用户名: 密码: 验证码:
光照变化条件下的人脸特征抽取算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受公共安全、金融安全以及人机交互等领域大量潜在的需求所驱动,生物特征识别已经成为模式识别和人工智能领域的一个研究热点。尤其人脸识别由于其自然、直观、非接触、安全等特点而倍受关注,成为最具发展潜力的生物特征识别技术之一。经过近几十年的发展,人脸识别领域积累了丰富的理论和大量算法,初步解决了可控条件下的人脸识别难题。然而,在非配合和非控制条件下的人脸识别依然是一个非常具有挑战性的课题。影响识别性能的非控制因素有很多,例如:姿态、光照以及表情等变化,其中光照变化对人脸识别的影响尤其明显。
     本文主要针对人脸识别中的光照变化问题进行了深入细致的研究。重点研究了光照变化条件下的人脸图像预处理、特征提取等问题。论文主要研究工作如下:
     (1)对光照子空间和商图像方法进行了研究,提出了一种可变光照下的人脸识别方法。
     基于三维光照子空间模型的商图像方法过于简单,不能很好地对极端光照条件进行处理,并且不能处理人脸自身阴影。本文通过对商图像和光照子空间的研究,提出了基于九维光照子空间的改进后商图像方法。该方法首先合成图像库中每一个人的九幅基图像,这些基图像可以表示该对象不同光照条件下的人脸图像;其次,利用光照比图像方法合成图像库中每一对象与待识别图像相同光照条件下的一幅虚拟人脸图像;最后,用这些新合成的虚拟人脸图像来完成不同光照条件下的图像识别。
     (2)研究了光照预处理算法和基于Gabor小波的特征提取算法,提出了一种自适应的Gabor图像特征抽取和权重选择的光照不变人脸识别方法。
     为了消除光照变化对人脸识别的影响,通过对光照预处理算法的研究,本文首先提出了一种改进的局部对照增强算法。其次,Gabor小波具有较好的方向选择性和空间局部性,它可以捕获图像在不同方向、不同频率下的边缘以及局部显著特征,且对光照具有较强的鲁棒性。因此,Gabor小波被广泛应用于人脸图像识别,以提取鲁棒的人脸特征。然而,Gabor特征的过高维数需要比较大的存储空间并且使得识别过程也非常耗时。本文采用了鉴别力量分析方法提取Gabor图像特征中最有鉴别力的系数作为特征,这样极大地减少了Gabor图像特征的维数。另外,把经过Gabor变换得到的不同人脸图像中的同一尺度和方向的变换结果进行特征重组,得到多个新特征矩阵,每一新特征矩阵的贡献被本文所提出的自适应权重方法计算得到。最后对新特征矩阵抽取LDA特征进行识别。人脸识别实验显示了所建议方法能够有效地去除光照变化的影响。
     (3)研究了距离保持投影降维方法,提出一种改进的距离保持投影算法,并在此基础上进行了扩展。
     从某种意义上来说人脸是一种流形结构,人脸数据集是由某些内在变量控制所形成的非线性流形,如果在流形中能够找出光照、姿态、表情等控制变量,就可以极大地降低观测空间的维数。测地线距离是流形上两点之间距离最短的线,它能够描述人脸图像中由于光照、姿态、表情等变化而引起的非线性因素,而欧氏距离不能很好地度量由这些因素引起的人脸图像的非线性变化。因此,通过用测地线距离替代欧氏距离,本文提出了一种改进的距离保持投影算法。为了减少距离保持投影中邻域大小难以选取的问题,文中采用了一种对邻域大小不甚敏感的算法。针对距离保持投影流形学习算法没有充分利用样本的类别信息,不能用于分类,本文提出了一种基于距离保持投影的新的人脸识别算法。通过实验验证了本文方法可视化与分类识别能力。
     (4)研究了鉴别局部排列(DLA)特征提取算法,提出一种增强鉴别局部排列(EDLA)算法和核增强鉴别局部排列(KEDLA)算法。
     特征提取是人脸识别中关键的一步,所提取的特征必须对光照、表情、姿态等变换有较强的鲁棒性。DLA算法是一种基于局部最优和全局排列的特征提取算法,在人脸识别中获得了成功的应用。然而该算法识别性能严重依赖于参数的选择,对参数的选取极其敏感,并且该算法只利用了部分类别信息。为了提高算法的鲁棒性,本文提出一种对参数的选取不敏感且充分利用类别信息的增强DLA算法,并将此算法扩展到核空间,进而提出了KEDLA算法。实验结果表明,在光照变化条件下这两种算法的识别率要分别高于DLA、KDLA以及传统的子空间算法,说明了这两种方法对光照具有一定的鲁棒性。
As motivated by the extensive potential applications in public security, financial security, human-computer interaction, etc, biometrics recognition has become one of the main topics in the fields of pattern recognition and artificial intelligence. Especially face recognition has become a most potential recognition technology by biometric characteristic for the merits of being natural, directly perceived, safe and convenient. During the past few decades, a lot of theories and algorithms have been studied and proposed, and face recognition under controlled conditions has been solved preliminarily. While face recognition under the uncontrolled, uncooperative conditions, is still a great challenge. There are a lot of non-controlled factors such as post variation, illumination variation, expression variation, and so on, among which the effects of illumination change is especially serious.
