用户名: 密码: 验证码:
种植密度和刈割频率对杂交狼尾草饲用、能源及固碳价值的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂交狼尾草(Pennisetum americanum x P . purpureum)是美洲狼尾草(Pnnisetmeamerieanum)和象草(P.purpureum)的杂交种,多年生。它较好地综合了父本象草高产、多年生,和母本美洲狼尾草品质好的特点,因而近年来被较广泛地种植。本论文通过大田种植杂交狼尾草种茎,研究了不同的种植密度(6944,13889,27778株/hm~2)和不同的刈割频率(2、4和6次/年)对杂交狼尾草生长、产量、饲用品质、能量利用和固碳力的影响,为杂交狼尾草在一定生态环境下在饲料、能源及固碳领域能发挥较高利用价值提供理论依据。研究结果表明:
     1.当密度为13889株/hm~2时,产量最大,茎叶比也最大;分蘖数随种植密度增加而呈下降趋势;草产量以刈割2次最高,刈割6次最低,刈割次数愈多,茎叶比越小,鲜干比越大,适口性越好;分蘖数随刈割频率增多而明显增多;产量最优组合为种植密度13889株/hm~2、刈割频率为2次/年、鲜草产量达到198.10 t/hm~2;
     2.粗蛋白含量随着密度的增大而减小,以刈割次数最多的最优,中性洗涤纤维(NDF)和酸性洗涤纤维(ADF)均随着刈割次数的增多而降低。当种植密度为27778株/hm~2、刈割频率为6次/年时,粗蛋白含量最高,达到17.88%。从刈割茬数对营养的动态变化影响来看,粗蛋白含量随密度的增加而下降,中性洗涤纤维和酸性洗涤纤维(NDF/ADF)随着密度的增大而增大,粗灰分含量随密度增加减小。随着刈割茬数的增多,粗蛋白和粗灰分含量均降低,NDF和ADF含量增高。综合分析种植密度和刈割时间次数,要得到高品质的杂交狼尾草,认为研究地区适宜种植密度为6944株/hm~2,且为第一茬刈割的鲜草。
     3.当密度居中时,植株干物量最大;当密度最小时,干重热量值和去灰分热量值均最大,两种热量产量最大的是当种植密度居中时,热量产量到达最高;灰分含量变化并不明显;NDF变化不明显,ADF随着密度的增大而增大。随着刈割频率的减小干物量呈下降趋势;干重热量和去灰分热量值均随刈割频率的增大而减小,干重热量产量和去灰分热量产量也随刈割频率增多降低,灰分含量随刈割频率的增大而减小;NDF和ADF均随着刈割频率的增大而减小。干物量最大的组合为A_2B_1组合,到达32.48t/hm~2,干重热量和去灰分热量最大的均为A_1B_1,热量产量最大的为A_2B_1,干重热产量最大达到506.36GJ/hm~2;粗灰分含量最适的组合为A_2B_3组合;NDF和ADF最高组合为A_3B_1。
     4.当种植密度适中时,植株固定CO~2的量最大;种植对0-10cm土壤碳含量影响较大,在密度影响下,含量差值变化依次随密度增大而减小;单点光合速率也随密度的增大而呈下降趋势;植株碳含量也随密度增长呈下降趋势,碳产量以密度居中最大。植株吸收固碳CO~2的量随刈割频率增大而减小;0-10cm土壤碳含量增加值随刈割频率增大而增大;单点光合速率随刈割频率增多而增大;植株碳含量呈下降趋势,碳产量呈下降趋势。CO~2固定量最大的组合为A_2B_1组合,达到52.94t/hm~2;种植前后0-10cm土层的有机碳含量增加值以A_1B_3变化最为明显;单点光合速率最高为A_1B_1组合;植株碳含量以A_1B_3最多,碳产量则以A_2B_1最多。
Pennisetum americanum×P.purpureum is a hybrid of Pnnisetmeamerieanum and P.purpureum. That integrated the characteristics of high yield, perennial and high quality,and which was widely cultivated in recent years. The effects of the panting density and the cutting frequency on growth characteristics, high yield, feed quality,energy utilization and power of fixing carbon in Pennisetum americanum×P. purpureum planted in field under certain ecological conditions were studied in this paper, in which 3 plant densities and 3 cutting frequencies were designed, and this research was conducted in Handan city, Hanbei Province from April to November in 2009. The results showed that:
     1.Under the density of 13889/hm~2, yield and stem leaf ratio was the highest. The yield in cutting twice a year was the highest.The yield in cutting six a year was the lowest yet its quality was the best,while the quality in cutting twice a year ranked the last.It also had a lower Stem Leaf Ratio and a higher Fresh Dry Weight ratio which led to better palatability.Highest green leaves yield of 198.10 t/hm~2 was as density of 13889/hm~2 and cut twice a year defoliation interval.General analysis showed that plant density and cutting frequency of Pennisetum americanum×P.purpureum increasing to 13889/hm~2 and cut four a year has the best yield.
