用户名: 密码: 验证码:
双芯光纤的理论研究及新型双芯光纤全接入连接器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:双芯光纤制作简单,结构稳定,在光纤通信、光纤传感等领域中有着广阔的应用前景,但是双芯光纤全接入连接器的缺乏阻碍了双芯光纤各种应用和研究的进一步发展。本论文结合国家自然科学基金重点项目“面向细粒度光路交换信息安全网的光纤器件”,对双芯光纤的光波导横向耦合模理论、耦合特性以及双芯光纤全接入连接器进行了深入系统的理论和实验研究,获得的主要创新成果如下:
     1.基于光波导横向耦合模理论的基本思想,由Helmholtz方程出发,推导出了一种新型的非正交耦合模方程,与传统方程的对比证明了该方程的正确性。
     2.基于双芯光纤耦合模理论分析了双芯光纤的耦合长度随两芯子间距的变化,利用光纤有限元方法分析了双芯光纤本征模式的双折射,以及双芯光纤耦合长度的偏振依赖特性,计算得出双芯光纤应力双折射远大于几何双折射,快轴(即x方向)的耦合系数大于慢轴(即y方向)的耦合系数,且随着双芯光纤两芯子中心间距的增大,其耦合长度的偏振敏感度将增高。
     3.分别采用侧边加工预制棒法和侧边开槽法制作了圆形、哑铃形和跑道形截面的双芯光纤,搭建了双芯光纤耦合系数可灵活调谐的CO2激光调节系统,实验中CO2激光照射引起双芯光纤耦合角的改变在104.7(rad/m)左右,且不会随波长的变化而显著改变。
     4.实验测试了双芯光纤在-30℃~175℃范围内的温度特性,发现随着温度升高,双芯光纤的耦合系数逐渐减小,且双芯光纤耦合角的温度敏感性随温度增加不断升高,为温度传感器的设计提供了一种新的思路。
     5.首次提出并实验验证了一种具有低串话路和低损耗特性的新型双芯光纤全接入连接器,利用该连接器可实现芯子相距小于20μm的双芯光纤的两纤芯分别与普通光纤的连接。由有限元方法精确计算表明,通过该连接器,从双芯光纤中射出的两个光场的中心间距可由16μm增加至大于90μm,引起的串话路仅为-37dB,引起的总功率损耗仅为0.056dB。通过侧边开槽法光纤制造工艺和光纤熔融拉伸技术分别制作完成了一根共线四芯光纤和一段带有尾纤的双子光纤,从而部分实验验证了新型连接器方案的可行性。如果该连接器研制成功,将极大地推动双芯光纤相关应用和研究的发展。
ABSTRACT:The application potential of twin-core fiber (TCF) in the field of optical communication and optical fiber sensoring is great, due to its simple manufacture and stable construction. However, the absence of available TCF full-access connector between one TCF and two single-core fiber (SCF) blocks the further development of TCF in various application researches. With the supporting of National Natural Science Foundation of China, the lateral coupled-mode theory of optical waveguide, which is the theory bases of TCF, the coupling characteristic of TCF and the TCF full-access connector are researched in detail by theoretical analysis and experiments in this dissertation. The main achivements of the dissertation are listed as follows:
     1) Base on the basic idea of the lateral coupled-mode theory of optical waveguide, a novel non-orthogonal coupled-mode equation is derivated from Helmholtz equation. Compared with the traditional equation, the novel equation is certificated to be correct.
     2) The change of coupling length versus center distance of two cores in TCF is analyzed by the TCF coupled-mode theory. The birefringence of eigen mode and the polarization dependent property of coupling length in TCF is analyzed by fiber finite element method. The stress-induced birefringence is much larger than the geometrical birefringence. The coupling coefficient of fast axis is greater than that of slow axis. The polarization sensitivity of the coupling angle will become greator if the center distance of the two cores in TCF is extended.
     3) A few kinds of twin-core fiber with circular, dumbbell and racetrack cross section are fabricated with side-polised preforms or side-grooved preforms. A modify system of coupling coefficient of TCF is built with CO2laser. In the experiment, the coupling angle of TCF changes by about104.7rad/m, and the change amount is not effected by wavelength significantly.
     4) The temperature sensing characteristic in the range of-30℃~175℃is tested. The mutual coupling coefficient will be decreased if the temperature rises. And the temperature sensitivity of the coupling angle will become greater as the temperature rises.
     5) A novel, low loss, low cross-talk, all-fiber, full-access connector is proposed and demonstrated experimentally. With the novel connector, two close cores of TCF, with the center distance smaller than20μm, can be accessed simultaneously. For the simulated example by finite element method, the center distance of the two optical fields is increased from16μm to more than90μm by passing the novel connector, the cross-talk is only-37dB, and the power loss is only0.056dB. A piece of collinear four-core fiber and a piece of Gemini fiber are fabricated by groove&stack&draw technology and fused-strech technology respectively, which proves the feasibility of the novel connector partially. with two single-mode SCF pigtails, and the working principle can be explained by directional coupling theory. The two close optical fields launched from the TCF are separated into two far apart optical fields, so that each optical field could be butt-coupled into one of the cores of one gemini fiber segment.