     Our work is focusing on the effect of illumination variation on the face image recognition. The emphases of the work are the face image preprocessing, feature extraction under varying illumination. The main contributions in this dissertation can be summarized as following.
     (1) A illumination subspace and quotient image method was studied, and then a novel method for varying illumination conditions was proposed.
     The 3D point source model in quotient method is too simple to effectively approximate arbitrary illumination conditions. Furthermore, this method might fail in obtaining the illumination invariant feature when there exists shadow in the input image. Therefore, an improved quotient image method based on 9D linear illumination subspace is presented to overcome these deficiencies. Firstly, the nine basis images of each subject, which can be used to synthesize face images of the object under arbitrary lighting conditions, are generated by means of one image of each object under the standard lighting conditions and the improved quotient images method. Then one new image of each subject under the same lighting conditions with an input image is synthesized by the corresponding basis images. Finally, based on the synthetic face images, face recognition under varying illumination can be performed.
     (2) Both illumination preprocessing method and facial feature extraction method based on Gabor wavelet transform were studied, and then an adaptive feature and weight selection method based on Gabor image for illumination-invariant face recognition was proposed.
     In order to alleviate the effect of illumination variations on face recognition, an illumination preprocessing algorithm based on local contrast enhancement is proposed. Gabor Wavelet exhibits the desirable characteristics of orientation selectivity and spatial locality, and it can capture images the edge features and local salient features at different directions and frequencies. Gabor Wavelet is often adopted to extract the robust features from face images. However, the high-dimensional Gabor features make recognition process computationally expensive and have high cost in space requirement. Therefore, an adaptive feature and weight selection method based on Gabor image for face recognition is proposed. Firstly,40 Gabor feature matrices which are reconstructed with the same scale and the same direction transform results of the different face images are obtained by regarding every Gabor wavelet transformed output image as an independent sample. Then the contribution of each new feature matrix can be adaptively computed by the proposed adaptive weight method. Thirdly, the Gabor feature coefficients which have more power to discriminate different classes than others are selected by discrimination power analysis to construct feature vectors. Lastly, linear discriminant analysis features are extracted to fulfill recognition task. Experiments on the face databases demonstrate its effectiveness.
     (3) Distance-preserving projection method based on manifold learning was studied, and then the improved distance-preserving projection method was proposed.
     Human face is a manifold structure in some sense. Face dataset is a non-linear manifold formed by some inner variables, such as illumination condition, facial expression, etc. if some controlled variables can be sought, space dimensionality could be reduced greatly. Geodesic distance is the shortest distance between the two points on manifold, and it can be described the nonlinear factors in face images caused by post variation, illumination change, expression variation, and so on. However, the nonlinear manifold of face images can not be well measured by the Euclidean distances when these factors change frequently. Replacing Euclidean distance by geodesic distance, the improved distance preserving projection algorithm is proposed. In order to choose a suitable neighborhood size effectively, the P-ISOMAP algorithm which is much less sensitive to the neighborhood size is used. Because distance-preserving projection algorithm can't make full use of sample's information and it is not suitable for classification. A novel face recognition method based on distance-preserving projection is proposed. And its effects have been verified in open face databases.
     (4) Face feature extraction method based on Discriminative locality alignment was studied, and then an enhanced discriminative locality alignment (EDLA) method and a kernel version of EDLA named Kernel EDLA (KEDLA) were proposed.
     Feature extraction is critical step in face recognition. The extracted feature should be robust to illumination, expression, poses, etc. Discriminative locality alignment (DLA) which is based on the idea of part optimization and whole alignment has better performance. However, the performance of DLA is too overly sensitive to the values of the parameters. In addition, it falls short of exploiting the full supervision information, since all points that belong to the same class can bring significant discriminant information to the dimensionality reduction matrix. Therefore, a novel supervised feature extraction method namely enhanced discriminative locality alignment (EDLA) is presented. EDLA is not sensitive on the choice of the parameters and both the local structure and class label information are fully considered in EDLA algorithm. Moreover, a kernel version of EDLA named Kernel EDLA (KEDLA) is developed through applying the kernel trick to EDLA to increase its performance on nonlinear feature extraction. The experimental results show that the two proposed methods have higher recognition rates than DLA、KDLA and the traditional subspace methods under different illumination conditions.