     2.The crude protein (%) decreased with the increasing density,and increased with the increasing of defoliation frequency. Best crude protein(%) were as density of 27778/hm~2 and cut six a year. Viewed from cutting frequency effect on dynamic quality change, the crude protein (%) decreased with the increasing density;DNF and ADF(%) increased with the increasing density;Ash(%) decreased with the increasing density.Followed the cutting frequency increasing,the crude protein (%) and ash(%) decreased, but NDF and ADF increased. General analysis showed that plant density and cutting frequency of Pennisetum americanum×P.purpureum increasing to 6944/hm~2 and first cutting has the best quality.
     3.Under the density of 13889/hm~2, dry yield was the highest;under the density of 6944/hm~2, Gross Caloric values and Ash free caloic values was the highest;under the 13889/hm~2 the two caloic yield was the highest; ash(%) change was invisible.NDF change was invisible and ADF increased with the increasing density. Followed the cutting frequency decreased,the dry yield decreased.Followed the cutting frequency increasing Gross Caloric values and Ash free caloic values decreased;the two caloic yield decreased with the cutting frequency increasing. Ash(%)decreased with the cutting frequency increasing. DNF and ADF(%) decreased with the increasing cutting frequency. Highest dry yield of 32.48t/hm~2 was as density of 13889/hm~2 and cut twice a year defoliation interval. Highest Gross Caloric values and Ash free caloic values was as density was 6944/hm~2 and cut twice a year defoliation interval. Highest the two caloic yield was as density was 13889/hm~2 and cut twice a year defoliation interval.Best ash content was 13889/hm~2 and cut four a year defoliation interval. Highest NDF and ADF was as density was 13889/hm~2 and cut twice a year defoliation interval.
     4.Under the density of 13889/hm~2, CO_2 fixed was the highest;plant mothod has greatest impact on 0-10cm soil. Under the influence of the density, organic carbon DIFF increased with the density increasing. Photosynthetic rate increased with the density increasing.Plant carbon content decreased with the density increasing.carbon yield decreased with the density increasing. Under the influence of the cutting frequency, CO_2 fixed decreased with the cutting frequency increasing. 0-10cm soil organic carbon DIFF increased with the cutting frequency increasing. Photosynthetic rate increased with the cutting frequency increasing. Plant carbon content and carbon yield decreased with the cutting frequency increasing.Highest CO_2 fixed was as density was 13889/hm~2 and cut twice a year defoliation interval. Highest 0-10cm soil organic carbon DIFF was as density was 6944/hm~2 and cut six a year defoliation interval. Highest photosynthetic rate was 6944/hm~2 and cut twice a year defoliation interval. Highest Plant carbon content was as density was 6944/hm~2 and cut six a year defoliation interval, and carbon yield was as density was 13889/hm~2 and cut twice a year defoliation interval.
引文
[1] Karpenstein—Machan M.Sustainable cultivation concepts for domestic energy production from biomass.(Special issue on bioenergy)[J]. Critical Reviews in Plant Sciences,2001,20(I):1-14.
