用户名: 密码: 验证码:
可变光照条件下的人脸识别技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来在计算机视觉与模式识别领域,人脸识别受到高度关注。作为一种主要身份识别手段,人脸识别在公共安全、视觉监控、数字身份认证、电子商务、多媒体和数字娱乐等领域具有广泛的应用前景。经过近四十年的发展,在人脸识别研究领域已经取得许多成果,已基本实现特定环境下的准确识别,并陆续出现了一些优秀的商用识别软件。尽管如此,人脸识别技术要达到完全实用水平,尚有许多问题有待解决,光照问题就是其中之一。
     本文针对人脸识别中光照问题进行深入研究。重点研究了可变光照条件下的人脸图像预处理、人脸特征点定位、人脸特征提取以及人脸分类问题。论文主要研究工作如下:
     (1)研究了可变光照条件下的人脸图像预处理。
     光照是影响人脸识别系统性能的主要瓶颈之一,由于光照变化导致人脸图像的类内差异要远大于人脸图像的类间差异,为此在光照-反射率模型的基础上提出了一种基于光照参考模型的预处理算法。该算法首先利用多个人的标准光照条件下的人脸图像建立光照参考模型,然后根据参考模型对输入的测试人脸图像进行光照校正,最后利用高斯差分滤波器对校正后的图像进行平滑处理。实验表明该算法可以有效地减少光照对人脸识别的影响,提高人脸识别系统的识别率和光照鲁棒性。
     (2)研究了可变光照条件下的人脸特征定位。
     面部特征精确配准是鲁棒实用的人脸识别系统的基本前提,主动形状模型(ASM)和主动表观模型(AAM)是目前解决该问题的主流模型。但它们存在对光照鲁棒性差的缺点,为此提出了一种可变光照条件下的人脸特征定位算法,算法首先利用相位一致性边缘图对人脸图像的瞳孔位置进行粗定位,根据瞳孔的位置进行模型初始化,然后利用光照不敏感的特征进行统计外观建模,对人脸图像进行粗定位;最后在粗定位的基础上,将人脸图像分为多个子区域,在各个子区域上应用AAM算法进行精确定位。实验表明该算法能够比较精确的定位面部关键特征,对光照变化具有较好的鲁棒性。
     (3)研究了可变光照条件下的人脸特征提取。
     特征提取是人脸识别中关键的一步,必须对光照、姿态、表情、化妆、年龄等变换具有较强的鲁棒性。为此先对子空间特征提取算法——局部保持投影(LPP)进行改进,提出了一种有监督LPP算法,即对每个LPP基向量进行线性判别分析,选择主要反映类间差异的基图像来构造新的子空间。然后将监督LPP算法扩展到二维,提出了一种二维有监督LPP算法。实验结果表明在可变光照条件下,这两种改进算法的识别率都高于传统的子空间算法,说明这两种算法对光照具有一定的鲁棒性。此外,基于Gabor小波具有良好的局部特征和方向选择性,且对光照与姿态具有较强的鲁棒性,提出了一种融合Gabor相位和幅值信息的子空间特征提取算法。该算法同时具有Gabor方法和子空间方法的优点,对光照变化具有很强的鲁棒性。
     (4)研究了可变光照条件下的人脸分类问题。
     分类器的设计是人脸识别中的最后环节。常见的分类器有最近特征线分类器(NFL)和支持向量机(SVM)等,但它们均基于欧氏距离来进行相似度量,所以不能用于度量光照等非线性因素。为此对最近邻分类器和最近特征线分类器进行改进,即利用能刻画非线性流形特征的测地线距离代替传统的欧式距离,最终得到一种最近测地线分类器(NGC)和一种基于测地线距离的最近特征线分类器(NFLG)。实验结果表明,这两种改进的分类器能够有效地提高识别率。
Face recognition has attracted considerable interests in the recent years within the community of computer vision and pattern recognition. As one of the most successful branches of personal identification, it has great potential applications in public security, visual surveillance, digital personal identification, electronic commerce, multimedia, and digital entertainment, etc. The face recognition has developed rapidly over the past 40 years. Now under the controlled conditions, face recognition systems have achieved good results, and some versatile commercial recognition software have been appeared. However, face recognition technologies are currently far from mature. A great number of challenges are still leaved to resolve before one can implement a robust and practical face recognition application. Among these challenges, the illumination circumstance is one of the most difficult.
     Our work is focusing on the effect of illumination on the face recognition. The emphases of the work are the image preprocessing, feature point location, feature extraction and the classification under the varying illumination circumstance. The work and the innovation in this dissertation can be summarized as following.