引文
[1]A. K. Jain, A. Ross, S. Prabhakar. An introduction to biometric recognition. IEEE Transaction on Circuit and System for Video Technology.2004,14(1):4-20.
    [2]S. Pankanti, R. M. Bolle, A. Jain. Biometrics:the future of identification computer. 2000,33(2), pp:46-49.
    [3]梁路宏,艾海舟,徐光祐,张钹.人脸检测研究综述.计算机学报,2002,25(5):449-458.
    [4]M. H. Yang, D. Kriegman, N. Ahuja. Detecting faces in images:A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(1):34-58.
    [5]谭铁牛.生物识别研究新进展(一).北京:清华大学出版社,2002.
    [6]R. Chellappa, C. L. Wilson, S Sirohey. Human and machine recognition of faces:a survey. Proceedings of the IEEE,1995,83:705-740.
    [7]A. Pentland. Looking at people:sensing for ubiquitous and wearable computing. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(1):107-119.
    [8]周杰,卢春雨,张长水,李衍达.人脸自动识别方法综述.电子学报,2000,28(4):102-106.
    [9]C. Liu, H. Wechsler. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE PAMI,2002,11(4):467-476.
    [10]Wenyi Zhao, R Chellappa, P J Phillips, et al. Face recognition:A literature survey. ACM Computing Survey, December Issue,2003,35(4):399-458.
    [11]H. Chan, W. W. Bledsoe. A man-machine facial recognition system:some preliminary results. Technical report, Panoramic Research Inc, Cal,1965.
    [12]安高云.复杂条件人脸识别中若干关键问题的研究.北京交通大学博士论文,2008.
    [13]葛微.自动人脸识别的关键问题研究.中国科学院研究生院博士学位论文,2010.
    [14]张翠萍,苏光大.人脸识别技术综述.中国图象图形学报,2000,5(11):885-894.
    [15]刘党辉,沈兰荪,Kin-Man Lam.人脸识别研究进展.电路与系统学报,2004,9(1):85-94.
    [16]王国强.嵌入邻域判别关系的子空间人脸识别算法研究.博士学位论文,大连理工大学,2008.
    [17]R. Brunelli, T. poggio. Face recognition:features versus templates. IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(10):1042-1052.
    [18]I. J. Cox, J. Ghosn, P. N. Yianilos. Feature-based face recognition using mixture-distance. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1996:209-216.
    [19]M. Turk, A. Pentland. Face recognition using eigenfaces. IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1991:586-591.
    [20]M. Turk, A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991,3(1):71-86.
    [21]M. Kirby, L. Sirovich. Application of the Karhunen-Loeve Procedure for the characterization of human faces. IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,12(1):103-108.
    [22]R. CaPPelli, D. Maltoni. Multispace KL for Pattern representation and classification. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(9):977-996.
    [23]B. K. Gunturk, A. U. Batur, et al. Eigenface-domain super-resolution for face recognition. IEEE Transactions on Image processing,2003,12(5):597-606.
    [24]B. A. DraPer, K. Baek, M. S. Bartlett, J. R. Beveridge. Recognizing faces with PCA and ICA. Computer Vision and Image Understanding,2003,91(12):115-137.
    [25]Songcan Chen, Yulian Zhu. Subpattern-based principle component analysis. Pattern Recognition,2004,37(5):1081-1083.
    [26]R. Gottumukkal, V. K. Asari. An improved face recognition technique based on modular PCA approach. Pattern Recognition Letters,2004,25(4):429-436.
    [27]H. Kim, D. Kim, S. Y. Bang, S. Lee. Face recognition using the second-order mixture-of- eigenfaces method. Pattern Recognition,2004,37(2):337-349.
    [28]K. Tan, S. Chen. Adaptively weighted sub-Pattern PCA for face recognition. Neurocomputing,2005,64(3):505-511.
    [29]路玉峰,王增才,刘学忠.提高PCA识别率的新算法.光学技术,2008,34(1):10-15.
    [30]P. N. Belhumeur, J. P. Hespanha, D. J. Kriegman. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
    [31]C. Liu, H. Wechsler. A shape-and texture-based enhanced Fisher classifier for face recognition. IEEE Transactions on Image Processing,2001,19(4):598-608.