    [2] Lemus R,Lal R.Bioenergy crops and carbon sequestration[J]. Critical ReviewsIn Plant Science,2005,24(1):1—21.
    [3] Bemdes G.,Hoogwijk M.,van den Brock R.The contribution of biomass in the future global energy supply: A review of 17 studies [J].Biomass and Bioenergy,2003,25(1):1-28.
    [4] Hoogwijk M,Faaija A,vail den Brock R,Bemdes G,Gielen D, Turkeab urg W. Exploration of the ranges of the global potential of biomass for energy[J].Biomass andBionergy,2O03,25(2):119-133.
    [5]谢光辉,郭兴强,王鑫.能源作物资源现状与发展前景[J].资源科学2007,29:(5)74-80
    [6]费世民,杨灌英.国内外能源植物资源及其开发利用现状[J].四川林业科技2005,03
    [7] Bassam NE.Energy Plant Species,Their Use and Impact on Environment andDevelopmentlM J.James and James (&ience Publishers)Ltd.London,1998.
    [8]肖波,周英彪,李建芬.生物质能循环经济技术[M].北京:化学工业出版社,2006:207-218
    [9]尹成杰.拓展农业功能发展能源农业[N].中国经济时报:2006-03-20
    [10]丁晋中.发展知识农业是我国农业走向国际市场的必然选择[J].生产力研究,2003.1:26-30
    [11]魏小兰,张蕴薇草.本植物的非典型性应用[J].草业科学2009 26(9)34-39
    [12]张伟玉,杨静慧,刘艳军,等.几种野生草本植物含油量和抗旱性初探[J].天津农学院学报.2007,14(1):6-8.
    [13]《养殖与饲料》编辑部.匈牙利培育出能源草计划大面积推广种植[J].养殖与饲料,2005(8):43.
    [14]曾安建.未来新能源草[J].质量天地.2001(5):33.
    [15]于丽萍.新能源尿油、酒精草和煤层甲烷[J].能源技术.2000(3):l88
    [16] Wildenborg T.Lokhorst A. Introduction on CO2 Geologieal storag-classfication of storage option[J].Oil Gas.Sci.Techno1.Rev.IFP.2005.60:513-5l5.
    [17]李继文,李海生,张辉,等.中国能源利用状况评估指标初步研究[J].能源环境保护,2006,(2):11-14.
    [18] OTA.Congress of the US.Energy from Biological Process[M].University Press of the Pacific.2005.
    [19] Perlack R D.Biomass as Feedstock for a Bioenergy and Bioproducts Industry:The Technical Feasibility of a Billion-Ton Annu-Supply[M].U.S.Department of Energy,2005.
    [20]马欢,刘伟伟,张无敌,等.燃料乙醇的研究进展及存在问题[J].能源工程,2006,(2):29-33.
    [21]李高扬,李建龙,王艳.利用高产牧草柳枝稷生产清洁生物质能源的研究进展[J]草业科学2008,25(5) 15-21
    [22]程序.能源牧草堪当未来生物能源之大任[J].草业学报2008 17(3)1-5
    [23]戴林.当前能源形势及节能对策[J].变频世界.2007 (5):34-36.
    [24]谢光辉,郭兴强,王鑫等.能源作物资源现状与发展前景[J].资源科学.2007.29(5):74-80.
    [25]马欢.刘伟伟,张无敌等.燃料乙醇的研究进展及存在问题[J].能源工程,2006,(2):29-33.
    [26]余醉,李建龙,李高扬.芦竹作为清洁生物质能源牧草开发的潜力分析[J].草业科学.26(6)62-69
    [27]任继周.草业与新五行:衣、食、住、行、生[J].草业科学.2006,23(8):83-84.
    [28] ABDERRAHIM B,et a1.Pilot plant studies of biodiesel production using Brass&a carlnata as raw material[J].Catalysis Today,2005,106(4):193-196.
    [29] MIECHAEL D.Developing the bioenergy industy[J].Biocycle international,2004,4:75-78.