引文
[1]Pierce J. R. Coupling of Modes of Propagation.[J]. Journal of Applied Physics,1954,25(2): 179-183.
    [2]Miller S. E. Coupled-wave theory and waveguide applications.[J]. Bell Syst. Tech. J.,1954, 33:661-719
    [3]Cristal E. G., Young L. Theory and Tables of Optimum Symmetrical TEM-Mode Coupled-Transmission-Line Directional Couplers. [J]. Microwave Theory and Techniques, IEEE Transactions on,1965,13(5):544-558.
    [4]Amalric J. L., Baudrand H., Hollinger M. Various Aspects of Coupled-Mode Theory for Anisotropic Partially-Filled Waveguides. Application to a Semi-Conductor Loaded Wave-Guide with Perpendicular Induction. Microwave Conference,1977.7th European. 1977:146-150.
    [5]Awai I., Itoh T. Coupled-Mode Theory Analysis of Distributed Nonreciprocal Structures.[J]. Microwave Theory and Techniques, IEEE Transactions on,1981,29(10):1077-1087.
    [6]Hsieh H. C. Coupled mode theory in a lossy, nonlinear transmission line system.[J]. Journal of Applied Physics,1987,62(5):2095-2102.
    [7]Ramakrishna P. V, Chadha D. Coupled mode analysis of finlines on anisotropic substrates.[J]. Electronics Letters,1989,25(20):1399-1400.
    [8]Ihmels R., Arndt F. Field theory CAD of L-shaped iris coupled mode launchers and dual-mode filters. Microwave Symposium Digest,1993., IEEE MTT-S International.1993, 2:765-768.
    [9]Yasumoto K., Matsunaga M., Rawat B. S. Coupled-mode theory of terminal characteristic parameters for multilayered and multiconductor lines. Microwave and Millimeter Wave Technology Proceedings,1998. ICMMT '98.1998 International Conference on.1998: 561-564.
    [10]Lopetegi T., Laso M. A. G., Erro M. J., Sorolla M., Thumm M. Analysis and design of periodic structures for microstrip lines by using the coupled mode theory.[J]. Microwave and Wireless Components Letters, IEEE,2002,12(11):441-443.
    [11]Nguyen H. V, Caloz C. Coupled mode theory approximation for arbitrary conventional/metamaterial contradirectional coupled-line couplers. Microwave Conference, 2006. APMC 2006. Asia-Pacific.2006:1345-1348.
    [12]Nguyen H. V, Caloz C. Generalized Coupled-Mode Approach of Metamaterial Coupled-Line Couplers:Coupling Theory, Phenomenological Explanation, and Experimental Demonstration.[J]. Microwave Theory and Techniques, IEEE Transactions on, 2007,55(5):1029-1039.
    [13]Arnedo I., Laso M. A. G., Falcone F., Benito D., Lopetegi T. A Series Solution for the Single-Mode Synthesis Problem Based on the Coupled-Mode Theory.[J]. Microwave Theory and Techniques, IEEE Transactions on,2008,56(2):457-466.
    [14]Xianhui Li, Wenhua Jiang, Yongan Sllui. Coupled mode theory for nonlinear piezoelectric plate vibrations. [J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,1998,45(3):800-805.
    [15]Sarangan A. M., Wei-Ping Huang. A coupled mode theory for electron wave directional couplers. High Speed Semiconductor Devices and Circuits,1993. Proceedings., IEEE/Cornell Conference on Advanced Concepts in.1993:182-188.
    [16]Craciun F., Sorba L., Molinari E., Pappalardo M. A coupled-mode theory for periodic piezoelectric composites.[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,1989,36(1):50-56.
    [17]Thorvaldsson T., Nyffeler F. M. Rigorous Derivation of the Mason Equivalent Circuit Parameters from Coupled Mode Theory. IEEE 1986 Ultrasonics Symposium.1986:91-96.
    [18]Rutherford Steven R., Hawker Kenneth E. Consistent coupled mode theory of sound propagation for a class of nonseparable problems.[J]. The Journal of the Acoustical Society of America,1981,70(2):554-564.
    [19]Moore R. M., DePian L. The coupled-mode theory of acoustic amplification.[J]. Proceedings of the IEEE,1967,55(2):238-239.
    [20]Kiani M., Ghovanloo M. The Circuit Theory Behind Coupled-Mode Magnetic Resonance-Based Wireless Power Transmission. [J]. Circuits and Systems Ⅰ:Regular Papers, IEEE Transactions on,2012,59(9):2065-2074.
    [21]Yu Xiaofang, Sandhu Sunil, Beiker Sven, Sassoon Richard, Fan Shanhui. Wireless energy transfer with the presence of metallic planes.[J]. Applied Physics Letters,2011,99(21): 214102-3.
