用户名: 密码: 验证码:
萝藦科三种能源植物脂溶性成分提取与转化利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着温室气体排放的增加和原油价格的高涨,世界许多国家开始高度重视发展生物燃料,将其视为解决环境问题和能源问题的重要途径。人们普遍认为以生物质能,尤其是以能源植物作为原料来发展生物燃料是较为理想的选择。我国是世界上植物资源最为丰富的国家之一,拥有极其丰富的具有开发生物燃料潜在价值的能源植物资源,筛选、开发、可持续地利用能源植物资源发展生物燃料,是我国发展新兴能源产业的需要,也是调整能源结构、增加农业收入的需要,对于改善生态环境、保障能源供给安全具有重要意义。
     本文筛选了我国北方常见的三种萝藦科植物(萝藦Metaplexis japonica (Thunb.) Makino、杠柳Periploca sepium Bunge、地梢瓜Cynanchum thesioides (Freyn) K.Schum作为研究对象,以石油醚为溶剂,分析了不同提取方法对三种能源植物地上营养体中脂溶性成分提取得率的影响,优化了提取工艺条件,检测了脂溶性提取物的主要成分;着重探究了杠柳Periploca sepium Bunge地上营养体水分和脂溶性成分含量的变化趋势,分析了杠柳Periploca sepium Bunge脂溶性成分(油脂)的理化性质并研究了其转化为生物液体燃料(生物柴油)的工艺流程,测定了杠柳Periploca sepium Bunge和萝藦Metaplexis japonica (Thunb.) Makino综纤维素和木质素含量。
     主要研究结果如下:
     (1)考察了超声波辅助提取法、闪式提取法对植物目的成分的提取工艺。在单因素试验的基础上,超声波辅助提取萝藦Metaplexis japonica (Thunb.) Makino脂溶性成分的优化工艺条件为超声波功率480W,提取时间52min,料液比1:12(g/mL),萝藦Metaplexis japonica (Thunb.) Makino脂溶性成分提取得率可达到8.4±0.13%;闪式提取法提取地梢瓜Cynanchum thesioides (Freyn) K.Schum脂溶性成分的优化工艺条件为提取电压145V,提取时间4min,料液比1:14(g/mL),地梢瓜Cynanchum thesioides (Freyn) K.Schum脂溶性成分提取得率可达到7.25±0.18%;超声波辅助提取杠柳Periploca sepium Bunge脂溶性成分的优化工艺条件为提取时间70min,超声波功率730W,料液比1:10(g/mL),杠柳Periploca sepium Bunge脂溶性成分的提取得率可达到6.14±0.28%。
     (2)经过气相色谱的检测,萝藦Metaplexis japonica (Thunb.) Makino植物体脂溶性提取物的成分主要为棕榈酸、亚油酸、亚麻酸、硬脂酸和烃类等;地梢瓜Cynanchum thesioides (Freyn) K.Schum植物体脂溶性提取物的成分主要为棕榈酸、亚麻酸、硬脂酸、油酸和烃类等;杠柳Periploca sepium Bunge植物体脂溶性提取物的成分主要为亚油酸、棕榈酸和碳氢化合物等,可以作为制备生物液体燃料的原料。
     (3)杠柳Periploca sepium Bunge植物体脂溶性成分和水分的含量与季节和气候有密切关系,根据脂溶性成分和水分含量变化趋势,采收杠柳Periploca sepium Bunge的适宜时间为8—9月份。
     (4)通过对酸值、皂化值、过氧化值、碘价、相对密度、折光率、水分和杂质的测定,杠柳Periploca sepium Bunge油脂的各项理化性质指标均在正常范围之内。
     (5)以杠柳Periploca sepium Bunge油脂为原料,通过使用两步法制备脂肪酸甲酯(生物柴油),运用响应面分析法得到制备生物柴油的最优工艺条件:反应温度为60℃,磁力搅拌器转速为300r/min,反应时间为98min,醇油摩尔比为7:1,催化剂用量为1.1%。在此条件下,实际转化率可达到90.78±2.62%。通过两步法获得的脂肪酸甲酯总转化率为92.59%。气相色谱法检测杠柳Periploca sepium Bunge油脂制备的脂肪酸甲酯主要成分为:亚油酸甲酯,棕榈酸甲酯,和少量的亚麻酸甲酯,油酸甲酯等。制备的脂肪酸甲酯(生物柴油)基本符合国家标准。通过精制纯化,副产物甘油的收率能达到预计值的40%,纯度可以达到90%左右。
     (6)杠柳Periploca sepium Bunge综纤维素和木质素的含量分别为68.7%、13.1%,合计占总质量的81.8%;萝藦Metaplexis japonica (Thunb.)Makino综纤维素和木质素的含量分别为55.8%、4.9%,合计占总质量的60.7%。
     (7)基于能源植物利用现状和本文研究结果,从加强科学研究、开展综合管理、构建法律保障体系、完善政策体系、合理配置资源等方面提出我国能源植物资源可持续发展利用的建议。
With the increase in greenhouse gas emissions and the rise in crude oil price in recent years, many countries have attached great importance to the development of bio-fuels and adopted it as the vital way to solve environmental and energy problems. It is widely considered that biomass energy, especially energy plants is the ideal source for the development of bio-fuels. China is one of the countries with the most abundant energy plant resources in the world that have the potential to develop bio-fuels. The screening, exploration and sustainable use of energy plant resources is adopted to develop the bio-fuels. It is the need of promoting new energy industry, adjusting energy structure and increasing agricultural income. It also has the vital implication for improving the ecological environment and safeguarding the security of the energy supply.
