用户名: 密码: 验证码:
聚合物光伏器件和染料敏化太阳能电池柔性对电极的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文介绍了本体异质结型聚合物太阳能电池(PSCs)器件和染料敏化太阳能电池(DSSCs)对电极的最新进展。本体异质结型聚合物太阳能电池的给体与受体的界面形态是影响能量转换效率的一个重要因素。因此,本论文研究了光活性层的相态结构与聚合物PSCs器件的光伏性能之间的关系,同时制备了效率相对较高的双给体聚合物太阳能电池器件。对电极是影响染料敏化太阳能电池光电转换效率以及制备成本的关键因素之一,但是昂贵的铂对电极限制了DSSCs的大规模应用,为此,本研究制备出了高效的柔性炭气凝胶对电极以取代铂对电极。其主要研究内容如下:
     1.制备并优化了以(苯乙撑-三噻吩)共聚物为给体,PCBM为受体的聚合物太阳能电池器件,并研究了给体与受体在不同比例混合时的活性层的微相分离结构;以具有给电子支链的聚合物和吸电子支链的聚合物共同作为电子给体材料,用于制备PSCs器件,以提高激子的寿命和传输长度,从而提高PSCs的光电转换效率。结果表明,以单一聚合物制备的器件的能量转换效率分别为1.75%和1.49%,而以两种聚合物同时作为给体的器件,在没有经过高温退火的条件下,其能量转换效率效率达到了1.97%。
     2.分别以炭气凝胶、炭黑和活性炭在不锈钢网基底上制备了柔性的染料敏化太阳能电池对电极,通过扫描电镜、比表面积、孔径分布、电化学阻抗和光伏性能测试来研究对电极的光物理与光化学性质。结果表明,具有较高比表面积的中孔炭气凝胶具有远比炭材料如炭黑、石墨等更好的催化还原活性,其催化活性甚至还超过了比表面积是两倍于炭气凝胶的活性炭制备的对电极,这说明炭气凝胶的中孔结构和高孔隙率更有利于I_3~-在电解质和对电极界面处的扩散,从而提高I_3~-在对电极上的还原速度。在相同实验条件下,以铂对电极制备的DSSCs的能量转换效率为9.14%,开路电压为0.74V,而以炭气凝胶对电极制备的DSSCs的能量转换效率为9.43%,开路电压达到了0.84V。这表明炭气凝胶柔性对电极在染料敏化太阳能电池中有着很好的潜在应用前景。
In this dissertation, the research progress in bulk-heterojunction polymer solar cell (PSCs) and the counter electrode (CE) for dye-sensitized solar cells (DSSCs) were introduced systematically. The interphase morphology of the donor and acceptor is a vital ingredient to affect the power conversion efficiency (PCE) of bulk-heterojunction polymer solar cells. In this study, the relationship between the interphase morphology of photovoltaic active layer based on a phenyleneviny-alt-trithiophene copolymer and the photovoltaic performance was studied, and a high performance PSCs device based on double donors was fabricated. As one of the indispensable components in DSSCs, CE should be low cost and high performance. However, platinum CE is not an economic way for mass production. In the study, high peformance flexible carbon aerogel CE was prepared as a low cost substitute for platinum counter electrode. The main study results are as follows:
     1. PSCs devices were fabricated and optimized with a phenyleneviny-alt-trithiophene copolymer as electron donor, and PCBM as electron acceptor. The microphase separation of the photovoltaic active layer with different weigh ratio of donor and acceptor was discussed. Two conjugated polymers with electron-withdrawing side chain and electron-donating side chain were blended in the photovoltaic active layer as electron donor materials to improve exciton life time and exciton diffusion length. The result indicated that the PCE of the PSCs devices based on P2 and P3 was 1.75% and 1.49%, respectively. Whereas, the PCE of PSC device with double donors reached 1.97% without any annealed procedure.
