Materials,2003,13, (2),85-88.
    [15]Shaheen S E, Ginley D S, Jabbour G E, et al. Organic-Based Photovoltaics: Toward Low-Cost Power Generation. MRS Bull,2005,30, (1),10-15.
    [16]Chen H Y, Hou J H, Zhang S Q, et al. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photonics,2009,3,649-653.
    [17]Hadipour A, Boer B, Wildeman J, et al. Solution-processed organic tandem solar cells. Advanced Functional Materials,2006,16, (14),1897-1903.
    [18]Kim J Y, Lee K, Coates N E,; et al. Efficient tandem polymer solar cells fabricated by all-solution processing. Science,2007,317,222-225.
    [19]Spanggaard H, Krebs, F. C. A brief history of the development of organic and polymeric photovoltaics. Solar Energy Materials and Solar Cells,2004,83, (2-3), 125-146.
    [20]Sariciftci N S. Polymeric photovoltaic materials. Current Opinion in Solid State and Materials Science,1999,4, (4),373-378.
    [21]Brabec C J. Organic photovoltaics:technology and market. Solar Energy Materials and Solar Cells,2004,83, (2-3),273-292.
    [22]Kietzke T, Horhold H H, Neher D. Effects of Structural Regularity on the Properties of Poly(3-alkylthienylenevinylenes). Chemistry of Materials,2000,12, (10),6532-6537.
    [23]Allbrahim M, Konkin A, Roth H K, et al. Phenylene-ethynylene/phenylene-vinylene hybrid polymers:opticaland, electrochemical characterization comparison with poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene] and application in flexible polymer solar cells. Thin Solid Films,2005, 474, (1-2),201-210.
    [24]Blom P W M, Mihailetchi V D, Koster L J A, et al. Device physics of polymer: fullerene bulk heterojunction solar cells. Advanced Materials,2007,19, (12), 1551-1566.
    [25]Karg S, Riess W, Schwoerer M, et al. Electrical and optical characterization of poly(phenylene-vinylene) light emitting diodes. Synthetic Metals,1993,54, (1-3), 427-433.
    [26]Huo L J, Tan Z A, Li Y F, et al. Alternating copolymers of electron-rich arylamine and electron-deficient 2,1,3-benzothiadiazole:synthesis, characterization and photovoltaic properties. Journal of Polymer Science A: Polymer Chemistry,2007,45, (17),3861-3871.
    [27]Yu G, Heeger A J. Charge separation and photovoltaic conversion in polymer composites with internal donor-acceptor heterojunctions. Journal of Applied Physics,1995,78, (7),4510-4515.
    [28]Granstrom M, Andersson M R, Friend R H, et al. Laminated fabrication of polymeric photovoltaic diodes. Nature,1998,395, (6),257-260.
    [29]Colladet K, Nicolas M, Vanderzande D, et al. Low-band gap polymers for photovoltaic applications. Thin Solid Films,2004,451, (52),7-11.
    [30]Colladet K, Vanderzande D, Sariciftci S, et al. Low band gap donor-acceptor conjugated polymers toward organic solar cells applications. Macromolecules, 2007,40, (1),65-72.
    [31]Thompson B C, Kim Y G, Reynolds J R, et al. Spectral broadening in MEH-PPV: PCBM-based photovoltaic devices via blending with a narrow band gap cyanovinylene-dioxythiophene polymer. Macromolecules,2005,38, (13), 5359-5362.
    [32]Thompson B C, Kim Y G, Reynolds J R, et al. Soluble narrow band gap and blue propylenedioxythiophene-cyanovinylene polymers as multifunctional materials for photovoltaic and electrochromic applications. Journal of the American Chemical Society,2006,128, (39),12714-12725.
    [33]Galand E M, Kim Y G, Reynolds J R, et al. Optimization of narrow band-gap propylenedioxythiophene:cyanovinylene copolymers for optoelectronic applications. Macromolecules,2006,39, (26),9132-9142.
    [34]Bunz U H F. Poly(aryleneethynylene)s:Syntheses, properties, structures, and applications. Chemical Reviews,2000,100, (4),1605-1644.
    [35]Al-Ibrahim M, Konkin A, Sensfuss S, et al. Phenylene-ethynylene/phenylene-vinylene hybrid polymers:optical and electrochemical characterization, comparison with poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene] and application in flexible polymer solar cells. Thin Solid Films,2005, 474, (1-2),201-210.