     (1) Facial image preprocessing under varying illumination was studied.
     The illumination is one of the bottlenecks that affect recognition performance. In most cases, the difference between two images caused by illumination is greater than that caused by individual difference. Motivated by the illumination-reflectance model, a preprocessing algorithm based on the illumination-reference is proposed. Firstly, the algorithm constructs an illumination reference model utilizing a set of face images of different persons under normal illumination conditions. Following that, the testing face images are adjusted according to the illumination reference model. Lastly, the difference between Gaussian filters is used to smooth the boundary of the images that has been adjusted. Experimental results exhibits that the proposed algorithm could reduce the effect of the illumination. Meanwhile, the accuracy and robustness of the recognition system are improved.
     (2) Facial feature alignment under varying illumination was studied.
     Accurate facial feature alignment is the prerequisite of a face recognition system. Currently, the Active Shape Model (ASM) and Active Appearance Model (AAM) are the main models for this problem. However, two models mentioned above are sensitive to the illumination variation. To fight with the disadvantages of two models, an improved AAM under varying illumination is proposed. Firstly, the eyes are located by using the phase congruency binary edge image, which is used to initialize the model. Secondly, the model is constructed by utilizing features that are illumination robustness. After that, face is aligned coarsely. Finally, the facial images are segmented into some sub-regions, thus the improved AAM is used to get fine location in every sub-region. Encouragingly, experiment results have illustrated the better performance and illumination robustness of the proposed model.
     (3) Facial feature extraction under varying illumination was studied.
     Feature extraction is a key step to face recognition. The extracted feature should be robust to illumination, poses, expression, and age, etc. We generalize the conventional LPP algorithm to yield a new supervised algorithm. We name it as supervised LPP, which can deal with linear discriminant analysis in the features derived from NMF. In this way, a discriminant feature subspace having the maximum intersubject variation and the minimum intrasubject variation is established. Following that, the supervised LPP is extended to the two dimensions, thus a new two dimension supervised LPP is introduced. The results in numerical experiments show that the two proposed algorithms have higher recognition rates than the traditional subspace algorithms under varying illumination, which show they are illumination robustness.
     The Gabor wavelet has good characteristics of spatial location and orientation selection. Based on these observations, a Gabor subspace feature extraction algorithm is introduced, which attempts to fuse the Gabor phase and magnitude information. The proposed algorithm blend the merits of Gabor wavelet-based and subspace-based algorithm. In addition, it is illumination robustness.
     (4) Classification problem under varying illumination was studied.
     The classifier design is the last step of the face recognition. The Nearest Neighbor (NN) and Support Vector Machine (SVM) are traditional classifiers, which uses the Euclidean distances in the similarity measurement between different features. However, the Euclidean distances can’t be used to measure the nonlinear manifold of face images when the illumination conditions change frequently. Replacing Euclidean distances by the geodesic distances, a novel nearest geodesic distances classifier and a nearest feature Line classifier using geodesic distances are presented. It has been shown from the experimental results that the two novel classifiers have higher recognition rates than the traditional classifiers.
引文
[1] Bledsoe W W. The model method in facial recognition. Tech rep. PRI:15, Panoramic research Inc., Palo Alto, CA, 1964.
    [2] T Kanade. Picture processing system by computer and recognition of human faces. PhD Dissertation. Kyoto Kyoto University, 1973.
    [3] Harmon L D. The recognition of faces. Sci. Am,229,71-82, 1973.
    [4] Goldstein RJ, Harmon LD, Lesk AB. Man-machine interaction in human face identification. Bell Syst[J]. Tech Journal, 51:339-427, 1972.
    [5] Baron RJ. Mechanisms of human facial recognition[J]. Int. J. Man-machine Studies, 15:137-178, 1981.
    [6] M Turk, A Pentland. Eigen-faces for Recognition Jounal of cognitive neuroscience, 3(1):71-86, 1991.
    [7] Alex Pentland, Baback Moghaddam, Thad starner. View-Based and Modular Eigen-spaces for Face Recognition MIT Media Lab perceptual Computing Section Tech IEEE Conference on Computer Vision & Pattern Recognition 1994.
    [8] R Brunelli, T Poggio. Face recognition: features vs. templates. IEEE Trans. on PAMI, 15(10): 1042-1052, 1993.
    [9] P Belhumeur, J Hespanha, D Kriegman, Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. in Proceedings of Fourth European Conference on Computer Vision, ECCV’96, pp45~56, 1996.
    [10] P N Bellhumer, J Hespanha, D Kriegman. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, Special Issue on Face Recognition, 17(7):711-720, 1997.