     2. High efficiency DSSCs were fabricated with carbon aerogel, carbon black and active carbon CEs on flexible stainless steel mesh, and the electrocatalytic activity of these flexible carbon CEs was investigated. The photophysical and photochemical were investigated by scanning electron photomicrograph, BET specific surface area, pore size distribution, electrochemical impedance and photovoltaic properties in detail. The results indicate that catalytic reduction activity of carbon aerogel with high specific surface area is superior to carbon black and graphite. Though the SBET of active carbon is twice larger than that of carbon aerogel, the cell with the carbon aerogel CE shows higher short-circuit photocurrent and conversion efficiency. It indicates that the mesopore structure and the large mesopore volume of carbon aerogel facilitate the diffusion of I_3~- ions at the interface of electrolyte and the CE. In the same conditions, the PCE of the DSSC based on Pt CE reached 9.14% and Voc was 0.74V. However, that based on carbon aerogel reached 9.43%, and Voc was 0.84V. It suggests that flexible carbon aerogel CE has strong potential for high performance DSSCs.
引文
[1] Regan B O, Gratzel M, et al. A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 film[J]. Nature., 1991, 353-737.
    [2] Hoertz P G, Mallouk T E. Light-to-chemical energy conversion in lamellar solids and thin films[J]. Inorg. Chem., 2005, 44:6828-6840.
    [3] Nazeeruddin M K, Angelis F D, Fantacci S, Selloni A, Viscardi G, Liska p, Ito S, Takeru B. Grtzel M. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers[J]. J. Am. Chem. Soc. 2005, 127(48):16835-16847.
    [4] Sariciftci N S, Smilowitz L, Heeger A J, Wudl F. Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene[J]. Science. 1992, 258:1474.
    [5] Kim J Y, Lee K, Coates N E, Moses D, Nsuyen T-Q, Dante M, Heeger A J. Efficient tandem polymer solar cells fabricated by all-solution processing[J]. Science. 2007, 317(5835):222-225.
    [6] Goetzberger A, Luther J, Willeke G. Solar cells: past, present, future[J]. Solar Energy Materials & Solar Cells. 2002, 74:1-11.
    [7] Scharber M C, Mühlbacher D, Koppe M, et al. Design rules for donors in bulk-heterojunction solar cells - towards 10 % energy-conversion efficiency[J]. Adv. Mater. 2006, 18(6):789-794.
    [8]吴季怀,郝三存,林建明,黄昀昉.染料敏化TiO2纳晶太阳能电池研究进展[J].华侨大学学报. 2003, 24(4):335-344.
    [9] Gratzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells[J]. J Photochem Photobio A. 2004, 164:3-14.
    [10]杨宏训,黄妙良,韩鹏,姜奇伟,吴子豹,吴季怀.染料敏化太阳能研究进展[J].材料导报. 2006,20(9):120-125.
    [11] Wang P, Zakeeruddin S M, Comte P, et al. Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylma-lonic acidon TiO2 nanocrystals[J]. J.Phys.Chem.B. 2003,107:14336-14341.
    [12] Jung H S, Lee J K, and Michael N. Preparation of Nanoporous MgO-Coated TiO2 Nanoparticles and Their Application to the Electrode of Dye-Sensitized Solar Cells[J]. Langmuir. 2005, 21:10332-10335.
    [13] Wang Zh Sh, Yanagida M, Sayama K, and Sugihara H. Electronic-Insulating Coating of CaCO3 on TiO2 Electrode in Dye-Sensitized Solar Cells: Improvement of Electron Lifetime and Efficiency[J]. Chem. Mater. 2006, 18: 2912-2916.
    [14]黄春辉.光电功能超薄膜[M].北京:北京大学出版社, 2001.39.
    [15] Zeng W D, Cao Y M , Bai Y, Wang Y H, Shi Y S, Zhang M, Wang F F, Pan C Y and Wang P. Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks[J]. Chem. Mater. 2010, 22 (5):1915-1925.