    [32]Weishi Zheng, Jianhuang Lai, et al. GA-fisher:a new LDA- based face recognition algorithm with selection of Principal components. IEEE Transactionson Systems, Man and Cybernetics, PartB,2005,35(5):1065-1078.
    [33]Songcan Chen, Jun Liu, Zhihua Zhou. Making FLDA applicable to face recognition with one sample per person. Pattern Recognition,2004,37(7):1553-1555.
    [34]D. Q. Dai, P. C. Yuen. Regularized discriminant analysis and its application to face recognition. Pattern Recognition,2003,36(3):845-847.
    [35]Jangsun Baek, Minsoo Kim. Face recognition using partial least squares components. Pattern Recognition,2004,37(6):1303-1306.
    [36]M. KyPerountas, A. Tefas, I. Pitas. Weighted Piecewise LDA for Solving the Small Sample Size Problem in Face Verification. IEEE Transactions on Neural Networks, 2007,18(2):506-519.
    [37]Peg Howland, Jianlin Wang, Haesun Park. Solving the small sample size problem in face recognition using generalized discriminant analysis. Pattern Recognition,2006,39: 277-287.
    [38]郑宇杰,杨静宇,徐勇等.一种基于Fisher鉴别极小准则的特征提取方法.计算机研究与发展,2006,43(7):1201-1206.
    [39]J. R. Price, T. F. Gee. Face recognition using direct, weighted linear discriminant analysis and modular subspaces. Pattern Recognition,2005,38:209-219.
    [40]P. Comon. Independent Component Analysis, a new concept? Signal Process,1994, 36(3):287-314.
    [41]M. S. Bartlett, J. R. Movellan, T. J. Sejnowski. Face recognition by independent component analysis. IEEE Transactions on Neural Networks,2002,13(6):1450-1464.
    [42]Yan Li, David Powers, James Peach. Comparison of blind source separation algorithms. Advances in Neural Networks and Applications,2000,18-23.
    [43]刘青山,卢汉清,马颂德.综述人脸识别中的子空间方法.自动化学报,2003,29(6):900-911.
    [44]王宏漫,欧宗瑛.采用PCA/ICA特征和SVM分类的人脸识别.计算机辅助设计与图形学报,2003,15(4):416-420.
    [45]K. Baek, B. A. Draper, J. R. Beveriudge. PCA vs. ICA:A comparison on the feret data set. International Conference on Computer Vision, Pattern Recognition and Image Processing,2002,824-827.
    [46]V. N. Vapnik. The nature of statistical learning theory. New York, Springer,1995.
    [47]许建华,张学工.统计学习理论.2004,电子工业出版社.
    [48]G. D. Guo, S. Z. Li, K. Chan. Face recognition by support vector machines. Proceedings of IEEE Conf. Automatic Face and Gesture Recognition,2000, pp.196-199.
    [49]P. L. Phillips. Support vector machines applied to face recognition. Advances in Neural information Proeessing Systems,1999,11:803-809.
    [50]M. H. Yang, N. Ahuja, D. J. Kriegman. Face recognition using kernel eigenfaces. International Conference on Image Processing,2000,1:37-40.
    [51]S. Mika, G. Ratsch, J. Weston. Fisher discriminant analysis with kernels. In:Proc. Neural Networks for Signal Processing Workshop, Madison, WI,1999,41-48.
    [52]G. Baudat, F. Anouar. Generalized discriminant analysis using a kernel approach. Neural Computation,2000,12(10):2385-2404.
    [53]F. R. Bach, M. I. Jordan. Kernel independent component analysis. Machine Learning Research,2003,3:1-48.
    [54]T. Martiriggiano, M. Leo, T. D. Orazio, A. Distante. Face recognition by kernel independent component analysis. Springer Berlin,2005, pp:55-58.
    [55]S. T. Roweis, L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science,2000,290(12):2323-2326.
    [56]H. S. Sebastian, D. D. Lee. Cognition:the manifold way of perception. Science,2000, 290:2268-2269.
    [57]J. B. Tenenbaum, V. D. Silva, J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science,2000,290(12):2319-2323.
    [58]M. Balasubramanian, E. L. Schwartz, J. B. Tenenbaum, et al. The isomap algorithm and topological stability. Science,2002,295:7.
    [59]M. Belkin, P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. Neural Information Processing Systems,2001:585-591.
    [60]M. Belkin, P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computations,2003,15(6):1373-1396.
    [61]T. Kohonen. Self-organization and associative memory. Berlin:Springer,1988.