    [11] L F Chen, H M Liao, J C Lin, M T Ko, G J Yu. “A New LDA-based Face Recognition System Which Can Solve the Small Sample Size Problem”. Pattern Recognition, 33(10): 1713-1726, 2000.
    [12] W Zhao, R. Chellappa, A Krishnaswamy. Discriminant Analysis of Principal Components for Face Recognition, Proc. of Inter. Conf. On Auto. Face and Gesture Recognition, pp.336-341, 1998.
    [13] W.Zhao, R.Chellappa, SFS Based View Synthesis for Robust Face Recognition, Proceeding of the 4th International Conference on Face and Gesture Recognition, pp285-292, Grenoble, France, 2000.3
    [14] C Liu, H Wechsler. A Shape and Texture Based Enhanced Fisher Classifier for Face Recognition. IEEE Trans. Image Processing, 10(4):598-608, 2001.
    [15] C Liu, H Wechsler. Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition. IEEE Trans. Image Processing, 11(4): 467-476, 2002.
    [16] H Yu, J Yang. A Direct LDA Algorithm for High-dimensional Data – with Application to Face Recognition. Pattern Recognition , Vol. 34, pp 2067-2070, 2001.
    [17] M H Yang, N Ahuja, D Kriegman. Face Recognition Using Kernel Eigenfaces, Int. Conf. on Image Processing, 2000, vol. 1, pp. 37-40
    [18] M H Yang. Kernel Eigenfaces vs Kernel Fisherfaces: Face Recognition Using Kernel Methods. Proc. Int’l. Conf. Automatic Face and Gesture Recognition, pp.215-210, 2002.
    [19] Q.S.Liu, R.Huang, H.Q.Lu and S.D.Ma, “Face Recognition Using Kernel Based Fisher Discriminant Analysis”, Proc. Int’l Conf. Automatic Face and Gesture Recognition, pp. 197-201, 2002.
    [20] 刘青山.人脸跟踪与识别的研究.北京:中科院自动化所博士学位论文,2003.
    [21] Jian Yang,David Zhang.Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition[J].IEEE Trans On Pattern Analysis and Machine Intelligence.2004, 26(1):131~137.
    [22] Ming Li , Baozong Yuan . 2D-LDA: A Statistical Llinear Discriminant Analysis for Image Matrix[J].Pattern Recognition Letters.2005,26(5):527~532.
    [23] B. Moghaddam and A. Pentland, Probabilistic Visual Learning for Object Detection, Proc. Int'l Conf. Computer Vision, pp. 786-793, 1995.
    [24] B. Moghaddam and A. Pentland, Probabilistic Visual Learning for Object representation, IEEE trans. On PAMI, 20(7):696-710, July, 1997.
    [25] Baback Moghaddam, Tony Jebara, Alex Pentland, Bayesian Face Recognition, Pattern Recognition 33(2000):1771-1782, 2000.
    [26] B. Moghaddam, Principal manifolds and probabilistic subspaces for visual recognition, IEEE Trans. PAMI 24(6):780-788. 2002.
    [27] C Liu. Statistical and evolutionary approaches for face recognition. George Mason University, Ph.d Dissertation, 1999.
    [28] C Liu. A Bayesian Discriminating Features Method for Face Detection. IEEE Trans. Pattern Analysis and Machine Intelligence, 25(6):725-740, 2003.
    [29] X Wang, X Tang. A Unified Framework for Subspace Face Recognition. To appear in IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),2004.
    [30] J Buhmann, M Lades, von der Malsburg, Size and distortion invariant object recognition by hierarchical graph matching. In: Proceedings of IEEE Intl. Joint Conference on Neural Networks. pp.411-416, San Diego, 1990.
    [31] M Lades, J C Vorbruggen, J Buhmann, J Lange, C v d Malsburg, R P Wurtz,W.Konen. Distortion Invariant Object Recognition in the Dynamic Link Architecture. IEEE Trans. On Computers, 42(3):300-311, 1993.
    [32] L Wiskott, J M Fellous, N Kruger, C v d Malsburg. Face Recogniton by Elastic Bunch Graph Matching. IEEE Trans. On PAMI, 19(7):775-779, 1997.
    [33] C L Kotropoulos, A Tefas, I Pitas. Frontal Face Authentication Using Discriminating Grids with Morphological Feature Vectors, IEEE trans. On Multimedia, 2(1):14-26 ,March, 2000.
    [34] A Tefas, C Kotropoulos, I Pitas. Using Support Vector Machines to Enhance the Performance of Elastic Graph Matching for Frontal Face Authentication. IEEE Transactions On Pattern Analysis And Machine Intelligence, 23(7):735-746, JULY 2001.