    [16] Cameron P J, Peter L M, Zakeeruddin S M, et al. Electrochemical studies of the Co(III)/Co(II)(dbbip)2 redox couple as a mediator for dye-sensitized nanocrystalline solar cells[J]. Coord Chem Rev. 2004, 248:1447-1453.
    [17] Ma T, Fang X, Akiyama M, Inoue K, Noma H, Abe E. Properties of several types of novel counter electrodes for dye-sensitized solar cells[J]. J. Electroanal. Chem. 2004,574: 77-83.
    [18] Fang X, Ma T, Akiyama M, Guan G, Tsunematsua S, Abe E. Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells[J]. Thin Solid Film. 2005,472 :242-245.
    [19] Minna T, Fredrik A, Peter L. Industrial sheet metals for nanocrystalline dye-sensitized solar cell structures[J]. Solar Energy Materials & Solar Cells. 2006, 90:2881-2893.
    [20] Sapp S A, Elliott C M, Contado C, et al. Substituted polypyridine complexes of cobalt(Ⅱ/Ⅲ)as effieient electrontransfer mediators in dye-sensitized solar cells[J]. J Am Chem Soc. 2002,124:11215.
    [21] Chen L. L, Tan W. W, Zhang J. B, et al. Fabrication of high performance Pt counter electrodes on conductive plastic substrate for flexible dye-sensitized solar cells[J]. Electrochimica Acta. 2010, 55(11):3721-3726.
    [22] Fang X M, Ma T L, Guan G Q, Akiyama M, Abe E. Performances characteristics of dye-sensitized solar cells based on counter electrodes with Pt films of different thickness[J]. J Photochem Photobiol A. 2004,164: 179-182.
    [23] Wang G Q, Lin R F, Lin Y , Li X P, Zhou X W, Xiao X R. A novel high-performance counter electrode for dye-sensitized solar cells[J]. Electrochimica Acta. 2005,50: 5546-5552.
    [24] Kim S S, Nah Y Ch , Noh Y Y , Jo J , Kim D Y . Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells[J]. Electrochimica Acta. 2006, 51:3814-3819.
    [25] Li Q H, Wu J H, Tang Q W, Lan Zh , Li P J, Lin J M, Fan L Q. Application of microporous polyaniline counter electrode for dye-sensitized solar cells[J]. Electrochemistry Communications. 2008,10: 1299-1302.
    [26] Zhang J, Hrei T S d, Li X X, Guo W, Wang L P, Shi X T, Su H Q, Yuan Zh B. Nanostructured polyaniline counter electrode for dye-sensitised solar cells: Fabrication and investigation of its electrochemical formation mechanism[J]. Electrochimica Acta. 2010,55:3664-3668.
    [27] Lee K M, Chen P Y, Hsu Ch Y, Huang J H, Hoc W H , Chen H Ch, Ho K Ch. A high-performance counter electrode based on poly(3,4-alkylenedioxythiophene) for dye-sensitized solar cells[J]. Journal of Power Sources. 2009,188:313-318.
    [28] Fukuri N, Saito Y, Kubo W, Senadeera G K R, Kitamura T, Wada Y, Yanagida S. Performance Improvement of Solid-State Dye-Sensitized Solar Cells Fabricated Using Poly(3,4-ethylenedioxythiophene) and Amphiphilic Sensitizing Dye[J]. J. Electrochem. Soc. 2004,151 :A1745-A1748.
    [29] Senadeera R, Fukuri N, Saito Y, Kitamura T, Wada Y, Yanagida S. Volatile solvent-free solid-state polymer-sensitized TiO2 solar cells with poly(3,4-ethylenedioxythiophene) as a hole-transporting medium[J]. Chem. Commun. 2005:2259-2261.
    [30] Fan B H, Mei X G, Sun K, and Ouyang J Y. Conducting polymer/carbon nanotube composite as counter electrode of dye-sensitized solar cells[J]. Appl Phys Lett. 2008. 93:143103.
    [31] Saito Y, Kubo W, Kitamura T, et al. I-/I3- redox reaction behavior on poly(3,4-ethylenedioxy-thiophene)counter electrode in dye-sensitized solar cells[J]. J Photochem Photobiol A. 2004,164:153.