    [22]Shen F. Z., Cui W. Z., Ma W., Huangfu J. T., Ran L. X. Circuit analysis of wireless power transfer by "Coupled Magnetic Resonance".[J]. IET Conference Publications,2009, 2009(CP562):602-605.
    [23]Kurs Andre, Karalis Aristeidis, Moffatt Robert, Joannopoulos J. D., Fisher Peter, Soljacic Marin. Wireless Power Transfer via Strongly Coupled Magnetic Resonances.[J]. Science, 2007,317(5834):83-86.
    [24]Diwei Liu, Xuesong Yuan, Yang Yan, Shenggang Liu. Coupled-mode theory of coaxial THz gyrotron with two electron beams. Infrared, Millimeter and Terahertz Waves,2008. IRMMW-THz 2008.33rd International Conference on.2008:1-2.
    [25]Sarangan A. M., Wei-Ping Huang. A coupled mode theory for electron wave directional couplers.[J]. Quantum Electronics, IEEE Journal of,1994,30(12):2803-2810.
    [26]Pease M. C. Generalized Coupled Mode Theory.[J]. Journal of Applied Physics,1961,32(9): 1736-1743.
    [27]Haus H. A. Electron beam waves in microwave tubes [R]. Symposium on Electronic Waveguides, Polytechnic Institute of Brooklyn, April 8-10,1958.
    [28]Xu Hua-Xing, Li Ke, Yang Li, Qian Jing-Ren. Temporal coupled-mode theory for resonators. Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC),2011.2011:82-84.
    [29]Verslegers L., Zongfu Yu, Catrysse P. B., Zhichao Ruan, Shanhui Fan. Temporal coupled-mode theory for resonant apertures. Lasers and Electro-Optics (CLEO),2011 Conference on.2011:1-2.
    [30]Avaritsiotis N., Kamalakis T., Sphicopoulos T. On the Effectiveness of Coupled Mode Theory in the Analysis of Photonic Crystal Coupled Resonator Devices.[J]. Lightwave Technology, Journal of,2011,29(5):736-743.
    [31]Ruan Zhichao, Fan Shanhui. Temporal coupled-mode theory for the Fano resonance in light scattering and its applications. Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS),2010 Conference on.2010:1-2.
    [32]Xueqin Huang, Yi Zhang, Chui S. T., Zhou L. Electric and magnetic resonances in broadside coupled split ring resonators:An extended mode-expansion theory. Metamaterials, 2008 International Workshop on.2008:102-103.
    [33]Wonjoo Suh, Zheng Wang, Shanhui Fan. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities.[J]. Quantum Electronics, IEEE Journal of,2004,40(10):1511-1518.
    [34]Shun-Lien Chuang. Application of the strongly coupled-mode theory to integrated optical devices.[J]. Quantum Electronics, IEEE Journal of,1987,23(5):499-509.
    [35]Marcuse D. Coupled mode theory of optical resonant cavities.[J]. Quantum Electronics, IEEE Journal of,1985,21(11):1819-1826.
    [36]Leigh-Wei Chen, Felsen L. Correction to "Coupled-mode theory of unstable resonators".[J]. Quantum Electronics, IEEE Journal of,1974,10(4):467-467.
    [37]Leih-Wei Chen, Felsen L. Coupled-mode theory of unstable resonators.[J]. Quantum Electronics, IEEE Journal of,1973,9(11):1102-1113.
    [38]Skorobogatiy M., Johnson Steven G., Jacobs Steven A., Fink Yoel. Dielectric profile variations in high-index-contrast waveguides, coupled mode theory, and perturbation expansions.[J]. Physical Review E,2003,67(4):046613.
    [39]Marcuse D. Coupled mode theory of round optical fibers.[J]. J. Bell Syst Tech,1973,52: 817-843.
    [40]马春生,刘式庸.光波导模式理论[M].吉林大学出版社,2007:305-329.
    [41]Erdogan T. Fiber grating spectra.[J]. Lightwave Technology, Journal of,1997,15(8): 1277-1294.
    [42]Marcuse D. The coupling of degenerate modes in two parallel dielectric waveguides.[J]. Bell Syst. Tech. J.,1971,50:1791-1816.
    [43]Yariv A. Coupled-mode theory for guided-wave optics.[J]. Quantum Electronics, IEEE Journal of,1973,9(9):919-933.
    [44]Taylor H.F., Yariv A. Guided wave optics.[J]. Proceedings of the IEEE,1974,62(8): 1044-1060.
    [45]Kogelnik H. Theory of dielectric waveguides.[J]. in Integrated Optics, T. Tamir, ed. (Springer-Verlag, New York,1975) Chap.2.,1975.
    [46]Sammut Rowland, Snyder Allan W. Leaky modes on a dielectric waveguide:orthogonality and excitation.[J]. Appl. Opt.,1976,15(4):1040-1044.
    [47]Snyder Allan W., Love John D. Optical Waveguide Theory [M]. Chapman and Hall, London,1983.