     Three common Asclepiadaceae plant species(Metaplexis japonica (Thunb.) Makino, Periploca sepium Bunge and Cynanchum thesioides (Freyn) K.Schum) in the North China were studied in this paper. The author compared the effects of three different extraction methods on the extraction rate of fat-soluble components, optimized the extraction conditions, and detected the main components of fat-soluble extracts. In addition, the author explored the content change of water and fat-soluble components in Periploca sepium Bunge, analyzed the physicochemical properties of fat-soluble ingredients. The author also studied the process of conversing this oil to bio-liquid fuel, measured the contents of holocellulose and lignin in Periploca sepium Bunge and Metaplexis japonica (Thunb.) Makino.
     The main study results are shown as follows:
     (1)The methods of ultrasonic assisted extraction and flash-extractor extraction were adopted to study the target components in this paper. Based on the single-factor experiments, the results showed that the optimum conditions of ultrasonic assisted extraction for fat-soluble components from Metaplexis japonica (Thunb.) Makino were:ultrasonic frequency:20kHz, ultrasonic power:480W, ultrasonic assisted extraction time:52min, material-solvent ratio:1:12g/mL. On these conditions, the actual extraction yield was8.4±0.13%. The optimum conditions of flash-extractor extraction for fat-soluble components from Cynanchum thesioides (Freyn) K.Schum were:the voltage of extraction:145V, extraction time:4min, material-solvent ratio:1:14g/mL. On these conditions, the actual extraction rate was7.25±0.18%. The optimum conditions of ultrasound-assisted extraction for fat-soluble components from Periploca sepium Bunge were:Ultrasonic frequency:20kHz, ultrasonic power:730W, ultrasonic assisted extraction time:70min, material-solvent ratio:1:10g/mL, On these conditions, the actual extraction yield was6.14±0.28%.
     (2) Through the detection of the fat-soluble components using the gas chromatography, the results showed that they were mainly composed of palmitic acid, linoleic acid, stearic acid and hydrocarbons in M.japonica, palmitic acid, linoleic acid, stearic acid, oleic acid and hydrocarbons in C. thesioides, linoleic acid, palmitic acid, hydrocarbons in P. sepium. These fat-soluble components can be used as the raw materials for making biological fluid fuel.
     (3) The contents of water and fat-soluble components in the plant body of Periploca sepium Bunge are closely related to the season and climate. According to the changing trend of the above components, Periploca sepium Bunge should be timely harvested in August and September.