    [62]N. Intrator, D. Reisfeld, Y. Yeshurun. Face Recognition by Supervised/Unsupervised hybrid Network. Pattern Recognition Letters.1996,17(1):67-76.
    [63]S. Lawrence, C. L. Giles, A. C. Tsoi, et al. Face recognition:a convolutional neural-network approach. IEEE Transactions on Neural Networks,1997,8(1):98-113.
    [64]Y. Freund, R. E. Schapire. A decision-theoretic generalization of on-line learning and application to boosting. Journal of Computer and System Sciences,1997,55:119-139.
    [65]V. Blanz, T. Vetter. A morphable model for the synthesis of 3D faces. Proceedings of ACM SIGGRAPH99 Conference, Los Angeles, USA,1999,187-194.
    [66]Y. Z. Goh, et al. Wavelet Based illumination invariant preprocessing in face recognition. 2008 Congress on Image and Signal Processing, pp.421-425.
    [67]F. Samaria, S. Young. HMM based architecture for face recognition. Image Comput Vis., 1994,12(10):537-543.
    [68]Peng Yang, Shiguang Shan, Wen Gao. Face recognition using ada-boosted Gabor features. In proceeding of the 6th IEEE International Conference on Automatic Face and Gesture Recognition,2004, pp.356-361.
    [69]薛斌党.嵌入式隐Markov模型和神经网络人脸识别.大连理工大学博士学位论文,2005.
    [70]J. Buhmann, M. Lades, et al. Size and distortion invariant object recognition by hierarchical graph matching. In:Proceedings of IEEE Intl. Joint Conference on Neural Networks,1990,411-416.
    [71]M. Lades, J. C. Vorbruggen, et al. Distortion invariant object recognition in the dynamic link architecture. IEEE Trans. Comput.,1993,42(3):300-311.
    [72]L. Wiskott, J. Fellous, N. Kruger, et al. Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7): 775-779.
    [73]C. Kotropoulos, A. Tefas, et al. Frontal face authentication using morphological elastic graph matching. IEEE Transactions on Image Processing,2000,9(4):555-560.
    [74]P. S. Penev, J. Atick. Local Feature Analysis:a General Statistical Theory for Object Representation. Network:Computation in Neural Systems,1996,7:477:500.
    [75]杨琼,丁晓青.鉴别局部特征分析及其在人脸识别中的应用.清华大学学报,2004,44(4):530-533.
    [76]T. Ahonen, M. Pietikainen. Face description with Local binary patterns:application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006, 28(12):2037-2041.
    [77]M. Li, R. C. Staurton. Optimum Gabor filter design and local binary patterns for texture segmentation. Pattern Recongition Letter,2008,29:664-172.
    [78]齐永锋,张家树,火元莲.一种基于肤色与改进的LBP的人脸检测方法.光电子激光,2009,20(6):816-821.
    [79]H. F. Chen, P. N. Belhumeur, D. W. Jacobs. In search of illumination invariants. IEEE Conference on Computer Vision Pattern Recognition,2000,1:254-261.
    [80]S. C. Yan, X. F. He, Y. X. Hu, et al. Bayesian shape localization for face recognition using global and local textures. IEEE Transactions on Circuits and Systems for Video Technology,2004,14(1):102-113.
    [81]X. G. Wang, X. O. Tang. An improved Bayesian face recognition algorithm in PCA subspace. Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, and Signal Proeessing, HongKong, China,2003,3:129-132.
    [82]Z. F. Li, X. O. Tang. Bayesian fave revognition using support vector machine and face clustering. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington DC, USA,2004,2:374-380.
    [83]A. Georghiades, D. Kriegman, P. Belhumeur. From few to many:Illumination Cone models for face recognition under variable illumination and pose. IEEE Trans. Pattern Analysis and Machine Intelligence,2001,23(6):643-660.
    [84]A. M. Martinez, R. Benavente. The AR Face Database. CVC Technical Report 24, Purdue Univ., June 1998.
    [85]P. J. Phillips, H. Wechsler, J. Huang, P. Rauss. The FERET database and evaluation procedure for face recognition algorithms. Image Vision Computation,1998,16(5): 295-306.
    [86]T. Sim, S. Baker, M. Bsat. The CMU Pose, Illumination, and Expression (PIE) Database of Human Faces. CMU-RI-TR-01-02, pages.1-17, USA,2002.
    [87]D. B. Graham, N. M. Allinson. Characterizing virtual eigensignatures for general purpose face recognition. Face Recognition:From Theory to Applications, Computer and System Sciences,1998,163:446-456.
    [88]Y. Adini, Y. Moses, S. Ullman. Face recognition:the problem of compensating for changes in illumination direction. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):721-732.