    [36]Egbe D A M, Nguyen L, Sariciftci N S, et al. Thiophene-containing poly(arylene-ethynylene)-alt-poly(arylenevinylene)s:Synthesis, characterisation and optical properties. Polymer,2005,46, (23),9585-9595.
    [37]Egbe D A M, Hoppe H, Sariciftci N S, et al. Side chain influence on electrochemical and photovoltaic properties of yne-containing poly(phenylene vinylene)s. Macromolecular Rapid Communications,2005,26, (17),1389-1394.
    [38]Egbe D A M, Kietzke T, Pakula T, et al. Synthesis, characterization, and photophysical, electrochemical, electroluminescent, and photovoltaic properties of yne-containing CN-PPVs. Macromolecules,2004,37, (24),8863-8873.
    [39]Hoppe H, Egbe D A M, Sariciftci N S, et al. Photovoltaic action of conjugated polymer/fullerene bulk heterojunction solar cells using novel PPE-PPV copolymers. Journal of Materials Chemistry,2004,14, (23),3462-3467.
    [40]Breeze A J, Schlesinger Z, Horhold H H, et al. Improving power efficiencies in polymer-polymer blend photovoltaics. Solar Energy Materials and Solar Cells, 2004,83,(2-3),263-271.
    [41]Kietzke T, Horhold H H, Neher D, et al. Efficient polymer solar cells based on M3EH-PPV. Chemistry of Materials,2005,17, (43),6532-6537.
    [42]Kietzke T, Egbe D A M, Horhold H H, et al. Comparative study of M3EH-PPV-based bilayer photovoltaic devices. Macromolecules,2006,39, (12), 4018-4022.
    [43]Mihailetchi V D, Blom P W M, Rispens M T, et al. Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heteroj unction solar cells. Journal of Applied Physics,2003,94, (10),6849-6854.
    [44]Brabec C J, Sariciftci N S, Hummelen J C, et al. Origin of the open circuit voltage of plastic solar cells. Advanced Functional Materials,2001,11, (2), 374-380.
    [45]Street R A. Conducting polymers-The benefit of order. Nature Materials,2006, 5,(3),171-172.
    [46]Kline R J, McGehee M D, Toney M F, et al. Highly oriented crystals at theburied interface in polythiophene thin-film transistors. Nature Materials, 2006,5, (3),222-228.
    [47]KimY, Cook S, Ree M, et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nature Materials,2006,5, (3),197-203.
    [48]Zhang G J, He Y J, Li Y F.6.5% Efficiency of Polymer Solar Cells Based onpoly(3-hexylthiophene) and Indene-C6o Bisadductby Device Optimization. Advanced Materials,2010,22,4355-4358.
    [49]刘波.窄带隙聚合物光伏材料的合成与表征:[硕士学位论文].长沙:中南大学,2010.
    [50]Fell H J, Samuelsen E J, Andersson M R, et al. Structural aspects of oriented poly (octylphenylthiophene) studied in bulk and submicron layers by X-ray diffraction. Synthetic Metals,1995,73, (3),279-283.
    [51]Kline R J, McGehee M D, Frechet J M J, et al. Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight. Advanced Materials,2003,15,(18),1519-1522.
    [52]Kline R J, McGehee M D, Frechet J M J, et al. Dependence of regioregular poly (3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules,2005,38, (8),3312-3319.
    [53]Nakamura J, Murata K, Takahashi K, et al. Relation between carrier mobility and cell performance in bulk heterojunction solar cells consisting of soluble polythiophene and fullerene derivatives. Applied Physics Letters,2005,87, (13), 132105-132112.
    [54]Huang J S, Li G, Yang Y, et al. Influence of composition and heat-treatment on the charge transport properties of poly (3-hexylthiophene) and [6,6]-phenyl C-61-butyric acid methyl ester blends. Applied Physics Letters,2005,87, (11), 112105-112109.
    [55]Koppe M, Scharber M, McCulloch I, et al. Polyterthiophenes as donors for polymer solar cells. Advanced Functional Materials,2007,17, (8),1371-1376.
    [56]Sivula K, Luscombe C K, Frechet J M J, et al. Enhancing the thermal stability of polythiophene:Fullerene solar cells by decreasing effective polymer regioregularity. Journal of the American Chemical Society,2006,128, (43), 13988-13989.
    [57]Ruseckas A, Andersson M R, Inganas O, et al. Intra-and interchain luminescence in amorphous and semicrystalline films of phenyl-substituted polythiophene. Journal of Physical Chemistry B,2001,105, (32),7624-7631.