     (4) The physicochemical characteristics of oil in Periploca sepium Bunge have been measured, including acid value, saponification value, peroxide value, iodine value, relative density, refractive index, moisture and impurities., The result showed that the values of the above indicators fell within the normal range.
     (5) After biodiesel was prepared from Periploca sepium Bunge oil by two steps, response surface analysis methodology (RSM) was employed to optimize the process conditions:the reaction temperature was60℃, magnetic stirrer speed was300r/min, the reaction time was98min, methanol-oil molar ratio was7:1, catalyst amount was1.1%. On this condition, the actual conversion rate reached90.78%; According to the detection by gas chromatography, the main components of fatty acid methyl ester were methyl linoleate, methyl palmitate, methyl linolenate and a small amount of methyl oleate. After the purification, the yield of the by-product glycerin reached40%of the expected value and the purity was up to90%or so.
     (6) The contents of holocellulose and lignin in Periploca sepium Bunge was respectively68.7%and13.1%, totally accounting for81.8%of the total weight. Besides, the contents of holocellulose and lignin in Metaplexis japonica (Thunb.) Makino was respectively55.8%and4.9%, totally accounting for60.78%of the total weight.
     (7) Based on the utilization status of energy plants and the research in this paper, the author proposed the suggestion about the sustainable use of energy plant resources in the aspects of the scientific research, the comprehensive management, the construction of legal systems, the improvement of policy systems, and the reasonable allocation of resources.
引文
曹晓燕,满瑞林,刘小风等.生物柴油制备方法研究进展[J].化学工程师,2007,9:27-31.
    常振明,韩平,曲春洪.可再生能源利用现状与未来展望[J].当代石油化工,2004,12(12):19-25.
    陈纪军,张壮鑫,周俊.大理白前的化学成分[J].云南植物研究,1989,11(4):471-475.
    陈纪军,张壮鑫,周俊.白首乌的化学成分[J].中国中药杂志,1994,19(8):488-512.
    陈锡沐,李秉滔.中英文版《中国植物志(萝摩科)》的比较[J].武汉植物学研究,1998,16(3):232-240.
    陈英明,肖波,常杰.能源植物的资源开发与利用[J].氨基酸和生物资源,2005,27(4):1-5.
    程序.能源牧草堪当未来生物能源之大任[J].草业学报,2008,17(3):1-5.
    丁丽芹,郝平.国外生物燃料的发展及现状[J].现代化工,2002,22(11):35-37.
    杜宁.国内外能源植物的利用和开发[J].世界农业,2006,(4):57-60.
    段黎萍.从油料作物到能源植物的转换[J].可再生能源,2006(3):89-90.
    方圣鼎,张瑞,陈燕,等. 老瓜头中的化学成分[J].植物学报,1991,33(11):870-875.
    费世民,张旭东,杨灌英等.国内外能源植物资源极其开发利用现状[J].四川林业科技,2005,26(3):20-26.
    冯金朝,周宜君,石莎,等.国内外能源植物的开发利用[J].中央民族大学学报(自然科学版),2008,17(3): 26-31.
    傅登祺,黄宏文.能源植物资源及其开发利用简况[J].武汉植物学研究,2006,24(2):183-190.
    顾树华,曾麟.中国生物液体燃料的生产现状与前景[J].生物质能利用,2005,12:56-58.
    郭新红,喻达时,王婕等.6种植物中木质纤维素含量的比较研究[J].湖南大学学报(自然科学版),2008,35(9): 76-78.
    郭平银,肖爱军,郑现和.能源植物的研究现状与发展前景[J].山东农业科学,2007(4): 126-129.
    郭平银,齐士军,徐宪斌,等.能源植物甜高粱的研究利用现状及展望[J].山东农业科学,2007(3): 126-128.
    郭廷杰.贯彻科学发展观拓展资源再生产业促进生物质能利用[J].再生资源研究,2005,2:1-4.