    [32] Kay A and Gratzel M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder[J]. Solar Energy Materials & Solar Cells. 1996,44:99-117.
    [33] Takurou N. Murakami, Seigo I, Qing W, Nazeeruddin Md. K, Takeru Bessho, Ilkay Cesar, Paul L, Robin H B, Pascal C, Peter P, and Gratzel M. Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes[J]. Journal of The Electrochemical Society. 2006, 153 12:A2255-A2261.
    [34] Imoto K, Takahashi K, Yamaguchi T, Komura T, Nakamura J, Murata K. High-performance carbon counter electrode for dye-sensitized solar cells[J]. Solar Energy Materials & Solar Cells. 2003,79: 459-469.
    [35] Ramasamy E, Lee W J, Lee D Y and Song J S. Nanocarbon counterelectrode for dye sensitized solar cells[J]. Appl Phys Lett. 2007,90:173103
    [36] Lee W J, Ramasamy E, Lee D Y, Song J S. Performance variation of carbon counter electrode based dye-sensitized solar cell[J]. Solar Energy Materials & Solar Cells. 2008,92:814-818.
    [37] Hong W J, Xu Y X, Lu G W, Li C, Shi G Q. Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells[J]. Electrochemistry Communications. 2008,10 :1555-1558.
    [38] Denaro T, Baglio V, Girolamo M, Antonucci V, Arico A S, Matteucci F, Ornelas R. Investigation of low cost carbonaceous materials for application as counter electrode in dye-sensitized solar cells[J]. J Appl Electrochem. 2009,39:2173-2179.
    [39] Chen J K, Li K X, Luo Y H, Guo X Z, Li D M, Deng M H, Huang Sh Q, Meng Q B. A flexible carbon counter electrode for dye-sensitized solar cells[J]. Carbon. 2009, 47:2704-2708.
    [40] Choi H J, Shin J E, Lee G W, Park N G, Kim K K, Hong S C. Effect of Surface Modification of Multi-walled Carbon Nanotubes on the Fabrication and Performance of Carbon Nanotube based Counter Electrodes for Dye-sensitized Solar Cells[J]. Current Applied Physics. 2010,10:S165-S167.
    [41] Suzuki K, Yamamoto M, Kumagai M, Yanagida S. Application of Carbon Nanotubes to Counter Electrodes of Dye-sensitized Solar Cells[J]. Chem. Lett. 2003,32 : 28.
    [42] Ramasamy E, Lee W J, Lee D Y, Song J S. Spray coated multi-wall carbon nanotube counter electrode for tri-iodide I3- reduction in dye-sensitized solar cells[J]. Electrochemistry Communications. 2008,10:1087-1089.
    [43] Tang C W, Two-layer organic photovoltaic cell[J]. Appl Phys Lett., 1986, 48(2): 183-185.
    [44] Sariciftci N S, Braun D, Zhang C, Srdanov V, Heeger A J, Stucky G, Wudl F. Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovo- ltaic cells[J]. Appl. Phys. Lett. 1993, 62: 585-587.
    [45] Peumans P, Yakimov A, Forrest S R. Micropatterning of small molecular weight organic semiconductor thin films using organic vapor phase deposition[J]. J Appl Phys. 2003, 93(7): 4005-4016.
    [46] Sariciftci N S. Sensitization of the photoconductivity of conducting polymers by C60: photoinduced electron transfer[J]. Phys. Rev. B 1993, 48: 15425-15433.
    [47] Li L G, Lu G H and Yang X N. Improving performance of polymer photovoltaic devices using an annealing-free approach via construction of ordered aggregates in solution[J]. J. Mater. Chem. 2008, 18:1984-1990.
    [48] Mihailetchi V D, Hummelen J C, Rispens M T, et al. Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells[J]. J Appl Phys. 2003, 94: 6849-6854.