    [89]Ralph Gross, Jianbo Shi, Jeff Cohn. Quo vadis face Recognition? In Third Workshop on Empirical Evaluation Methods in Computer Vision,2001.
    [90]庄连生.复杂光照条件下人脸识别关键算法研究.中国科学技术大学博士学位论文,2006.
    [91]D. H. Liu, K. M. Lam, L. S. Shen. Illumination invariant face recognition. Pattern Recognition,2005,38(10):1705-1716.
    [92]Lei Zhang, D. Samaras. Face recognition from a single training image under arbitrary unknown lighting using spherical harmonics. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(3):351-362.
    [93]S. Z. Li, R. Chu, et al. Illumination invariant face recognition using near-infrared images. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(4): 627-639.
    [94]A. J. O'Toole, P. J. Phillips, et al. Face recognition algorithms surpass humans matching faces over changes in illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(9):1642-1646.
    [95]张熠,熊飞,张桂林.一种光照不变人脸识别的预处理算法.中国图象图形学报,2008,13(9):1707-1712.
    [96]A. Franco, L. Nanni. Fusion of classifiers for illumination robust face recognition. Expert Systems with Applications,2009,36:8946-8954.
    [97]O. Arandjelovic, R. Cipolla. A methodology for rapid illumination-invariant face recognition using image processing filters. Computer Vision and Image Understanding. 2009,113:159-171.
    [98]Wenchung Kao, Mingchai Hsu, Yuehyiing Yang. Local constrast enhancement and adaptive feature extraction for illumination-invariant face recognition. Pattern Recognition,2010,43:1736-1747.
    [99]R. Gopalan, D. Jacobs. Comparing and combining lighting insensitive approaches for face recognition. Computer Vision and Image Understanding,2010,114:135-145.
    [100]Dattatray V. Jadhav, Raghunath S. Holambe. Rotation, Rotation, illumination invariant polynomial kernel fisher discriminant analysis using Radon and discrete cosine transforms based features for face recognition. Pattern Recognition Letters,2010,31: 1002-1009.
    [101]Yong Cheng, Yingkun Hou, Chunxia Zhao. Robust face recognition based on illumination invariant in nonsubsampled contourlet transform domain. Neurocomputing, 2010,73:2217-2224.
    [102]T. Chen, W. Yin, et al. Total variation models for variable lighting face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(9): 1519-1524.
    [103]M. Savvides, V. Kumar. Illumination normalization using logarithm transforms for face authentication. Proc. IAPR Audio- and Video-Based Biometric Person Authentication, 2003, pp.549-556.
    [104]L. Zhuang, X. Ye, Y. Wang. An illumination processing algorithm based on total variation model.2006, Proc. the 6th World Congress on Intell. Control and Autom., 2006,2:10462-10466.
    [105]V. Govindaraju, D. B. Sher. Locating Human Faces in Newspaper Photographs. In:Proc CVPR 1989,pp.549-554.
    [106]J. L. Zhao, Y. Su, et al. Illumination ratio image:synthesizing and recognition with varying illuminations. Pattern Recognition Letter,2003,24(15):2703-2710.
    [107]M. Savvides, B. V. Kumar, P. K. Khosla. Eigenphases vs. Eigenfaces. Proc.17th Int. Conf. Pattern Recognition (ICPR04),2004, pp.810-813.
    [108]R. Brunelli, T. Poggio. Hyper B F Networks for real object recognition. Proc. IJCAI, Sydney, Australia,1991, pp.1278-1284.
    [109]A. Shashua, T. Riklin-Raviv. The quotient image:class based re-rendering and recognition with varying illuminations. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(2):129-139.
    [110]S. G. Shan, W. Gao, B. Cao. Illumination normalization for robust face recognition against varying lighting conditions. Proc. IEEE Int'l Workshop on Analysis and Modeling of Faces and Gestures,2003, pp.157-164.
    [111]Haitao Wang, S. Z. Li, Yangsheng Wang. Face recognition under varying lighting conditions using self quotient image. Proceedings.6th IEEE International Conference on Automatic Face and Gesture Recognition,2004, pp.819-824.
    [112]Haitao Wang, S. Z. Li, Yangsheng Wang. Generalized quotient image. IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2004,2:498-505.
    [113]D. J. Jobson, Z. Rahman, et al. Properties and Performance of a Center/Surround Retinex. IEEE Trans. on Image Processing,1997,6(3):451-462.
    [114]D. J. Jobson, Z. Rahman, et al. A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Transactions on Image Processing, 1997,6(7):965-976.