    郭月玲,江海东,张磊等.我国主要能源植物及其开发利用的现状与前景[J].浙江农业科学,2009,6:1057-1061,1062.
    韩毅,邓宇.生物柴油的发展现状及新技术[J].化工技术与开发,2007,36(3):19-25.
    黄剑坚,韩维栋.我国主要木本能源植物的研究现状及利用前景[J].广东林业科技,2006,22(4): 105-110.
    豪彦.GB/T19147—2003《车用柴油》和EN590《车用柴油》标准的比较[J].汽车与配件,2003,30:35-36.
    贾虎森,许亦农.生物柴油利用概况及其在中国的发展思路[J].植物生态学报,2006,30(2):221-230.
    金青哲,刘元法,岳琨.生物柴油发展现状和趋势[J].粮油加工,2006(1):57-60.
    鞠庆华,曾昌凤,郭卫军,等.酯交换法制备生物柴油的研究进展[J].化工进展,2004,23(10):1053-1057.
    李昌珠,蒋丽娟.野生木本植物油一光皮树油制取生物柴油的研究[J].生物加工过程,2005,3(1):42-44.
    李昌珠,李培旺,肖志红等.我国木本生物柴油原料研发现状及产业化前景[J].中国农业大学学报,2012,17(6):165-170.
    李冲,荀占平,杨永健.鹅绒藤化学成分研究[J].中国中药杂志,1999,24(16):353-355.
    李德铢,邱声祥,吴征镒.鹅绒藤类群的化学分类[J].植物分类学报,1990,28(6):461-466.
    李妹睿,高阳,徐晓红.我国新型植物能源的现状及发展方向分析[J].农业与技术,2005,25(5):14-16.
    李平,孙小龙,韩建国等.能源植物新看点——草类能源植物[J].中国草地学报,2010,32(5):97-100.
    林长松,李玉英,刘吉利等.能源植物资源多样性及其开发应用前景[J].河南农业科学,2007,12:17-21,34.
    凌诚,林位夫.国内外石油植物的研发现状及对我国石油植物发展的思考[J].热带农业科学,2006,26(2):77-82.
    刘晓辉,杨明,杨泉女.不同类型能源植物生物产量研究[J].中国种业,201 1,1:46-48.
    吕鹏梅,袁振宏,廖翠萍等.生物柴油标准分析与制定研究[J].现代化工,2006,26(12):8-14.
    卢振举.目前国内外能源植物研究的状况[J].化学物理通讯,2006,7(9):7-12.
    马鸿翔,张大栋.沿海滩涂发展能源植物的潜力分析[J].中国农学通报,2006,22(12):445-449.
    倪守强,李兴华.我国能源现状及可持续利用对策[J].工业安全与环保,2004,30(7):1-3.
    钱金玲,陈丽敏,胡思达.非粮能源植物的研究现状[J].江西林业科技,2009,5:17-21.
    邱谦,金梦阳.我国能源植物的发展现状及前景展望[J].现代农业科技,2009,21(7):249-251
    施宗明,杨林,韦小岿,等.能源植物小桐子的开发利用和栽培研究[J].云南师范大学学报,1992,12(2):31-38.
    宋华民,岳建芝,徐桂转,等.生物柴油标准及影响产品胡子良的因素[J].河南科学,2008,26(3):302-305.
    宋永芳.能源植物的开发与利用进展[J].生物质化学工程,2006,40(6):51-53.
    苏敏光,于少明,吴克等.生物柴油制备方法及其质量标准现状[J].包装与食品机械,2008,26(3):20-24.
    孙世尧,王连鸳,杨基础.超临界甲醇法制备生物柴油的研究现状[J].精细石油化工,2006,23(1):53-56.
    孙红杰,谭燕宏.能源植物资源的开发利用现状与展望[J].安徽农业科学,2007,3535(25):7900-7901.
    陶雪芬,徐佳丽,张如松.萝藦科各属植物C21甾体苷类成分及药理活性研究进展[J].中国民族民间医药,2009,17:40-42.