    [35] 丁嵘, 苏光大,林行刚. 使用关键点信息改进弹性匹配人脸识别算法. 电子学报,30(9):1292-1294, 2002.
    [36] Hochul Shin, Seong Dae Kim, Hae Chul Choi. Generalized elastic graph matching for face recognition. Pattern Recognition Letters, 28(9): 1077-1082, 2007.
    [37] P.Penev,J.Atick. Local Feature Analysis: A General Statistical Theory for Object Representation. Network: Computation in Neural Systems, vol.7, pp.477-500, 1996.
    [38] P J Phillips, H Moon, etc. The FERET Evaluation Methodology for Face-Recognition Algorithms. IEEE Transactions on PAMI, 22(10):1090-1104, 2000.
    [39] A Lanitis, C J Taylor, T F Cootes. An automatic face identification system using flexible appearance models. In British Machine Vision Conference, BMVA Press, 1994, 1:65~74.
    [40] A Lanitis, C Taylor, T Cootes. A Unified Approach to Coding and Interpreting Face Images, Proc. Int'l Conf. Computer Vision, pp. 368-373, 1995.
    [41] A Lanitis, C Taylor, T Cootes. Automatic interpretation and coding of face images using flexible models.IEEE Transactions on Pattern Analysis & Machine Intelligence, 19(7) :743-56, July 1997.
    [42] T F Cootes, C J Taylor, D H Cooper, J Graham. Active Shape Models – Their Training and Application. Computer Vision and Image Understanding, 61(1):38-59, January, 1995.
    [43] T F Cootes, G J Edwards, C J Taylor. Active Appearance Models, Proc. European Conf. Computer Vision, vol. 2:484-498, 1998.
    [44] G Edwards, T Cootes, C Taylor. Advances in Active Appearance Models, Proc. Int'l Conf. Computer Vision, pp. 137-142, 1999.
    [45] T F Cootes, K Walker, C J Taylor. View-based Active Appearance Models. Proceeding of the 4th International Conference on Face and Gesture Recognition, pp227-232, Grenoble, France, 2000.3
    [46] M B Stegmann, Active Appearance Models, Theory, Extension and Cases, Master thesis, Technical University of Denmark, 2000.
    [47] C Liu, H Wechsler. A Shape and Texture Based Enhanced Fisher Classifier for Face Recognition. IEEE Trans. Image Processing, 10(4):598-608, 2001.
    [48] X W Hou, S Z Li, H J Zhang, Q S Cheng. Direct Appearance Models. In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Hawaii. December, 2001.
    [49] S Z Li, S C Yan, H J Zhang, Q S Cheng. Multi-View Face Alignment Using Direct Appearance Models. Proceedings of The 5th International Conference on Automatic Face and Gesture Recognition., pp324-329, Washington, DC, USA. 20-21, May, 2002.
    [50] S C Yan, C Liu, S Z Li, H J Zhang, H Shum, Q S Cheng. Face Alignment Using Texture-Constrained Active Shape Models. Image and Vision Computing. 21(1):69-75,January ,2003.
    [51] Tong Wang, Haizhou Ai, Gaofeng Huang. A Two-Stage Approach to Automatic Face Alignment. Proceedings of SPIE - The International Society for Optical Engineering, v5286, n2, 2003, p558-563
    [52] Yi Zhou, Lie Gu, Hongjiang Zhang. Bayesian Tangent Shape Model: Estimating Shape and Pose Parameters via Bayesian Inference. Proceeding of The IEEE Conference on Computer Vision and pattern Recognition (CVPR 2003), Wisconsin, USA, June 16-22, 2003.
    [53] Shiguang Shan, Wen Gao, Wei Wang, Debin Zhao, Baocai Yin. Enhanced Active Shape Models with Global Texture Constraints for Face Image Analysis, Fourteenth International Symposium On Methodologies For Intelligent Systems, N.Zhong et al. (Eds.): ISMIS 2003, LNAI2871, pp593-597, Springer, Maebashi City, Japan, Oct.2003.
    [54] Iain Matthews. Fast and accurate active appearance models. Proceedings of the HCSNet workshop on Use of vision in human-computer interaction - Volume 56, pp3-3, Canberra, Australia,2006
    [55] Fatih Kahraman, Mikkel B Stegmann. Towards Illumination-invariant Localization of Faces using Active Appearance Models. IEEE NORSIG 2006, 7th Nordic Signal Processing Symposium, Reykjavik, Iceland, 2006
    [56] P J Philips, P J Grother, R J Micheals, D M Blackburn, E Tabassi, J M Bone. Face Recognition Vendor Test 2002: Evaluation report, Technical Report, NISTIR 6965, National Institute of Standards and Technology, 2003, http://www.frvt.org.