    [115]T. Chen, W. Yin, et al. Illumination normalization for face recognition and uneven background correction using total variation based image models. Computer Society Conference on Computer Vision and Pattern Recognition,2005,2:532-539.
    [116]A. Shashua. Illumination and view position in 3d visual recognition. Advances in Neural Information Processing Systems,1992, pp.404-411.
    [117]A. Shashua. On photometric issues in 3D visual recognition from a single 2D image. Int'l J. Computer Vision,1997,21:99-122.
    [118]J. Miao, B. C. Yin, K. Q. Wang, et al. A hierarchical multiscale and multiangle system for human face detection in a complex background using gravity-center template. Pattern Recognition,1999,32(7):1237-1248.
    [119]P. W. Hallinan. A low-dimensional representation of human faces for arbitrary lighting conditions. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA,1994, pp.995-999.
    [120]P. N. Belhumeur, D. J. Kriegman. What is the set of images of an object under all possible illumination conditions? IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1996, pp.270-277.
    [121]A. S. Georghiades, D. J. Kriegman, P. N. Belhumeur. Illumination cones for recognition under variable lighting:faces. IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1998, pp.52-59.
    [122]尹洪涛,付平,沙学军.基于DCT和线性判别分析的人脸识别.电子学报,2009,37(10):2211-2214.
    [123]R. Ramamoorthi, P. Hanrahan. On the relationship between radiance and irradiance: determining the illumination for images of a convex lambertian object. JOSA A,2001, 18(10):2448-2459.
    [124]R. Ramamoorthi. Analytic PCA Construction for theoretical analysis of lighting variability in images of a lambertian object. IEEE Transactions Pattern Analysis and Machine Intelligence,2002,24(10):1322-1333.
    [125]R. Basri, D. Jacobs. Lambertian Reflectance and Linear Subspaces. IEEE Transactions Pattern Analysis and Machine Intelligence,2003,25(2):218-233.
    [126]K. C. Lee, J. Ho, D. Kriegman. Nine points of lights:acquiring subspaces for face recognition under variable lighting. Proceedings of IEEE Conf. Computer Vision and Pattern Recognition,2001, pp.519-526.
    [127]K. C. Lee, J. Ho, D. Kriegman. Acquiring linear subspaces for face recognition under variable lighting. IEEE Transactions Pattern Analysis and Machine Intelligence,2005, 27(5):684-698.
    [128]R. Zhang, P. Tai, J. Cryer, M. Sha. Shape from shading:a survey. IEEE Transactions Pattern Analysis and Machine Intelligence,1999,21(8):690-706.
    [129]T. Sim, T. Kanade. Combining models and exemplars for face recognition:an illuminating example. Proceedings of the CVPR 2001 Workshop on Models versus Exemplars in Computer Vision,2001.
    [130]M. Bertero, T. Poggio, V. Torre. Ill-posed problems in early vision. Proceedings of the IEEE,1988,76(8):869-889.
    [131]W. Zhao, R. Chellappa. Robust face recognition using symmetric shape-from-shading. Technical Report CARTR-919,1999. Center for Automation Research, University of Maryland, College Park, MD,1999.
    [132]V. Blanz, T. Vetter. Face recognition based on fitting a 3D morphable model. IEEE Transactions Pattern Analysis and Machine Intelligence,2003,25(9):1063-1074.
    [133]柴秀娟,山世光,卿来云,陈熙霖,高文.基于3D人脸重建的光照、姿态不变人脸识别.软件学报,2006,17(3):525-534.
    [134]A. Z. Kouzani, F. He, K. Sammut. Towards invariant face recognition. Information Sciences,2000,123(1-2):75-101.
    [135]Yuankui Hu, Zengfu Wang. A low-dimensional illumination space representation of human faces for arbitrary lighting conditions. Acta Automatica sigica,2007,33(1): 9-14.
    [136]R. Epstein, P. W. Hallinan, A. L. Yuille.5+2 eigenimages suffice:an empirical investigation of low dimensional lighting models. In:Proceedings of IEEE Workshop on Physics-Based Vision, Boston, USA. IEEE,1995,108-116.
    [137]何晓光,田捷等.基于形态学商图像的光照归一化算法.软件学报,2007,18(9):2318-2325.
    [138]Wenchung Kao, Mingchai Hsu, Yuehyiing Yang. Local contrast enhancement and adaptive feature extraction for illumination-invariant face recognition. Pattern Recognition,2010,43:1736-1747.
    [139]Zhifeng Li, Xiaoou Tang. Nonparametric Discriminant Analysis for Face Recognition. IEEE Transactions on Pattern analysis and machine intelligence,2009,31(4):755-761.