    田春龙,郭斌,刘春朝.能源植物研究现状和展望[J].生物加工过程.2005,3(1):14-19.
    王存文,等.生物柴油制备技术及实例[M].化学工业出版社,2009.
    王贵华.我国糖料植物开发利用现状和发展趋势[J].农牧产品开发,1996,2:29-32.
    万泉.能源植物的开发和利用[J].福建林业科技,2005,32(2):1-5.
    王涛.中国主要生物质燃料油木本能源植物资源概况与展望[J].科技导报,2005,23(5):12-14.
    王伟波,张全发.能源植物规模化种植理论与技术研究进展[J].生命科学,2010,22(12):1271-1276.
    王亚萍,姚小华,王开良.燃料油植物资源研究现状与发展对策[J].中国油脂,2007,32(5):7-10.
    王一平,翟怡,韩振亭等.生物柴油制备方法研究进展[J].化工进展,2003,23(2):8-12.
    王永红,刘泉山.国内外生物柴油的研究应用进展[J].润滑油与燃料,2003(1):20-24.
    王峥,陶玲,任珺.荒漠能源植物资源开发研究[J].陕西农业科学,2007,(3):22-24.
    危文亮,金梦阳.42份非木本油料植物资源的能源利用潜力评价[J].中国油脂,2008,33(5):73-76.
    吴创之,周肇秋,阴秀丽,等.我国生物质能源发展现状与思考[J].农业机械学报,2009,40(1):91-99.
    吴国江,刘杰,娄治平等.能源植物的研究现状与发展建议[J].中国科学院院刊,2006,21(1):53-57.
    吴鹏飞,马祥庆,王平.我国发展生物能源树种原料林的潜力和对策[J].亚热带农业研究,2007,3(2):125-128.
    吴庆余,缪晓玲,徐翰.利用热藻快速热解制备生物柴油的方法[P].CN:1412278A,2003.
    肖波,周英彪,李建芬.生物质能循环经济技术[M].北京:化学工业出版社,2006.
    谢光辉.能源植物分类及其转化利用[J].中国农业大学学报,2011,16(2):1-7.
    谢光辉,郭兴,王鑫,等.能源作物资源现状与发展前景[J].资源科学,2007,29(5):74-80.
    解新明,周峰,赵燕慧,等.多年生能源禾草的产能和生态效益[J].生态学报,2008,28(5):2329-2342.
    新能源产业化信息编辑部.我国生物质能源发展前景广阔[J].科学决策月刊,2006,11:13-14.
    忻耀年,Sondarrmnn B, Emersleben B.生物柴油的生产和应用[J].中国油脂,2001,26(5):72-77.
    徐颖,刘鸿雁.能源植物的开发利用与展望[J].中国农学通报,2009,25(3):297-300.
    薛志忠,吴新海.国内外生物柴油研究进展[J].现代农业科技,2010,16:293-297.
    姚国新,卢磊.能源作物的研究进展[J].安徽农业科学,2007,35(4):4260-4261.
    姚向君,田宜水.生物质能资源清洁转化利用技术[M].北京:化学工业出版社,2005.
    叶利民,徐芬芬.石油植物的利用研究[J].安徽农业科学,2007,35(5):1447-1449.
    于辉,向佐湘,杨知建.草本能源植物资源的开发与利用[J].草业科学,2008,25(12):46-50.
    于凤文,计建炳.生物柴油的现状和发展方向[J].能源环境保护,2003,17(6):16-17,21.
    袁振宏,吴创之,马隆龙等.生物质能利用原理与技术[M].北京:化学工业出版社,2006.
    曾汉元,宋荣,吴林.5种高大禾草的纤维素和木质素含量的测定[J].安徽农业科学,2011,39(19):11660,11774.
    张呈平,杨建明,吕剑.生物柴油的合成和使用研究进展[J].工业催化,2005,13(5):9-13.