    [48]Chen Kuo-Liang, Wang Shyh. Cross-talk problems in optical directional couplers.[J]. Applied Physics Letters,1984,44(2):166-168.
    [49]Haus H. A. Waves and Fields in Optoelectronics [M]. Prentice Hall, Englewood Cliffs, N.J, 1984.
    [50]Haus H., Huang W, Kawakami S., Whitaker N. Coupled-mode theory of optical waveguides.[J]. Lightwave Technology, Journal of,1987,5(1):16-23.
    [51]Snyder Allan W. Coupled-Mode Theory for Optical Fibers.[J]. J. Opt. Soc. Am.,1972, 62(11):1267-1277.
    [52]Hardy Amos, Streifer William. Analysis of phased-array diode lasers.[J]. Opt. Lett.,1985, 10(7):335-337.
    [53]Shun-Lien Chuang. A coupled mode formulation by reciprocity and a variational principle.[J]. Lightwave Technology, Journal of,1987,5(1):5-15.
    [54]Streifer W, Osinski M., Hardy A. Reformulation of coupled-mode theory of multiwaveguide systems.[J]. J. Lightwave Technol.,1987, LT-5:1-4.
    [55]Vassallo C. About coupled-mode theories for dielectric waveguides.[J]. Lightwave Technology, Journal of,1988,6(2):294-303.
    [56]Huang Wei-Ping. Coupled-mode theory for optical waveguides:an overview.[J]. J. Opt. Soc. Am. A,1994,11(3):963-983.
    [57]L Jones A. Coupling of optical fibers and scattering in fibers.[J]. J. Opt. Soc. Am.,1965, 55(3):261.
    [58]Schiffner G., Schneider H., Schoner G. Double-core single-mode optical fiber as directional coupler [J]. Applied Physics A:Materials Science & Processing 1980,23(1):41-45.
    [59]Liu Zhihai, Bo Fusen, Wang Lei, Tian Fengjun, Yuan Libo. Integrated fiber Michelson interferometer based on poled hollow twin-core fiber.[J]. Opt. Lett.,2011,36(13): 2435-2437.
    [60]Yuan Libo, Yang Jun, Liu Zhihai, Sun Jiaxing. In-fiber integrated Michelson interferometer.[J]. Opt. Lett.,2006,31(18):2692-2694.
    [61]Suchun Feng, Li Honglei, Ou Xu, Shaohua Lu, Shuisheng Jian. Compact in-fiber Mach-Zehnder interferometer using a twin-core fiber. Communications and Photonics Conference and Exhibition (ACP),2009 Asia.2009:1-5.
    [62]Peng Feng, Yang Jun, Li Xingliang, Yuan Yonggui, Wu Bing, Zhou Ai, Yuan Libo. In-fiber integrated accelerometer.[J]. Opt. Lett.,2011,36(11):2056-2058.
    [63]Zhou Ai, Zhang Yanhui, Li Guangping, Yang Jun, Wang Yuzhuo, Tian Fengjun, Yuan Libo. Optical refractometer based on an asymmetrical twin-core fiber Michelson interferometer.[J]. Opt. Lett.,2011,36(16):3221-3223.
    [64]Zhou Ai, Li Guangping, Zhang Yanhui, Wang Yuzhuo, Guan Chunying, Yang Jun, Yuan Libo. Asymmetrical Twin-Core Fiber Based Michelson Interferometer for Refractive Index Sensing.[J]. J. Lightwave Technol.,2011,29(19):2985-2991.
    [65]Vallee Real, Drolet Denis. Practical coupling device based on a two-core optical fiber.[J]. Appl. Opt.,1994,33(24):5602-5610.
    [66]Hewlett S. J., Love J. D., Tjugiarto T. Polarisation-dependent coupling in twin-core fibres with arbitrary elliptical cores.[J]. Optoelectronics, IEE Proceedings-,1994,141(1):43-48.
    [67]Kutz J. Nathan, Muraki David J. Enhanced power transfer and mode coupling in spun twin-core optical fibers.[J]. Opt. Lett.,1996,21(12):863-865.
    [68]Drolet Denis, Vallee Real. Dual-core fiber as a tunable directional coupler.[J]. Opt. Lett., 1993,18(6):408-410.
    [69]Peng G. D., Tjugiarto T., Chu P. L. Simple and nondestructive method for measurement of coupling length in twin-core optical fibre.[J]. Electronics Letters,1992,28(13):1237-1238.
    [70]Peng G. D., Tjugiarto T., Chu P. L. Accurate elasto-optic probe method for measurement of coupling length in twin-core optical fiber.[J]. Appl. Opt.,1994,33(6):1004-1010.
    [71]Yuan Libo, Liu Zhihai, Yang Jun, Guan Chunying. Twin-core fiber optical tweezers.[J]. Opt. Express,2008,16(7):4559-4566.