    [58]Shi C J, Yang Y, Pei Q B, et al. Regioregular copolymers of 3-alkoxythiophene and their photovoltaic application. Journal of the American Chemical Society, 2006,128, (27),8980-8986.
    [59]Greve D R, Apperloo J J, Janssen R A J, et al. Synthesis and and characterization of novel regioregular polythiophenes Tuning the redox properties. European Journal of Organic Chemistry,2001, (18),3437-3443.
    [60]Cremer J, Bauerle P, Janssen R A J, et al. High open-circuit voltage poly(ethynylene bithienylene):Fullerene solar cells. Chemistry of Materials, 2006,18, (25),5832-5834.
    [61]Casalbore M G, Gallazzi M C, Bertarelli C, et al. A donor-acceptor polymer with a peculiar negative-charge-"trapping" characteristic. Advanced Functional Materials,2003,13, (4),307-312.
    [62]Muhlbacher D, Gaudiana R, Brabec C, et al. High photovoltaic performance of a low-bandgap polymer. Advanced Materials,2006,18, (22),2931-2931.
    [63]Peet J, Heeger A J, Bazan G C, et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Materials,2007,6, (7),497-500.
    [64]Scharber M C, Koppe M, Gao J, et al. Influence of the bridging atom on the performance of a low-bandgap bulk heterojunction solar cell. Advanced Materials,2010,22, (3),367-370.
    [65]Svensson M, Zhang F L, Inganas O, et al. High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Advanced Materials,2003,15, (12),988-991.
    [66]Zhang F L, Andersson M R, Inganas O, et al. Influence of solvent mixing on the morphology and performance of solar cells based on polyfluorene copolymer /fullerene blends. Advanced Functional Materials,2006,16, (5),667-674.
    [67]Slooff L H, Veenstra S C, Koetse M M, et al. Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling. Applied Physics Letters,2007,90, (14),143506-143509.
    [68]Yang R Q, Tian R Y, Cao Y, et al. Deep-red electroluminescent polymers: Synthesis and characterization of new low-band-gap conjugated copolymers for light-emitting diodes and photovoltaic devices. Macromolecules,2005,38, (2), 244-253.
    [69]Tian R Y, Yang R Q, Cao Y, et al. Efficient photovoltaic cells from low band-gap fluorene-based copolymer. Chinese Physics,2005,14, (5),1032-1035.
    [70]Wang E G, Peng J B, Cao Y, et al. High-performance polymer heteroj unction solar cells of a polysilafluorene derivative. Applied Physics Letters,2008,92, (3),033307-033312.
    [71]Blouin N, Michaud A, Leclerc M, et al. A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Advanced Materials,2007,19, (17),2295-2300.
    [72]Sung H P, Leclerc M, Heeger A J, et al. Bulk heteroj unction solar cells with internalquantum efficiency approaching 100%. Nature Photonics,2009,3, (3), 297-303.
    [73]Wong W Y, Wang X Z, Chan W K, et al. Metallated conjugated polymers as a newavenue towards high-efficiency polymer solar cells. Nature Materials,2007, 6, (7),521-527.
    [74]Qin R P, Li W W, Bo Z. S, et al. A Planar Copolymer for High Effciency Polymer Solar Cells. Journal of the American Chemical Society,2009,131, 14612-14613.
    [75]Zhou H Y, Yang L Q, You W. Development of Fluorinated Benzothiadiazole as a Structural Unit for a Polymer Solar Cell of 7% Efficiency. Angewandte Chemie International Edition,2011,50,2995-2998.
    [76]Hou J H, Park M H, Yang Y. Bandgap and Molecular Energy Level Control of Conjugated Polymer Photovoltaic Materials Based on Benzo[1,2-b:4,5-b']dithiophene. Macromolecules,2008,41,6012-6018.
    [77]Liang Y, Wu Y, Yu L, et al. Development of new semiconducting polymers for high performance solar cells. Journal of the American Chemical Society,2009, 131, (2),56-57.
    [78]Liang Y, Wu Y, Yu L, et al. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. Journal of the American Chemical Society,2009,131, (46),7792-7799.
    [79]Hou J H, Yang Y, Li G, et al. Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. Journal of the American Chemical Society,2009,131, (43),15586-15587.
    [80]Zou Y P, Gendron D, Leclerc M, et al. A high-mobility low-bandgap poly(2,7-carbazole) derivative for photovoltaic applications. Journal of the American Chemical Society,2010,132, (15),5330-5331.
    [81]Piliego C, Holcombe T W, Frechet J M J, et al. Synthesis control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. Journal of the American Chemical Society,2010,132, (22), 7595-7597.