    张纯.发展林业能源植物,加快山西省产业结构调整[J].科技情报开发与经济,2008,18(16):93-95
    张福耀,赵威军,平俊爱.高能作物一甜高粱[J].中国农业科技导报,2006,1(8):14-17.
    张慧坚,杨连珍.热带能源植物的开发利用现状与展望[J].世界农业,2006,2:43-45.
    张卫明,史劲松,顾龚平.生物质能的利用和能源植物的开发[J].南京师大学报:自然科学版,2007,30(3):68-74.
    张卫明,史劲松,顾龚平,等.能源植物资源的研究和开发[J].中国野生植物资源,2007,26(3):8-13.
    张无敌,宋洪川,韦小岿,等.小桐子开发与元谋县生态环境保护[J].云南师范大学学报(自然科学版),2001,21(5):37-42.
    张志鹏,杨镇,朱凯.可再生能源作物:甜高粱的开发利用[J].杂粮作物,2005,25(5):334-335.
    赵洵,洛念军,曹发海.生物柴油制备方法的研究进展[J].石油化工技术经济,2007,23(3):59-62.
    周小玲.关于我国发展生物质能源若干问题的思考[J].可再生能源,201 1,29(2):141-146.
    朱建良,张冠杰.国内外生物柴油研究生产现状及发展趋势[J].化工时刊,2004,1(18):23-27.
    朱俊任,郑旭煦,李强,等.不同来源脂肪酶催化制备生物柴油的研究进展[J].中国农学通报,2010,26(4):318-322.
    朱清时,阎立峰,郭庆祥.生物质清洁能源[M].北京:化学工业出版社,2002.
    中国油脂植物编写委员会.中国油脂植物[M].北京:科学出版社,1987.
    中国生物多样性国情研究报告编写组.中国生物多样性国情研究报告[M].北京:中国环境科学出版社,1998.
    中国科学院《中国植物志》编委会.《中国植物志》[M].北京:科学出版社,1977.
    Alagidas Zaltauskas. The investigation of growing and using of tall perennial grasses as energy crops [J].Biomass and Bioenergy,2008,32:981-987.
    Amon T, Amon B, Kryvoruchko V, et al. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations [J]. Bioresource Technology,2007,98:3204-3212.
    Angulo R M, Linares R, Teal J. Assessment of the externalities of biomass energy and comparison with coal[J]. Biomass and biomass energy,1998(14):469-478.
    Anwar F, Bhanger M I, Nasir M K et al. Analytical characterization of Salicornia bigelov seed oil cultivated in Pakistan[J]. Journal of Agricultural Food Chemistry,2002,50 (5):4210-4214.
    Atkinson C J. Establishing perennial grass energy crops in the U K:A review of current propagation options for Miscanthus [J]. Biomass and Bioenergy,2009:1-8.
    Bassam N E. Energy Plant Species, Their Use and Impact on Environment and Development [M]. LondonrJames and James(Science Publishers) Ltd,1998.
    Breccia A, Esposito B, Fratadocchi, G. Breccia et al. Reaction between methanol and commercial seed oils under microwave irradiation [J]. Microw. Power Eleetromagn. Energy,1999,34(1):3-8.
    Brown R C. Biorenewable Resources:Engineering New Products from Agriculture [M]. Iowa:Iowa State Press,2003:59-75.
    Calvin M. Solar energy by photosynthesis [J]. Science,1974,184:375-381.
    Cetinkaya M, Ulusoy Y, Tekin Y, et al. Engine and winter road test performances of used cooking oil originated biodiesel[J]. Energy conversion and management,2005,46(7-8):1279-1291.
    Chendke P K, Fogler H S. Macrosonics in industry chemical processing [J].Ultrasonics,1975,13:3-37.
    Chow J, Kopp R J, Portney P R. Energy resources and global development [J]. Science,2003,302: 1528-1531.
    Christine R, Skarka J. Energy production from grassland-Assessing the sustainability of different process chains under German conditions [J]. Biomass and Bioenergy,2008,32:1-12.