    [72]Emami F., Rahimi-Kazerooni A., Keshavarz A. Trapping power improvement of twin-core fiber optical tweezers. Numerical Simulation of Optoelectronic Devices (NUSOD),2011 11th International Conference on.2011:55-56.
    [73]Taghizadeh M., Rahimi A., Azadian H., Mahmoodi D., Zamani M. Modified twin-core optical tweezer for three-dimensional trapping. Computer Science and Electronic Engineering Conference (CEEC),20113rd.2011:56-59.
    [74]Sadeghi Mojtaba, Sheikhi M. Hossein, Kazeruni Ammar Rahimi, Emami Farzin. Improvements of twin-core fiber optical tweezers' performance. Optical Communications and Networks (ICOCN 2010),9th International Conference on.2010:108-111.
    [75]Rahimi-Kazerooni A., Emami F. Effect of the fiber radious core variations on far-field distribution of twin core optical tweezers. Optical Fibre Technology (ACOFT),2010 35th Australian Conference on.2010:1-3.
    [76]Zou Y., Dong X., Lin G., Adhami R. Wide Range FBG Displacement Sensor Based on Twin-Core Fiber Filter.[J]. Lightwave Technology, Journal of,2012,30(3):337-343.
    [77]Atkins G. R., Sceats M. G., Poole S. B., Arkwright J. W., Whitbread T. W., Hewlett S. J. UV tuning of twin-core-fiber demultiplexers. Optical Fiber Communications Conference. Optical Society of America,1995:WN4.
    [78]Arkwright J. W., Gillhoff B., Hewlett S. J., Love J. D., Allen P. M., Chu P. L., Whitbread T. W, Wu B., Atkins G. R., Poole S. B., Sceats M. G., Thorncraft D. A. Optical-to-electrical wavelength demultiplexing detector:design, fabrication, and analysis.[J]. Lightwave Technology, Journal of,1996,14(4):534-541.
    [79]Matsumoto R., Yamasaki S., Sakai T., Nishide K., Yamauchi R. Optical fiber filters using twin core fibers. Communications,1999. APCC/OECC '99. Fifth Asia-Pacific Conference on... and Fourth Optoelectronics and Communications Conference.1999,2:1616-1618.
    [80]Jacob Poulin Anne C., Vallee Real. Optical bandpass filter from a curved segment of a detuned two-core fiber.[J]. Appl. Opt.,1997,36(21):5064-5071.
    [81]Ortega B., Dong L. Highly tunable mismatched twin-core fibre filters. Optical Communication,1998.24th European Conference on.1998,1:31-32.
    [82]Arkwright J. W., Hewlett S. J., Atkins G. R., Bin Wu. High-isolation demultiplexing in bend-tuned twin-core fiber.[J]. Lightwave Technology, Journal of,1996,14(7):1740-1745.
    [83]Zou Yi, Dong Xiaopeng. Demodulation of the FBG temperature sensor with the tunable twin-core fiber.[J]. Microwave and Optical Technology Letters,2011,53(1):81-84.
    [84]Linyong Fan, Weiwei Jiang, Suchun Feng, Ruifeng Zhao, Siwen Zheng, Huanlu Li, Li Pei, Shuisheng Jian. Comb-Filter Based on In-Fiber Mach-Zehnder Interferometer Using a Twin-Core Fiber. Photonics and Optoelectronic (SOPO),2010 Symposium on.2010:1-4.
    [85]Ortega B., Dong L. Characteristics of mismatched twin-core fiber spectral filters.[J]. Photonics Technology Letters, IEEE,1998,10(7):991-993.
    [86]Tjugiarto T., Peng G. D., Chu P. L. Bandpass filtering effect in tapered asymmetrical twin-core optical fibres.[J]. Electronics Letters,1993,29(12):1077-1078.
    [87]Lin Ganbin, Dong Xiaopeng. All-fiber tunable bandpass filter based on cascaded twin-core fiber.[J]. Appl. Opt.,2011,50(36):6667-6670.
    [88]Ortega B., Dong L. Accurate tuning of mismatched twin-core fiber filters.[J]. Opt. Lett., 1998,23(16):1277-1279.
    [89]Lasgsgaard Jesper, Bang Ole, Bjarklev Anders. Photonic crystal fiber design for broadband directionalcoupling.[J]. Opt. Lett.,2004,29(21):2473-2475.
    [90]Nielsen Kristian, Rasmussen Henrik K., Jepsen Peter Uhd, Bang Ole. Broadband terahertz fiber directional coupler.[J]. Opt. Lett.,2010,35(17):2879-2881.
    [91]Chen Mingyang, Zhang Yongkang, Yu Rongjin. Wavelength-selective coupling of dual-core photonic crystal fiber and its application.[J]. Chin. Opt. Lett.,2009,7(5):390-392.
    [92]Chen Ming-Yang, Zhou Jun. Polarization-Independent Splitter Based on All-Solid Silica-Based Photonic-Crystal Fibers.[J]. J. Lightwave Technol.,2006,24(12):5082-5086.