    [57] P J Phillips. Support vector machines applied to face recognition. In Advances in Neural Information Processing Systems, page 803. Editors: M.C.Mozer, M.I.Jordan, and T. Petsche, MIT Press, 1998
    [58] G Guo, S Z Li, K Chan. Face Recognition by Support Vector Machines. Proc.of the 4th Int. Conf. on Auto. Face and Gesture Recog., pp.196-201, Grenoble, 2000.3
    [59] K Jonsson, J Matas, J Kittler, Y P Li, Learning Support Vectors for Face Verification and Recognition, Proceeding of the 4th International Conference on Face and Gesture Recognition, pp208-213, Grenoble, France, 2000.3
    [60] Volker Blanz, Thomas Vetter. A Morphable Model For the Synthesis of 3D Faces. SIG’GRAPH’99, 1999
    [61] Sami Romdhani, Volker Blanz, Thomas Vetter. Face Identification by Fitting a 3D Morphable Model Using Linear Shape and Texture Error Functions, Proceedings of the 7th European Conference on Computer Vision, Vol.4, pp3-19, May. 2002, Editor A.Heyden et al.
    [62] V Blanz, T Vetter. Face Recognition Based on Fitting a 3D Morphable Model, TPAMI, 25(9):1063-1075, 2003.
    [63] Y Freund, R E Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, 1997.
    [64] R Meir, G Raetsch. An introduction to Boosting and Leveraging. In S.mendelson and A Smola, Editors. Advanced Lectures on Machine Learning. LNAI 2600,PP118-183, Springer, 2003.
    [65] P Viola, M J Jones. Robust Real-Time Face Detection. International Journal of Computer Vision, 57(2):137-154, May 2004.
    [66] J Lu, KN Plataniotics, A N Venetsanopoulos, etc. Ensemble-based discriminant learning with boosting for face recognition. IEEE transactions on neural networks, 17(1):166-178, January 2006.
    [67] P Yang, S Shan, W Gao, Stan Li, D Zhang. Face recognition using Ada-boosted Gabor Feature. Proceeding of the 6th International conrerence on face and gesture recognition, Korea, May, 2004
    [68] 张文超,山世光,张洪明,陈 杰,陈熙霖,高 文. 基于局部 Gabor 变化直方图序列的人脸描述与识别. 软件学报,2006,17(12): 2508?2517.
    [69] Xiangsheng Huang, Stan Z Li, Wang Yangsheng. Jensen-shannon boosting for object recognition. International conference on computer vision and pattern recognition, 2005.
    [70] A S Georghiades, D J Kriegman, P N Belhumeur. Illumination Cones For Recognition Under Variable Lighting: Faces. Proc of IEEE CVPR, pp52-58, 1998.
    [71] Athinodoros S Georghiades, Peter N Belhumeur, David J Kriegman. From Few to Many: Illumination Cone Models for Face Recognition Under Variable Lighting and Pose, IEEE Trans. on PAMI, 23(6) pp.643660-139, 2001.6.
    [72] A Shashua, T Riklin Raviv. The Quotient Image: Class-Based Re-Rendering And Recognition With Varying Illuminations. IEEE Trans. on PAMI, 23(2):129-139, 2001.2.
    [73] R Basri, D Jacobs. Lambertian Reflectance and Linear Subspaces, ICCV2001, Beckman Institute. Vol.2, p383-390, 2001.
    [74] P J Phillips, H Moon, etc. The FERET Evaluation Methodology for Face-Recognition Algorithms. IEEE Transactions on PAMI, 22(10):1090-1104, 2000.
    [75] T.Sim,S.Baker,M.Bsat.The CMU Pose, Illumination and Expression(PIE) Database[A].In proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, May, 2002,46~51.
    [76] A R Martinez, R Benavente. The AR face database. Technical Report 24, Computer Vision Center(CVC) Technical Report, Barcelona, Spain, June 1998.
    [77] F S Samaria, A C Harter. Parameterisation of a Stochastic Model for Human Face Identification. Proceedings of the 2nd IEEE Workshop on Applications of Computer Vision, December 1994.
    [78] M Turk, A Pentland. Eigen-faces for Recognition Jounal of cognitive neuroscience, 3(1):pp71-86, 1991.
    [79] P N Bellhumer, J Hespanha, D Kriegman. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, Special Issue on Face Recognition, 17(7):711--720, 1997.