    Cherubini F, Bird N D, Cowie A, et al. Energy and greenhouse gas-based LCA of biofuel and bioenergy systems:Key issues, ranges and recommendations [J]. Resources, Conservation Recycling,2009,53(8): 434-447.
    Clifton-B row n J C, Stampfl P F, Jones M B. Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions [J]. Global Change Biology,2004, 10:509-518.
    De S, Bag A, Mukherji S. Potential use of Pedilanthus tithymaloides Poit as a renewable resource of plant hydrocarbons [J]. Bot Bul Acad Sin,1997,38:105-108.
    Danalatos N G, Archontoulis S V, Mitsios I. Potential growth and biomass productivity of Mi scan thus giganteusas affected by plant density and N-fertilization in central Greece [J]. Biomass and Bioenergy, 2007,31:145-152.
    Davis S C, Anderson-Teixeira K. J, DeLucia E H. Life-cycle analysis and the ecology of biofuels [J]. Trends Plant Sci,2009,14(3):140-146.
    Fike J H, Parrish D J, Wolf D D. Long-term yield potential of switch grass for biofuel systems [J].Biomass and Bioenergy,2006,30(3):198-206.
    Flint E B, Suslick K S. The temperature of cavitation [J]. Science,1991,253:1397-1399
    Foidl N G, Foil M Sanchez, M Mittelbach, et al. Jatropha curcas L. as a source for the production of biofuel in Nicaragua[J]. Bioresource Technology,1996,58:77-82.
    Frehlich A, Rice B. Evaluation of Camelina sativa oil as a feedstock for biodiesel production [J]. Industrial Crops and Products,2005,21(1):25-31.
    Gong G L, Hart D P. Ultrasound induced cavitation and sonochemical yields [J]. The Journal of the Acoustical Society of America,1998,104:2675-2682.
    Hallam A, Anderson I C, Buxton D R. Comparative economic analysis of perennial, annual, and inter crops for biomass production [J]. Biomass and Bioenergy,2001,21 (6):407-424.
    Hamelink C N, Hooijdonk G V, Faaij A P C. Ethanol from lignocellulosic biomass:techno-economic performance in short-, middle-and long-term [J]. Biomass and Bioenergy,2005,28:384-410.
    Hughes D E, Nyborg W L. Cell disruption by ultrasound:streaming and other activity around sonically induced bubbles is a cause of damage to living cells [J]. Science,1962,138:108-114.
    Ji N, Zhang T, Zheng M. Direct catalytic conversion of cellulose into ethylence glycol using nickel promoted tungsten carbide catalysts [J]. Angewandte Chemie International Edition,2008,47: 8510-8513.
    Karaosmanoglu F, Akdag A, Cigizoglu K. B. Biodiesel from rapeseed oil of Turkish as an alternative fuels [J]. Applied biochemistry and biotechnology,1996,61(3):251-265.
    Katri P, Mikko A, Mika I. Large scale energy grass farming for power plants -A case study from Ostrobothnia, Finland [J]. Biomass and Bioenergy,2008,32:1009-1015.
    Lemus R, Lal R. Bioenergy crops and carbon sequestration [J]. Critical Reviews in Plant S cience,2005, 24(1):1-21.
    Lewandowski I,Scurlockjmo, Lindvall E,et al. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe[J]. Biomass and Bioenergy,2003, 25(4):335-361.
    Liu Z H, Shao H B. Comments:main developments and trends of international energy plants [J]. Renewable and sustainable energy reviews,2010,14:530-534.
    Lovley D R. Microbial fuel cells:novel microbial physiologies and engineering approaches [J]. Curr Opin Biotechnol,2006,17(3):327-332.
    [128]Ma F, Clements L D, Hanna M A. The effects of catalyst, free fattacids, and water on tranesterication of beef tallow [J]. Trans ASAE,1998,41(5):1261-1264.
    Mabee W E, Gregg D J, Arato C, et al. Updates on softwood-to-ethanol process development [J]. Appl Biochem Biotechnol,2006,129-132:55-70.