    [82]He L J, Hou J H, Yang Y, et al. A Polybenzo[1,2-b:4,5-b']dithiophene Derivative with Deep HOMO Level and Its Application in High-Performance Polymer Solar Cells. Angewandte Chemie International Edition,2010,49,1-5.
    [83]Price S C, Stuart A C, You W. Fluorine Substituted Conjugated Polymer of Medium Band Gap Yields 7% Efficiency in Polymer-Fullerene Solar Cells. Journal of the American Chemical Society,2011,133 (12),4625-4631.
    [84]Burroughes J H, Bradley D D C, Brown A R, et al. Light-emitting diodes based on conjugated polymers. Nature,1990,347,39-41.
    [85]Liu B, Pan C Y, Zou Y P, et al. New Low Bandgap Dithienylbenzothiadiazole Vinylene Based Copolymers:Synthesis and Photovoltaic Properties. Macromolecular Rapid Communication,2010,31,391-395.
    [86]Zou Y P, Sang G Y, Li Y F, et al. A Polythiophene Derivative with Octyloxyl Triphenylamine-vinylene Conjugated Side Chain:Synthesis and Its Applications in Field-Effect Transistor and Polymer Solar Cell. Synthetic Metals,2009,159, 182-187.
    [87]Cho S, Seo J H, Heeger A J, et al. Effect of substituted side chain on donor-acceptor conjugated copolymers. Applied Physics Letters,2008,93, 263301.
    [88]Koster L J A, Mihailetchi V D, Blom P W M. Ultimate efficiency of polymer/fullerene buck heterojunction solar cells. Applied Physics Letters,2006, 88,093511(1-3).
    [89]Hoven C V, Dang X D, Bazan G C, et al. Improved Performance of Polymer Bulk Heterojunction Solar Cells Through the Reduction of Phase Separation via Solvent Additives. Advanced Materials,2010,22, E63-E66.
    [90]Morin J F, Leclerc M. Syntheses of Conjugated Polymers Derived from N-Alkyl-2,7-carbazoles. Macromolecules,2001,34, (14),4680-4682.
    [91]Zou Y P, Hou J H, Li Y F, et al. A novel n-type conjugated polymer DOCN-PPV:Synthesis, optical, and electrochemical properties. Macromolecules,2006,39, (26),8889-8891.
    [92]Zou Y P, Gendron D, Leclerc M, et al. A High-Mobility Low-Bandgap Poly(2,7-carbazole) Derivative for Photovoltaic Applications. Macromolecules, 2009,42,2891-2894.
    [93]Yang M, Peng B, Zou Y P, et al. Synthesis and Photovoltaic Properties of Copolymers from Benzodithiophene and Thiazole. Journal of Physical Chemistry C,2010,114, (41),17989-17994.
    [94]Zhang L, He C, Cao Y, et al. Bulk-Heterojunction Solar Cells with Benzotriazole-Based Copolymers as Electron Donors:Largely Improved Photovoltaic Parameters by Using PFN/Al Bilayer Cathode. Macromolecules, 2010,43,(23),9771-9778.
    [95]Guo X G, Xin H, Watson M D, et al. Thieno[3,4-c]pyrrole-4,6-dione-Based Donor-Acceptor Conjugated Polymers for Solar Cells. Macromolecules,2011, 44, (2),269-277.
    [96]Blouin N, Michaud A, Leclerc M, et al. Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar Cells. Journal of the American Chemical Society,2008,130, (2),732-742.
    [97]Li H, Jiang P, Decurtins S, et al. Benzodifuran-Based-Conjugated Copolymers for Bulk Heterojunction Solar Cells. Macromolecules,2010,43,8058-8062.
    [98]Malliaras G G, Salem J R, Brock P J, et al. Electrical characteristics and efficiency of single-layer organic light-emitting diodes. Physical Review B, 1998,58,13411-13414.
    [99]Quist P A C, Savenije T J, Siebbeles L D A, et al. The Effect of Annealing on the Charge-Carrier Dynamics in a Polymer/Polymer Bulk Heteroj unction for Photovoltaic Applications. Advanced Functional Materials,2005,15, (10), 469-474.
    [100]Baek N S, Hau S K, Yip H L, et al. High Performance Amorphous Metallated π-Conjugated Polymers for Field-Effect Transistors and Polymer Solar Cells. Chemistry of Materials,2008,20, (18),5734-5736.
    [101]陈钰莹.新型低能带隙共轭高分子光伏材料的设计、合成与表征:[硕士学位论文].上海:上海交通大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700