    [80] K Messer, J Matas, J Kittler, J Luettin, G Maitre. XM2VTSDB: The extended M2VTS database. In Second International Conference on Audio and Video-based Biometric Person Authentication, March 1999.
    [81] Wen Gao, Bo Cao, Shiguang Shan, Delong Zhou, Xiaohua Zhang, Debin Zhao. The CAS-PEAL Large-Scale Chinese Face Database and Evaluation Protocols. Technical Report No. JDL_TR_04_FR_001, Joint Research & Development Laboratory, CAS,2004.
    [82] P.Hallinan . A Deformable Model for Face Recognition Under Arbitrary Lighting Conditions[A].PHD thesis.Havard Univ,1995.
    [83] D.B. Graham,N.M.Allinson. Face Recognition: From Theory to Applications.Computer and Systems Sciences,1998(163),446~456.
    [84] P J Philips, P J Grother, R J Micheals, D M Blackburn, E Tabassi, J M Bone, Face Recognition Vendor Test 2002: Evaluation report, Technical Report, NISTIR 6965, National Institute of Standards and Technology, 2003.
    [85] R L Hsu.M Abdel Mottaleb.A K Jain, Face Detection in Color Images,IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol24,No5,pp. 696-706.
    [86] R Brunelli.T Poggio, Hyper B F. Networks for Real Object Recognition, Proc. IJCAI, pp:1278-1284, Sydney,Australia,1991.
    [87] B Manjunath.C Shekhar.R Chellappa.C vonder Malsburg,A Robust Method for Detecting Image Features with Application to Face Recognition and Motion Correspondence,ICPR,B, pp:208-212,1992
    [88] S Edelman.D Reisfeld.Y Yeshurun,A System for Face Recognition that Learns from Examples,Proc.European Conf.Computer Vision,pp:787-791.S pringer-Verlag,1992
    [89] Adini Y, Moses Y, Ullman S. Face Recognition: the Problem of Compensating for Changes in Illumination Direction[J]. IEEE Transactions on Pattern Analysis and M achine Intelligence,1997,19 (7):7212732.
    [90] H Wang.S Li.Y Wang.W Zhang,Illumination Modeling and Normalization for Face Recognition.In International Workshop on Analysis and Modeling of Face and Gesture, 2003.
    [91] H Wang.S Li.Y Wang,Generalized Quotient Image,IEEE International Conference on Computer Vision and Pattern Recognition, 2004.
    [92] Gross R.Matthews I.Baker S, Eigen light-fields and face recognition across pose,In: Williams AD, ed. Proc. of the Conf. on FGR 2002. Washington: IEEE Computer Society, 2002. 3-9.
    [93] R Gross.I Matthews.S Baker, Fisher Light-Fields for Face Recognition Across Pose and Illumination, Proceedings of the German Symposium on Pattern Recognition (DAGM), September, 2002
    [94] Zhou S.Chellappa R,Illuminating light field: Image-Based face recognition across illuminations and poses. In: Azada D, ed. Proc. of the FGR 2004. Washington: IEEE Computer Society,2004,229-234.
    [95] Shashua A.Geometry and photometry in 3D visual recognition [D].PhD Thesis,Massachusetts Institute of Technology,Cambridge,MA,USA,1994.
    [96] Hallinan P W.A low 2-dimensional representation of human faces for arbitrary lighting conditions [A].In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C],Seattle, WA,USA,1994: 995~999.
    [97] GZ Yang.DF Gillies,Photometric Stereo,Computer Vision,1985
    [98] K J Dana.S K Nayar.B van Ginneken.J J Koenderink,Reflectance and texture of real-world surfaces. In Proc. CVP,pp:151–157, 1997.
    [99] RA Jarvis. A perspective on range-finding techniques for computer vision. IEEE trans pattern analysis mach. Intell.5:122-139, March, 1983.
    [100] Terence Sim. Takeo Kanade,Combining Models and Exemplars for Face Recognition:An Illuminating Example, In Proceedings of Workshop on Models versus Exemplars in ComputerVision, CVPR 2001
    [101] M Bertero.T Poggio.V T orre, Ill-Posed Problems in Early Vision,MIT AI Lab,A I Memo 924,198
    [102] ZhaoW Y.C helappa R,Illumination-Insensitive Face Recognition using Symmetric Shape-from-Shading,CVPR00,pp:286-293.
    [103] Blanz V.Vetter T,Face recognition based on fitting a 3D morphable Model,IEEE Trans on Pattern Analysis and Machine Intelligence, 2003,25(9),pp:1063-1?074.