    Mathews J A. Carbon-negative biofuels [J]. Energy policy,2008,36:940-945.
    Maugh T H. Unlike money, diesel fuel grows on trees [J]. Science,1979,206:436.
    Mettelbach M. Diesel fuel derived from vegetable oils:Specefication and quality control of biodiesel [J]. Bioresource Technology,1996,56(1):7-11.
    Niehaus, R.A., Goering, et al. Crached soybean oil as a fuel for a diesel engine[J]. Trans. ASAE, 1986,29:683-689.
    Nielsen P E, Nishimura H, Otvos J W, Calvin M. Plant crops as a source of fuel and hydrocarbon-like materials [J]. Science,1977,198:942-944.
    Odia O Osadolor. A vailability of grasses, weeds and leaves as energy resource [J].Renewable Energy, 2009,34:486-491.
    [136]Onay O, Gaines A F, Kockar M O, et al. Comparison of the generation of oil by the extraction and the hydropyrolysis of biomass[J].Fuel,2006,85(3):382-392.
    Palmer M W, Pimentel D, Lal R, et al. Biofuels and the Environment [J]. Science,2007,317(5840): 897-898.
    Perez G. Analysis of enzymatic alcoholisis reaction with vegetables oils[D]. Bahia Blanca City, Argentine Republic:The Instetute of Plapiqui,2003.
    Pirozzi D. Improvement of lipase stability in the presence of mommercial triglycerides[J]. Eur.J.Lipid Sci.Techol.,2003,105(11):608,613-619.
    Plesset M S, Prosperetti A. Bubble dynamics and cavitation [R]. Annual Review of Fluid Mechanies, 1977,9:145-185.
    Popova I E, Kozliak E I. Efficient extraction of fuel oil hydrocarbons from wood[J]. Separation science and Technology,2008,43:778-793.
    Ragarskas A J, Williams C K, Davison B H, et al. The path forward for biofuels and biomaterials [J]. Science,2006,311(5760):484-489.
    Raghu S, Anderson R C, Daehler C C, et al. Adding biofuels to the invasive species fire? [J]. Science, 2006,313(5794):1742.
    Schmer M R, Vogel K P, Mitchell R B. Net energy of cellulosic ethanol from switch grass[J].Proceeding s of the National Academy of Science s of the United States of America,2008, 105(2):464-469.
    Seth M K. Trees and their economic importance[J]. Bot Rev,2003,69 (4):321-376.
    Shah, Sharma S A, Gupta,M N. Extraction of oil from Jatropha curcas L. seed kernels by combination of ultrasonication and aqueous enzymatic oil extraction[J]. Bioresource Technology,2005,96(1): 121-123.
    Sticklen M. Plant genetic engineering to improve biomass characteristics for biofuels[J]. Curr Opin Biotechnol,2006,17(3):315-319.
    Sujatha M N,Mukta. Morphogenesis and plant regeneration from tissue cultures of Jatropha Curcas [J]. Plant Cell Tissue and Organ Culture,1996,44:135-141.
    Tonbridge. Green power for Britain's famers[J]. Farmers guandian,2004(5):22.
    Venturi P, Venturi C. Analysis of energy comparison for crops in European agricultural system[J]. Biomass and Bioenergy,2003,25(3):235-255.
    Vogel K P. Switch grass[M]. Moser L E, Sollenberger L, Burson B, ed. Warm-season (C4) Grasses. Madison:ASA-CSSA-SSSA Monograph,2004:561-588.
    Vinatoru M. An overview of the ultrasonieally assisted extraction of bioactive principles from herbs[J]. Ultrasonics Sonoehemistry,2001,8:303-313.
    Weisz, P.B., Rodeweld. Catalytic production of high-grade fuel(gasoline) from biomass compounds by shape-delective catalysis [J]. Science,1979,206:57-58.
    Zhao Y L, Dolat A, Steinberger Y, et al. Biomass yield and changes in chemical composition of sweet sorghum cultivars grown for biofuel [J]. Field Crops Res,2009,111:55-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700