    [93]Zhang Lin, Yang Changxi. Polarization-Dependent Coupling in Twin-Core Photonic Crystal Fibers.[J]. J. Lightwave Technol.,2004,22(5):1367.
    [94]Lee Byeong Ha, Eom Joo Beom, Kim Jinchae, Moon Dae Seung, Paek Un-Chul, Yang Gil-Ho. Photonic crystal fiber coupler.[J]. Opt. Lett.,2002,27(10):812-814.
    [95]Di Bin Philippe, Mothe Nicolas. Numerical analysis of directional coupling in dual-core microstructured optical fibers.[J]. Opt. Express,2009,17(18):15778-15789.
    [96]Florous Nikolaos, Saitoh Kunimasa, Koshiba Masanori. A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics.[J]. Opt. Express,2005,13(19):7365-7373.
    [97]Fogli Fabrizio, Saccomandi Luca, Bassi Paolo, Bellanca Gaetano, Trillo Stefano. Full vectorial BPM modeling of Index-Guiding Photonic Crystal Fibers and Couplers.[J]. Opt. Express,2002,10(1):54-59.
    [98]Mangan B. J., Knight J. C., Birks T. A., Russell P. S. J., Greenaway A. H. Experimental study of dual-core photonic crystal fibre.[J]. Electronics Letters,2000,36(16):1358-1359.
    [99]Kim Soan, Kee Chul-Sik. Dispersion properties of dual-core photonic-quasicrystal fiber.[J]. Opt. Express,2009,17(18):15885-15890.
    [100]Laegsgaard J. Directional coupling in twin-core photonic bandgap fibers.[J]. Opt. Lett.,2005, 30(24):3281-3283.
    [101]Saitoh Kunimasa, Sato Yuichiro, Koshiba Masanori. Coupling characteristics of dual-core photonic crystal fiber couplers.[J]. Opt. Express,2003,11(24):3188-3195.
    [102]Wang Zhi, Kai Guiyun, Liu Yange, Liu Jianfei, Zhang Chunshu, Sun Tingting, Wang Chao, Zhang Weigang, Yuan Shuzhong, Dong Xiaoyi. Coupling and decoupling of dual-core photonic bandgap fibers.[J]. Opt. Lett.,2005,30(19):2542-2544.
    [103]Kim Bongkyun, Kim Tae-Hoon, Cui Long, Chung Youngjoo. Twin core photonic crystal fiber for in-line Mach-Zehnder interferometric sensing applications.[J]. Opt. Express,2009, 17(18):15502-15507.
    [104]Wu Yuan, Town G. E., Bang O. Refractive Index Sensing in an All-Solid Twin-Core Photonic Bandgap Fiber.[J]. Sensors Journal, IEEE,2010,10(7):1192-1199.
    [105]Bongkyun Kim, Long Cui, Boram Kim, Youngjoo Chung. Temperature response of twin core photonic crystal fiber based in-line interferometer. OptoeElectronics and Communications Conference (OECC),2010 15th.2010:666-667.
    [106]Bongkyun Kim, Long Cui, Youngjoo Chung. Twin-core photonic crystal fiber for in-line torsion sensor. OptoeElectronics and Communications Conference (OECC),201116th. 2011:653-654.
    [107]Kitayama Ken-ichi, Shibata Nori, Ohashi Masaharu. Two-core optical fibers:experiment.[J]. J. Opt. Soc. Am. A,1985,2(1):84-89.
    [108]Frazao Orlando, Silva Ricardo M., Kobelke Jens, Schuster Kay. Temperature-and strain-independent torsion sensor using a fiber loop mirror based on suspended twin-core fiber.[J]. Opt. Lett.,2010,35(16):2777-2779.
    [109]Frazao O., Silva S. F. O., Viegas J., Baptista J. M., Santos J. L., Kobelke J., Schuster K. All Fiber Mach-Zehnder Interferometer Based on Suspended Twin-Core Fiber. [J]. Photonics Technology Letters, IEEE,2010,22(17):1300-1302.
    [110]Zheng Gang Lian, Xian Feng, Peter Horak, Limin Xiao, Yoonchan Jeong, Nicholas White, Ken Frampton, John Tucknott, Harvey Rutt, David N. Payne, Will Stewart, Wei H. Loh. Optical fiber with dual cores suspended in air. Optical Society of America,2011: Mo.2.LeCervin.1.
    [111]Sakamoto Taiji, Matsui Takashi, Tsujikawa Kyozo, Tomita Shigeru. Wide-Range Tunable Optical Delay Line Using Dual Concentric Core Fiber With Dispersion Coefficient of-2800 ps/nm/km.[J]. J. Lightwave Technol.,2011,29(13):1920-1925.
    [112]Huttunen Anu, Torma P. Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area.[J]. Opt. Express,2005,13(2):627-635.
    [113]Pande Kamna, Pal Bishnu P. Design Optimization of a Dual-Core Dispersion-Compensating Fiber with a High Figure of Merit and a Large Effective Area for Dense Wavelength-Division Multiplexed Transmission through Standard G.655 Fibers.[J]. Appl. Opt.,2003,42(19):3785-3791.