    [30] FRI HLICH A,RICE B,Evaluation of Camelina sativa oil as a feedstock for biodiesel production[J].1ndustr/a/Crops and Produce,2005,21(1):25-31.
    [31] MIECHAEL D.Developing the bioenergy industry[J].Biocycle international,2004,4:75-78.
    [32]王涛.中国主要生物质燃料油木本能源植物资源概况与展望[J].科技导报,2005,23(5):12-14.
    [33]郭康权,赵东,查养社等.植物材料压缩成型时粒子的变形及结合形式[J].农业工程学报,1995,11(1):139-143
    [34]蒋剑春,刘石彩,戴伟娣,等.林业剩余物制造颗粒成型燃料技术研究[J].林产化学与工业,1999,19(3):25-30
    [35]颜培兵,王效华.生物柴油催化合成技术研究进展[J].农业工程学报,2007,23(1):286-289
    [36]盛奎川,吴杰.生物质成型燃料的物理品质和成型机理的研究进展[J]农业工程学报,2004,20(2):242-245
    [37]黄平,左海涛,韩烈保,等.拔节期水分胁迫对荻生长和生物质特性研究的影响[J].草地学报,2007,15(2):153-157
    [38]程序.能源牧草堪当未来生物能源之大任[J]草业学报.2008,17(3)1-5
    [39]林业生物质能源:我国蕴藏巨大潜力[EB/OL]http://www.chinarein.com/ndkj/detail.asp?id=1740 2006—04—18.2006一05一l5
    [40]路明.开发生物质能,发展能源农业[J].求是,2005,(5):58-60
    [41] Lysen EH,Ouwens C Daey,Onna MJG,et a1.De haalbaarheid van de productie van biomassa voor de Nederlandse energie huishouding [M].Apeldoorn,Novem,1992.
    [42]岑可法,邱坤赞,朱燕群.中国能源与环境可持续发展问题的探讨(一)[J].发电设备.2004.(5)245-250.
    [43]倪守强,李兴华.我国能源现状及可持续利用对策[J].工业安全与环保,2004,30(7):1-3.
    [44]张颂培.盐生油料植物海蓬子的开发利用[J].北京农业科学,2001,(6):28-29
    [45]王玉欣,胡明荣.野生木本油料植物——榛[J].特种经济动植物,2002.(7):29.
    [46]王涛.中国主要生物质燃料油木本能源植物资源概况与展望[J].科技导报,2005.23(5):12-14.
    [47]李昌珠,蒋丽娟,李培旺.野生木本植物油——光皮树油制取生物柴油的研究[J].生物加工过程2005,(I):42-44.
    [48] Miscanthus-guide[EB/OL].http://www.defra.gov.uk/erdp/regions/dedfault.htm,2008—01-10.
    [49] Himken M,Lammel J, Neukirchen D,et al.Cultivation of Miscanthus under West European conditions:Seasonal changes in dry matter production, nutrient uptake andremobilization[J].Plant and Soil。1997,2:1 17-126.
    [50] Lewandowski L C Clifton-Brown J,Andersson B,et al Environment and harvest time affects the combustion qualities of Miscanthus genotype[J].Agron.J ,2003,95:1274-1280.
    [51]吴甫成,丁纪祥.芒草群丛的生态经济研究[J].农业现代化研究1992,13(1):36-38.
    [52]曾祥艳.生物新燃料——芒草的开发利用[J].广西热带农业2007(5):37-38.
    [53]曾宪录,廖富林,温冠儒.梅州地区主要能源草分布及生长情况调查[J].广东农业科学.2008(7).25-28
    [54]丹晨.芒草:火电厂新燃料.生态经济,2005(12)12-13.
    [55]美欧研究用象草作为替代能源防止全球变暖.世界科技研究与发展.2005(10).83
    [56] Lewandowski 1,Jonathan S M O.Lindvall E,et al.The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe[J].Biomass and Bioenergy,2003,25(4):335—361.