    [49] Brabec C J, Cravino A, Fromherz T, et al. Origin of the open circuit voltage of plastic solar cells[J]. Adv Funct Mater. 2001, 11(5): 374-380.
    [50] Brabec C J, Cravino A, Fromherz T, et al. The influence of materials work function on the open circuit voltage of plastic solar cells[J]. Thin Solid Films. 2002, 403-404: 368-372.
    [51] Kim J S, Cacialli F, Cola A, Gigli G, and Cingolani R. Increase of charge carriers density and reduction of Hall mobilities in oxygen-plasma treated indium-tin-oxide anodes[J], Appl. Phys. Lett. 1999,75:19-21.
    [52] Brabe C J, Shaheen S E, Winder C, et al. Effect of LiF/metal electrodes on the performance of plastic solar cells [J]. Appl. Phys. Lett. 2002, 80: 1288-1297.
    [53] Chen H Y, Hou J H, Zhang S Q, et al. Polymer solar cells with enhanced open-circuit voltage and efficiency [J]. Nature Photonics., 2009, 3:649-653.
    [54] Liang Y Y, Xu Zh, Xia J B, Tsai S T, Wu Y, Li G, Ray C, and Yu L P. For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%[J]. Adv. Mater. 2010, 22:1-4.
    [55] Chen Y, Xu X ZH, Wang J X. Journal of Functional Polymers. 1999, 12 (4) : 470- 478.
    [56] Kppostra F B, Mihailetchi V D, Popescu L M, Kronholm D, Blom P W M, Hummelen J C. New C84 Derivative and Its Application in a Bulk Heterojunction Solar Cell. Chem. Mater. 2006,18:3068-3073.
    [57] Jenekhe S A, Yi S. Efficient photovoltaic cells from semiconducting polymer heterojunctions[J]. Appl. Phys. Lett. 2000, 77(17):2635-2637.
    [58] Wendy U H, Janke J D, Alivisatos A P. Hybrid nanorod-polymer solar cells[J]. Science. 2002, 295: 2425-2427.
    [59] Zhao Y, Shao Sh Y, Xie Zh Y, Geng Y H, and Wang L X. Effect of Poly (3-hexylthiophene) Nanofibrils on Charge Separation and Transport in Polymer Bulk Heterojunction Photovoltaic Cells[J]. J. Phys. Chem. C. 2009, 113 (39):17235-17239.
    [60] Peet J, Tamayo A B, Dang X D, Seo J H and Nguyen T Q. Small molecule sensitizers for near-infrared absorption in polymer bulk heterojunction solar cells[J]. Appl. Phys. Lett. 2008, 93:163306.
    [61] Rand B P, Claudio G, Alexander M, Afshin H, Jan G, and Paul H. Photocurrent enhancement in polymer:fullerene bulk heterojunction solar cells doped with a phosphorescent molecule[J]. Appl. Phys. Lett. 2009 , 95:173304.
    [62] Lee J K, Ma W L, Brabec Ch J, Yuen J, Moon J S, Kim J Y, Lee K, Bazan G C and Heeger A J. Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells[J]. J. Am. Chem. Soc. 2008, 130:3619-3623.
    [63] Kim H J, Shin M J, and Kim Y K. Distinct Annealing Temperature in Polymer:Fullerene:Polymer Ternary Blend Solar Cells[J]. J. Phys. Chem. C. 2009, 113:1620-1623.
    [64] Chang Y M and Wang L Y. Efficient Poly(3-hexylthiophene)-Based Bulk Heterojunction Solar Cells Fabricated by an Annealing-Free Approach[J]. J. Phys. Chem. C. 2008, 112: 17716-17720.
    [65] Liang Ch W, Su W F and Wang L Y. Enhancing the photocurrent in poly? 3-hexylthiophene /[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction solar cells by using poly(3-hexylthiophene) as a buffer layer[J]. Appl. Phys. Lett. 2009,95:133303.