    [140]C. Tenllado, J. I. Gomez, et al. Improving face recognition by combination of natural and Gabor faces. Pattern Recognition Letters,2010,31:1453-1460.
    [141]V. Krueger. Gabor wavelet networks for object representation. DAGM Symposium, Kiel, Germany,2000,9:13-15.
    [142]Zhonghua Liu, jingbo Zhou, Zhong Jin. Face recognition based on illumination adaptive LDA. International Conference on Pattern Recognition,2010, pp.894-897.
    [143]鲁广英,潘静,庞彦伟.一种新颖的基于Gabor-LDA的人脸识别方法.工程图学学报,2006,(4):120-124.
    [144]Weilong Chen, Meng Joo E. Illumination Compensation and Normalization for Robust Face Recognition Using Discrete Cosine Transform in Logarithm Domain. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics,2006,36(2): 458-466.
    [145]S. Dabbaghchian, M. P. Ghaemmaghami. Feature extraction using discrete cosine transform and discrimination power analysis with a face recognition technology. Pattern Recognition,2010,43:1431-1440.
    [146]Jianzhong Wang, Baoxue Zhang. An adaptively weighted sub-pattern locality preserving projection for face recognition. Journal of Network and Computer Applications,2010 33:323-332.
    [147]Y. J. Song, Y. G. Kim, et al. Face recognition robust to left/right shadows; facial symmetry. Pattern Recognition,2006,39:1542-1545.
    [148]W. Chen, J. E. Meng, S. Wu. PCA and LDA in DCT domain. Pattern Recognition Letters,2005,26(15):2474-2482.
    [149]孟德宇,徐宗本,等.一种新的有监督流形学习方法.计算机研究与发展,2007,44(12):2072-2077.
    [150]R.C.T. Lee, J. R. Slagle, H. Blum. A triangulation method for the sequential mapping of points from n-space to two-space. IEEE Transaction Computers,1977,26(3):288-299.
    [151]Yang Li. Distance-preserving projection of high-dimensional data for nonlinear dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(9):1243-1246.
    [152]M. Bernstein, V. Silva, et al. Graph approximations to geodesics on embedded manifolds. Department of Psychology, Stanford University, Tech Rep,2000.
    [153]邵超,黄厚宽,等.P-ISOMAP一种新的对邻域大小不甚敏感的数据可视化算法.电子学报,2006,34(8):1497-1501.
    [154]邵超,黄厚宽,等.一种更具拓扑稳定性的ISOMAP算法.软件学报,2007,18(4):869-877.
    [155]F. Camastra, A. Vinciarelli. Estimating the intrinsic dimension of data with a fractal-based method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(10):1404-1407.
    [156]X. W. Liu, A. Srivastavab. Intrinsic generalization analysis of low dimensional representations. Neural Networks,2003,16:537-545.
    [157]C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,1996.
    [158]Z. Zhang, H. Zha. Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM J. Scientific Computing,2005,26(1):313-338.
    [159]Y. Bengio, J. Paiement, P. Vincent, et al. Out of sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering. Advances in Neural Information Processing System,2004,16:177-184.
    [160]X. He, P. Niyogi. Locality preserving projections. Advances in Neural Information Processing System,2004,16:153-160.
    [161]X. He, D. Cai, S. Yan, H. Zhang. Neighborhood preserving embedding. Tenth IEEE International Conference on Computer Vision,2005,2:1208-1213.
    [162]E. Kokiopoulou, Y. Saad. Orghogonal neighborhood preserving projections:a projection-based dimensionality reduction technique. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(12):2143-2156.
    [163]T. Zhang, J. Yang, D. Zhao, X. Ge. Linear local tangent space alignment and application to face recognition. Neurocomputing,2007,70:1547-1553.
    [164]Tianhao Zhang, Dacheng Tao, Xuelong Li, Jie Yang. Patch alignment for dimensionality reduction. IEEE Transactions on Knowledge and Data engineering,2009,21(9): 1299-1313.
    [165]Tiaohao Zhang, Dacheng Tao, Jie Yang. Discriminative locality alignment. ECCV 2008, pp.725-738.
    [166]E. Kokiopoulou, Y. Saad. Enhanced graph-based dimensionality reduction with repulsion laplaceans. Pattern Recognition,2009,42:2392-2402.
    [167]B. Scholkopf, A. Smola, K. R. Muller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation,1998,10:1299-1319.
    [168]A. Gretton, R. Herbrich, A. J. Smola. The kernel mutual information. IEEE International Conference on Acoustics, Speech, and Signal Processing,2003,4:880-883.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700