    [57] Angelini L G,Ceccarini L,Bonari E.Biomass yield and energy balance of giant reed(Arundo donax L.)cropped in central Italy as related todifferent management practices.Eur J.Agron,2005,22:375—389.
    [58] Lewandowski I,Kieherer A,Vonier P.CO2一balance for the cultivation and combustion of Mhcanthus.Bionmss and Bioenergy,1995,8(2):81[33]—90.
    [59] Ercoli L,Mariotti M ,Masoni A ,et a1.Effect of irrigation and nitrogen fertilization on biomass yield an d effi ciency of energy use in crop production of M iscanthus.Field Crops Research,1999,63 :3—11.
    [60] Lewan dowski I,Heinz A. Delayed harvest of miseanthus——influences on biomass quantity and quality and environmental impacts of energy production.Eur.J.Agron.,2003,19:45—63.
    [61]李高扬,李建龙,王艳等.利用高产牧草柳枝稷生产清洁生物质能源研究进展[J].草业科学.2008,25(5):l5-21.
    [62]王连锁.潘铮.窦田芬等.芦竹的开发前景分析[J].天津农林科技.2004.181(5):11.
    [63]廖庆喜,舒彩霞,田波平.芦苇,芦竹机械化收获及加工作业基地化集成研究[J].农机化研究.2005(5):62-63.
    [64] Vogel KP.Switchgrass.In:L.E.Moser,L.Sollenberger,and B.Burson(ed.).Warm.Season(C4)Grasses[M].ASA.CSSA.SSSAMonograph.Madison,WI.(Monograph Chapter),2004.
    [65] Oever V,Elbersen W H,Keusers P R E.Switchgrass (Panicum virgatum L.) as a reinforcing fibre in polypropylene composites[J].Journal of Materials Science,2003,38:3697—3707.
    [66]王涛.中国主要生物质燃料油木本能源植物资源概况与展望[J].科技导报,2005,23(5):12-14.
    [67] Lewandowski 1,Jonathan S M O.Lindvall E,et al.The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe[J].Biomass and Bioenergy,2003,25(4):335-361.
    [68] Oever V,Elbersen W H,Keusers P R E.Switchgrass (Panicum virgatum L.) as a reinforcing fibre in polypropylene composites[J].Journal of Materials Science,2003,38:3697—3707.
    [69]康志河,杨国红,杨晓平等.发展甜高粱生产开创能源农业新时代[J].中国农学通报,2005,(1):340-348.
    [70]赵立欣,张艳丽,沈丰菊.能源作物甜高粱及其可供应性研究[J].可再生能源,2005,122(4):37-40.
    [71] Refer J D,Sehuman G E.Influence of livestock grazing on C sequestration in semi—arid mixed—grass and short—grass rangelands[J].Environmental Pollution.2002,l16:457—463.
    [72] Schuman G,Janzen H,Hemck J.Soil carbon dynamics and potential carbon sequestration by rangelands[J].Environmental Pollution,2002,1 16: 391- 396.
    [73] IPCC(Intergovemmental Panel on Climate Change).Climate Change 2001,111e Scientife Basis.Cambridge:Cambridge University Press,2001.
    [74] Angelini L G,Ceccarini L,Bonari E.Biomass yield and energy balance of giant reed(Arundo donax L[J]. cropped in central Italy as related to different management practices.Eur J.Agron,2005,22:375—389.
    [75] Shiet T N,Darby G M.Forages and soil conservation.In Forages:Th e Science of Grassland Ag culture,ed.Heath M E,Barnes R F,MetcalfeD S. Ames,IA :Iowa State University Press,1985.21—32.
    [76] Dien B S,Cotta M A,Jeffties T W.Bacteria engineered for fuel ethanol production:current status.Applied Microbiology and Biotechnology, 2003,63:258—266.
    [77] Gebhart D L,Johnson H B,Mayeux H S,et a1.The CRP increases soil organic carbon[J].J.Soil Water Conserv.1994,49,488—492.