    [104] 柴秀娟.山世光.卿来云.陈熙霖.高文.基于 3D 人脸重建的光照、姿态不变人脸识别.软件学报, 2006, 17(3):525-534.
    [105] Adini Y, Ullman S. Face recognition:The problem of compensating for changes in illumination direction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):721-732, 1997.
    [106] Yang J, Waibel A. A real-time face tracker. Proceedings of the third IEEE workshop on application of computer vision, pp:142-147, Sarasota, Florida, 1996.
    [107] Rein Lien Hsu, Mohamed Abdel Mottaled, Anil K Jain. Skin colour detection under changing lighting conditions. 7th symposium on intelligent robotics systems, pp187-195, 20-23 July 1999, Coimbra, Portugal.
    [108] Land E, Mccann J. Lightness and retinex theory. Jaurnal of the optical society of America, 61, 1971
    [109] R Epstein, P Hallinan, A Yuille. 5+/-2 Eigenimages Suffice:An Empirical Investigation of Low-Dimensional Lighting Models.Proceedings of Physics-Based Modeling Workshop in Computer Vision,session 4,1995.
    [110] R C Gonzalez, R E Woods. Digital Image Processin. Prentice Hall, Upper Saddle River, NJ, 2002.
    [111] S E Umbaugh. Computer Imaging: Digital Image Analysis and Processing. CRC Press, Florida, 2005.
    [112] 山世光.人脸识别中若干关键问题的研究.北京:中科院计算技术研究所所博士学位论文,2004.
    [113] M Kass, A Witkin, D Terzopoulos. Snakes: Active contour models. Int. Journal of Computer Vision, pp.321-331,1988.
    [114] A L Yuille, Deformable templates for face detection, J. Cogn. neurosci. 3, 59-70, 1991
    [115] A L Yuille, P W Hallinan, D S Cohen, Feature extraction from faces using deformable templates. International Journal of Computer Vision, 8, 99-111,1992.
    [116] David Beymer, Vectorizing Face Images by Interleaving Shape and Texture Computation, A.I.Memo No. 1537, 1995.9
    [117] X W Hou, S Z Li, H J Zhang, Q S Cheng. Direct Appearance Models. In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Hawaii. December, 2001.
    [118] T.F.Cootes, K.Walker, C.J.Taylor, View-based Active Appearance Models, Proceeding of the 4th International Conference on Face and Gesture Recognition, pp227-232, Grenoble, France, 2000.3
    [119] S.Z. Li, S.C. Yan, H.J. Zhang, Q.S. Cheng. "Multi-View Face Alignment Using Direct Appearance Models". Proceedings of The 5th International Conference on Automatic Face and Gesture Recognition., pp324-329, Washington, DC, USA. 20-21, May, 2002.
    [120] S C Yan, C. Liu, S.Z. Li. H.J. Zhang, H. Shum, Q.S. Cheng. Face Alignment Using Texture-Constrained Active Shape Models. Image and Vision Computing. Pages 69-75. Vol.21, Issue 1 , 10 January 2003.
    [121] A.L.Yuille, Deformable templates for face detection, J. Cogn. neurosci. 3, 59-70, 1991
    [122] A.L.Yuille, P.W.Hallinan, D.S.Cohen, Feature extraction from faces using deformable templates. International Journal of Computer Vision, 8, 99-111,1992.
    [123] M C Morrone, R A Owens. Feature Detection from Local Energy. Pattern recognition letters, 6: 303-313, 1987.
    [124] P Kovesi. Edges are not just steps. Proceedings of the 5th Asian Conference on Computer Vision. (2002), pp. 822-827, Melbourne, Australia.
    [125] 刘青山,卢汉清,马颂德.综述人脸识别中的子空间方法自动化学报,2003, 29(6):900-911.
    [126] X He,Partha Niyogi. Locality Preserving Projections [C]. Advances in Neural Information Processing Systems, Vancouver, Canada, 2003.
    [127] Y.Chang,C.Hu,M. Turk.Manifold of Facial Expression[C].Proc. IEEE International Workshop on Analysis and Modeling of Faces and Gestures, Nice, France, Oct 2003:28~35
    [128] Sam.T , Roweis,Lawrence K. Saul. Nonlinear Dimensionality Reduction by Locally Linear Embedding.Science, 2000,290(12): 2323~2326
    [129] J.B. Tenenbaum, V.D. Silvam, J.C. Langford.A Global Geometric Framework for Nonlinear Dimensionality Reduction.Science, 290 (2000) ,pp:2319~2323.
    [130] Belkin.M, Niyogi.P.Laplacian eigenmaps for dimensionality reduction and data representation.Neural Comput,2003,15 (6),pp: 1373~1396.