    [114]Sigang Yang, Yejin Zhang, Jinyan Li, Wei Chen, Lina He, Shizhong Xie. Experimental Study of Mode Field Evolution of Dual-Core Photonic Crystal Fiber.[J]. Photonics Technology Letters, IEEE,2007,19(19):1523-1525.
    [115]Sigang Yang, Yejin Zhang, Lina He, Shizhong Xie, Jinyan Li, Wei Chen, Zuowen Jiang, Jinggang Peng, Haiqing Li. Experimental Demonstration of Very High Negative Chromatic Dispersion Dual-Core Photonic Crystal Fiber. Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference. Optical Society of America,2007:OThA6.
    [116]Zografopoulos D. C., Vazquez C., Kriezis E. E., Yioultsis T. V. Dual-core photonic crystal fibers for tunable polarization mode dispersion compensation.[J]. Opt. Express,2011, 19(22):21680-21691.
    [117]Arkwright J., Chu P. L., Tjugiarto T. Variable demultiplexing using a twin-core fiber Mach-Zehnder interferometer.[J]. Photonics Technology Letters, IEEE,1993,5(10): 1216-1218.
    [118]Jacob-Poulin A. C., e R., LaRochelle S., Faucher D., Atkins G. R. Channel-Dropping Filter Based on a Grating-Frustrated Two-Core Fiber.[J]. J. Lightwave Technol.,2000,18(5):715.
    [119]Bethuys S., Lablonde L., Rivoallan L., Bayon J. F., Brilland L., Delevaque E. Optical add/drop multiplexer based on UV-written Bragg gratings in twincore fibre Mach-Zehnder interferometer.[J]. Electronics Letters,1998,34(12):1250-1252.
    [120]Philippe Yvernault, Mechin D., Goyat E., Brilland L., Pureur D. Fully functional optical add and drop multiplexer using twin-core fiber based mach-zehnder interferometer with photoimprinted fiber bragg gratings. Optical Fiber Communication Conference. Optical Society of America,2001:WDD92.
    [121]Yvernault P., Durand D., Mechin D., Boitel M., Pureur D. Passive athermal Mach-Zehnder interferometer twin-core fiber optical add/drop multiplexer. Optical Communication,2001. ECOC '01.27th European Conference on.2001,6:88-89.
    [122]Aslund M., Poladian L., Canning J., de Sterke C. M. Add-drop multiplexing by dispersion inverted interference coupling. [J]. Lightwave Technology, Journal of,2002,20(8): 1585-1589.
    [123]An Honglin, Ashton Brian, Fleming Simon. Long-period-grating-assisted optical add-drop filter based on mismatched twin-core photosensitive-cladding fiber.[J]. Opt. Lett.,2004, 29(4):343-345.
    [124]Aissa Harhira, Jerome Lapointe, Raman Kashyap. A Simple Bend Sensor based on multimode interference and a Twin Core Fiber Mach-Zehnder Interferometer. Optical Society of America,2011:SMC7.
    [125]Golnabi Hossein. Simulation of interferometric sensors for pressure and temperature measurements.[J]. Review of Scientific Instruments,2000,71(4):1608-1613.
    [126]Pichaya Pattanasattayavong, Vinyu Kultavewuti, Warit Thanopachai, Waleed S. Mohammed. Dual Core Fiber for Strain Sensing Applications. Asia Optical Fiber Communication and Optoelectronic Exposition and Conference. Optical Society of America,2008:SaM7.
    [127]Spammer S. J., Swart P. L., Chtcherbakov A. A. Merged Sagnac-Michelson interferometer for distributed disturbance detection.[J]. Lightwave Technology, Journal of,1997,15(6): 972-976.
    [128]Zhao Ruifeng, Pei Li, Li Zhuoxuan, Ning Tigang, Fan Linyong, Jiang Weiwei. Experiment research of temperature sensor based on twin-core fiber.[J]. Chin. Opt. Lett.,2011,9(4): 041003-.
    [129]Archambault J. L., Russell P. St J., Barcelos S., Hua P., Reekie L. Grating-frustrated coupler: a novel channel-dropping filter in single-mode optical fiber.[J]. Opt. Lett.,1994,19(3): 180-182.
    [130]Bakhti F., Sansonetti P., Sinet C., Gasca L., Martineau L., Lacroix S., Daxhelet X., Gonthier F. Optical add/drop multiplexer based on UV-written Bragg grating in a fused 100% coupler.[J]. Electronics Letters,1997,33(9):803-804.
    [131]Bakhti F, Daxhelet X., Sansonetti P., Lacroix S. Influence of Bragg grating location in fused 100% coupler for add and drop multiplexer realization. Optical Fiber Communication Conference and Exhibit,1998. OFC '98., Technical Digest.1998:333-334.