    [78] Lynch J M ,Whipps J M.Substrate flow in the rhizosphere.In:Keister D L,Cregan P B,eds[J].The Rhizosphere and Plant Growth.Dordmcht: Kluwer Academic,1991.15—24.
    [79] Barnes R F.Taylor T H.Grassland agriculture and ecosystem concepts.In Forages:Th e Science of Grassland Agriculture,eds.Heath M E, Barnes R F,Metcalfe D S.Ames,IA:Iowa State University Press,1985.12—20.
    [80] Turhollow A F,Perlack R D.Emissions of CO2 from energy crop production[J].Biomass and Bioenergy,1991,1(3):129—135
    [81] Clifton—Brown J C,Stampfl P F,Jones M B.Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions[J].Global Chan ge Biology ,2004,10:509—518.
    [82] Cannell M R.Carbon sequestration and biomass energy offset:theoretical,potential and achievable capacities globally,in Europe and the UK[J]. Biomass and Bioenergy,2003,24:97—116.
    [83] Fang JY,Liu GH,Xu SL.Carbon pools in terrestrial ecosystems in China.In:Wang GC,Wen YP eds.Moni. toring and Relevant Process of Greenhouse Gas Con—centration and Emission[J].China Environmental Science Press,Beijing,109-128.
    [84] Li LH.Effects of land·use change on soil carbon storage in grassland ecosystems[J].Acta P - toecologica Sinica,22,300-302.
    [85] Yu GR.Global Change,Carbon Cycle andStorage in Terrestrial Ecosystem[J].China Meteorological Press,Beijing,189.
    [86] IPCC(Intergovernmental Panel on Climate Change)(2000)A ecial Report of IPCC:Land Use,Land-UseChange and Forestry[J].Cambridge University Press,Cambridge,1 82—208.
    [87] IPCC(Intergovernmental Panel on Climate Change)(2007). Fourth Assessment Report of Working Group I I I: summary for policymakers. http://www.ipcc.ch/ ipccreports/ar4·wg3.htm.Cited 20 November 2007.
    [88]朱练峰,江海东,高雅.不同前作对杂交狼尾草产量和品质的影响[J].草业学报,2006,15(1)76-83
    [89]钟小仙,顾洪如,江海东.不同复种方式下作物的粗蛋白和可消化干物质总产量比较[J]草业科学,2007,24(4)75-77
    [90]钟小仙,顾洪如,江海东.肥料运筹对杂交狼尾草氮素利用效率和硝酸盐含量的影响[J].江苏农业学报.2006,22(4)429-433
    [91]田立双,李凤山,杨恒山.密度对杂交狼尾草产量和品质的影响[J]草业科学.2006,23 (4)50-52
    [92]钟小仙,江海东,顾洪如.施肥和刈割间隔对杂交狼尾草钙磷镁含量的影响[J]江苏农业科学,2005,5,89-91
    [93]林永辉,唐龙飞,黄秀声.刈割频率对杂交狼尾草生长和产量的影响[J]福建农业学报,2006,21(4)389-392
    [94]王凭青,段传人,王伯初.杂交狼尾草水土保持能力的实验研究[J]水土保持学报,2005, 19(1)114-117
    [95]张雪原.介绍两种速生高产优质牧草健宝、牧特利[J].农业科技通讯,2003,(4):24-25
    [96]薛红枫,孟庆翔.不同方法测定反刍动物饲料NDF,ADF和木质素含量的比较[J].中国畜牧杂志,2006,42(19)41-45
    [97]阮志平,李元跃,杨志伟等.三种棕榈植物的热值及灰分含量比较研究[J].广西植物2007,27(6)929-931
    [98]黄钰辉,官丽莉,周国逸等.西双版纳热带季节雨林和哀牢山中山湿性常绿阔叶林优势植物及地表凋落物层的热值[J].植物生态学报, 31(3) 457-463
    [99]薛达元,包浩生.长白山自然保护区森林生态系统间接经济价值评估[J].中国环境科学.19(3)247-252
    [100]王明君,韩国栋,赵萌莉等.草甸草原不同放牧强度对土壤有机碳含量的影响[J]草业科学,2007 2(10)6-10