    [66] Yang T B, Cai W ZH, Qin D H, Wang E G, Lan L F, Gong X, Peng J B, and Cao Y. Solution-Processed Zinc Oxide Thin Film as a Buffer Layer for Polymer Solar Cells with an Inverted Device Structure[J]. J. Phys. Chem. C. 2010, 114:6849-6853.
    [67] Koppe M, Egelhaaf H J, Dennler G, Scharber M C, Brabec C J, Schilinsky P, and Hoth C N. Near IR Sensitization of Organic Bulk Heterojunction Solar Cells: Towards Optimization of the Spectral Response of Organic Solar Cells[J]. Adv. Funct. Mater. 2010, 20:338-346.
    [68] Spreitzer H, Becker H, Kluge E, et al. Soluble phenyl-substituted PPVs- new materials for highly efficient polymer LEDs[J]. Adv Mater. 1998, 10:1340-1343.
    [69] Beek W J E, Wienk M M, Janssen R A J, Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer[J]. Adv Mater. 2004, 16:1009-1013.
    [70] Yu G, Gao J, Hummelen J C, et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science. 1995, 270:1789-1791.
    [71] Halls J J, Walsh C A, Greenham N C, et al. Efficient photodiodes from interpenetrating polymer networks[J]. Nature. 1995, 376:498-500.
    [72] Chen H J, Huang H, Tian Z F, Shen P , Zhao B, Tan S T. Synthesis and photovoltaic performances of 2,5-dioctyloxy-1,4-phenylenevinylene and terthiophene copolymers with di(p-tolyl)phenylamine and oxadiazole side groups[J]. European Polymer Journal. 2010, 46(4): 673-680.
    [73] Ravirajan P, Haque S A, Durrant J R, Bradley D D C, Nelson J. The effect of polymer optoelectronic properties on the performance of multilayer hybrid polymer/TiO2 solar cells[J]. Adv. Funct. Mater., 2005, 15(4):609-618.
    [74] Blom P W M, Mihailetchi V D, Koster L J A, Markov D E. Device physics of polymer: fullerene bulk heterojunction solar cells[J]. Adv. Mater. 2007, 19:1551-1566.
    [75] van Duren J K J, Yang X N, Janssen R A J, et al. Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar cell performance[J]. Adv Funct Mater., 2004, 14(5): 425-434.
    [76] Heremans P, Cheyns D, and Rand B P. Strategies for Increasing the Efficiency of Heterojunction Organic Solar Cells: Material Selection and Device Architecture[J]. Acc. Chem. Res. 2009, 42 (11): 1740-1747.
    [77]黎立桂,鲁广昊,杨小牛,周恩乐.聚合物太阳能电池研究进展[J],科学通报,第51卷第21期2006年11月.
    [78] Thompson B C and Jean M J F. Polymer–Fullerene Composite Solar Cells[J]. Angew. Chem. Int. Ed. 2007, 46: 2-22.
    [79] Zhao B, Liu D X, Li P, Li H, Shen P, Xiang N, Liu Y J, Tan S T. Effect of oxadiazole side chains based on alternating fluorene–thiophene copolymers for photovoltaic cells[J]. European Polymer Journal. 2009, 45(7): 2079-2086.
    [80] Murakami T N, Gratzel M. Counter electrodes for DSC: Application of functional materials as catalysts[J]. Inorganica Chimica Acta. 2008, 361: 572-580.
    [81] Probstle H, Schmitt C, Fricke J. Button cell supercapactiors with monolithic carbon aerogel[J]. Journal of Power Sources. 2002, 105:189-194.
    [82] Murakami T N, Ito S, Wang Q, Nazeeruddin M K, Bessho T, Cesar I, Liska P, Humphry-Baker R, Comte P, Péchy P, Gratzel M. Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes[J]. J Electrochem. Soc. 2006,153:A2255-2261A.
    [83] Ma T, Fang X, Akiyama M, Inoue K, Noma H, Abe E. Properties of several types of novel counter electrodes for dye-sensitized solar cells[J]. J. Electroanal. Chem. 2004, 57:77-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700