    [131] Pentland A, Moghaddam B, Starner T. View-based and modular eigenspaces for face recognition. In Proceedings of CVPR' 94, USA: Seattle, 1994, 84-91.
    [132] Moghaddam B, Pentland A. Probabilistic visual learning for object representation. IEEE Trans. PAMI, 1997, 19(7): 696 -710.
    [133] Cappelli R, Maio D, Maltoni D. Multispace KL for pattern representation and classification. IEEE Trans. PAMI, 2001, 23(9): 977-996.
    [134] Yilmaz A, Gojman M. Eigenhill vs. eigenface and eigenedge. In Proceedings of Inter-national Conference of Pattern Recogntion, Spain: Barcelona, 2000.
    [135] Liu C, Wechsler H. Evolutionary pursuit and its application to face recognition. IEEE Trans. PAMI, 2000, 22(6): 570-582.
    [136] V Krueger. Gabor wavelet networks for object representation. DAGM Symposium, Kiel, Germany, 9, 13-15, 2000.
    [137] C Liu, H Wechsler. Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition. IEEE Trans. Image Processing, 11(4):467-476, 2002.
    [138] J P Jones, L A Palmer. An Evaluation of the Two-dimensional Gabor Filter Model of Simple Receptive Fields in Cat Striate Cortex. Journal of Neurophysiology, 1987,58(6):1233~1258.
    [139] M Lades, J C Vorbruggen, J Buhmann, J Lange, C v d Malsburg, R P Wurtz, W Konen, Distortion Invariant Object Recognition in the Dynamic Link Architecture, IEEE Trans. On Computers, 42(3), pp 300-311, 1993.
    [140] L.Wiskott, J.M.Fellous, N.Kruger, C.v.d.Malsburg, Face Recogniton by Elastic Bunch Graph Matching, IEEE Trans. On PAMI, 19(7):775-779, 1997.
    [141] J G Daugman. Complete Discrete 2-D Gabor Transforms by Neural Networks for Image Analysis and Compression. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(7):1169~1179
    [142] Oppenheim A V,Lim J S. The importance of phase in signals. Proceedings of the IEEE Vol. 69, No. 5, May 1981, pp 529 – 541, 1980.
    [143] Hayes M H, Lim J S, Oppenheim A V .Signal reconstruction from phase or magnitude. IEEE Transactions on Acoustics and Signal Processing, Vol. 28, Dec 1981,pp 672 - 680
    [144] Savvides M, Vijaya Kumar, B V K, Khosla PK. Eigenphases vs. Eigenfaces. Proceedings of IEEE International Conference on Pattern Recognition, 2004, pp810-813, Cambridge (UK), Aug. 2004, IEEE
    [145] J. Daugman, How Iris Recognition Works? IEEE Trans. on CSVT, 14(1), pp21-30, 2004.
    [146] L. Zhang, S.Z. Li, Z. Qu and X. Huang. Boosting Local Feature Based Classifiers for Face Recognition. Proceedings of the IEEE Computer Society Conference on CVPR Workshops, 2004.
    [147] Laiyun Qing, Shiguang Shan, Xilin Chen, Wen Gao. Face Recognition under Varying Lighting Based on the Probabilistic Model of Gabor Phases. Proceeding of International Conference on Pattern RecognitionICPR2006. Vol.3, pp1139-1142, Hong Kong, 2006,8.
    [148] Baochang Zhang, Shiguang Shan, Xilin Chen, and Wen Gao. Histogram of Gabor Phase Patterns (HGPP): A Novel Object Representation Approach for Face Recognition. IEEE Trans. on Image Processing, 2006,16(1):57-68..
    [149] Hotelling H.Relations between two sets of variates[J].Biometrika.1936,28(3-4):312-377.
    [150] Tao Hong, S.W. Lam, J.J. Hull, S.N. Srihari. The design of a nearest-neighbor classifier and its use for Japanese character recognition. Third International Conference on Document Analysis and Recognition (ICDAR'95) - Volume 1,pp270.
    [151] Vapnik V. Statistical learning theory. New York: John Wiley, 1998.
    [152] Zhang Xue-Gong. Introduction to statistical learning theory and support vector machines. Acta Automatica Sinica, 1(1):32-42, 2000.
    [153] Tenenbaum JB, Silva VD, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(5500):2319-2323.
    [154] Batchelor, Bruce G. Pattern recognition: ideas in practice. New York: Plenum Press, 1978:71-72.
    [155] Li S Z,Lu J. Face recognition using nearest feature line method. IEEE Trans.Neural Networks, 1999,10(2):439-443.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700