    [101]李志鹏,潘根兴,李恋卿等.水稻土和湿地土壤有机碳测定的CNS元素分析仪法与湿消化容量法之比较[J]土壤,2008- 40(4) 580-585
    [102]唐启义,冯明光.实用统计分析及其计算机处理平台[M].北京:中国农业出版社.1997:77-90
    [103]陈锦新,张国平,赵国平,等.密度和氮肥对杂交狼尾草产量和品质的影响[J].浙江农业大学学报,1998,24(2) 185-188
    [104]杨恒山,王国君.杂交狼尾草“牧特利”生物学特性及刈割次数对产草量和品质的影响[J].草地学报2004,12(4)318-321
    [105]孟林.草地资源生产适宜性评价技术体系[J].草业学报2000.9 (4):1-12
    [106] Johnson C R,Reiling B A,Mislevy P,et a1.Effects of nitrogen fertilization and harvest data on yield,digestibility,fiber,and protein fractions of tropical grasses[J].Journal of Animal Science,2001,79(9): 2439-2538
    [107]孟林.草地资源生产适宜性评价技术体系[J].草业学报2000.9 (4):1-12
    [108]王欣,王玉培,曾宪竞等.刈割时间对杂交狼尾草青贮质量与营养成分含量的影响[J].饲料饲养,2009,7,8-11
    [109]陈勇,罗富成,毛华明等.施肥水平和不同株高对王草产量和品质的影响[J].草业科学,2009,26(2)72-75
    [110]袁振宏,孔晓英,颜涌捷,等.芒草稀硫酸水解工艺条件的正交实验[J].太阳能学报2006,27(6):63l一634.
    [111] Lewandowski I,Clifton.Brown J C,Scurlock J M 0,et a1.Miscanthus:European experience with a novel energy crop[J].Biomass and Bioenergy, 2000,19:209—227.
    [112] Sahramaa M,Jauhiainen L.Characterization of development and stem elongation of reed canary grass under northern conditions[J]. Industrial Crops and Products,2003,18:155—169.
    [113] Burvall J.Influence of harvest time and soil type on fuel quality in reed canary grass(Phalaris arundinaeea L[J].Biomass and Bioenergy,1997, 12(3):149—154.
    [114] Lewandowski I,Seurlockb J MO,Lindvall E,et a1.The development and current status of perennial rhizomatous grasses st8 energy crops in the US and Europe[J]. Biomass and Bioe nergy ,2003,25:335—361.
    [115] Ercoli L,Mariotti M ,Masoni A ,et a1.Effect of irrigation and nitrogen fertilization on biomass yield an d effi ciency of energy use in crop production of M iscanthus[J].Field Crops Research,1999,63 :3—11.
    [116] Venendaal R,Jorgensen U,Forsters C A.European energycrops:a synthesis.Biomass and Bioenergy,1997,13(3):147—185
    [117] Wagenaar B M,Van den Heuvel E J M T.Co—combustion of Miscanthus in a pulverised coal eombustor:Experiments in a droptube furnace. Biomass and Bioenergy,1997,12(3):185—197.
    [118] Andersson B.Prospects for breeding and supply of plant materia1.In:Bioenergy Workshop Report:Renewable Energy and Sustainable Agriculture“The Impact of Perennial Grass Research”.Brussels:European Commission,2000.50—52.
    [119]中国科普博览:中国的草地[http:www.kepu.net.cn/gb/special/200912_01_ gbhg/wz/s04.html] gbhg/wz/s04.html]
    [120]陈志彤,应朝阳,林永生,杂交狼尾草的栽培技术与利用价值[J]附件农业科学2006(2)44-45
    [121]卓坤水.杂交狼尾草栽培综合配套技术[J].福建畜牧兽医2007(2)29 66-67
    [122]于辉,向佐湘,杨知建.草本能源植物资源的开发与利用[J].草业科学,2008,25(12),46-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700