    [132]Ortega B., Capmany J., Pastor D. Effects of normal mode losses in an all-fibre wavelength division multiplexer/demultiplexer using Bragg gratings.[J]. Electronics Letters,1997, 33(21):1782-1784.
    [133]Gauden D., Goyat E., Vaudry C., Yvernault P., Pureur D. Tunable Mach-Zehnder-based add-drop multiplexer.[J]. Electronics Letters,2004,40(21):1374-1375.
    [134]Yi Bin Lu, Chu P. L. Gain flattening by using dual-core fiber in erbium-doped fiber amplifier.[J]. Photonics Technology Letters, IEEE,2000,12(12):1616-1617.
    [135]Harduar Mark K., Mariampillai Adrian, Vuong Barry, Gu Xijia, Standish Beau A., Yang Victor X. D. Dual-core ytterbium fiber amplifier for high-power 1060 nm swept source multichannel optical coherence tomography imaging.[J]. Opt. Lett.,2011,36(15): 2976-2978.
    [136]Haijuan Chen, Hong Li, Xianglin Yang. Twin-core fiber amplifier in ultra-high-bit-rate optical transmission system. Communication Technology Proceedings,1998. ICCT '98. 1998 International Conference on.1998.
    [137]Costa J. R., Ramos P. M., Paiva C. R., Barbosa A. M. A numerical study of WDM pulse equalization in twin-core fiber amplifiers. Lasers and Electro-Optics Society 2000 Annual Meeting. LEOS 2000.13th Annual Meeting. IEEE.2000,1:275-276.
    [138]Lundquist P. B., Andersen D. R., Xiaoping Yang, Luther-Davies B. Extended parametric gain using twin core fiber. Nonlinear Optics:Materials, Fundamentals, and Applications, 1994. NLO'94 IEEE.1994:312-314.
    [139]Malomed Boris A., Peng G. D., Chu P. L. Nonlinear-optical amplifier based on a dual-core fiber.[J]. Opt. Lett.,1996,21(5):330-332.
    [140]Kakkar Charu, Thyagarajan K. Broadband, lossless, dispersion-compensating asymmetrical twin-core fiber design with flat-gain Raman amplification.[J]. Appl. Opt.,2005,44(12): 2396-2401.
    [141]Snyder Allan W., Mitchell D. John. Description of nonlinear couplers by power conservation.[J]. Opt. Lett.,1989,14(20):1146-1148.
    [142]Chen Y. Twin core nonlinear couplers with saturable nonlinearity.[J]. Electronics Letters, 1990,26(17):1374-1375.
    [143]Snyder Allan W., Chen Yijiang, Rowland David, Mitchell D. John. Unification of nonlinear-optical fiber devices.[J]. Opt. Lett.,1990,15(3):171-173.
    [144]Chen Y., Snyder A. W., Payne D. N. Twin core nonlinear couplers with gain and loss.[J]. Quantum Electronics, IEEE Journal of,1992,28(1):239-245.
    [145]Arkwright J. Fast resonant nonlinear relaxation observed in Q-switched neodymium-doped twin-core fibre.[J]. Electronics Letters,1994,30(14):1138-1139.
    [146]Arkwright J., Wu B., Skinner I., Chu P. Resonantly enhanced nonlinearity using stimulated down-pumping in neodymium doped twin-core fibre.[J]. Electronics Letters,1994,30(3): 235-236.
    [147]Stolen R. H. Nonlinear fiber devices. Lasers and Electro-Optics Society Annual Meeting, 1996. LEOS 96., IEEE.1996:88-89 vol.2.
    [148]Smyth Noel F., Worthy Annette L. Dispersive radiation and nonlinear twin-core fibers.[J]. J. Opt. Soc. Am. B,1997,14(10):2610-2617.
    [149]Bezerra Sombra A. S., Nobrega K. Z., Gomes da Silva M. Numerical studies in twin core directional couplers using asymmetric nonlinear refractive index profiles. Microwave and Optoelectronics Conference,1999. SBMO/IEEE MTT-S, APS and LEOS-IMOC '99. International.1999:207-210 vol.1.
    [150]Liu Min, Shum P. Generalized coupled nonlinear equations for the analysis of asymmetric two-core fiber coupler.[J]. Opt. Express,2003,11(2):116-119.
    [151]han Florence Y. M., Yasumoto Kiyotoshi. Design of wavelength tunable long-period grating couplers based on asymmetric nonlinear dual-core fibers.[J]. Opt. Lett.,2007,32(23): 3376-3378.
    [152]Friberg S. R., Weiner A. M., Silberberg Y, Sfez B. G., Smith P. S. Femotosecond switching in a dual-core-fiber nonlinear coupler.[J]. Opt. Lett,1988,13(10):904-906.
    [153]Trillo S., Wabnitz S. Coupling instability and power-induced switching with two-core dual-polarizations fiber nonlinear couplers.[J]. J. Opt. Soc. Am. B,1988,5(2):483-491.
    [154]Trillo S., Wabnitz S., Wright E. M., Stegeman G. I. Soliton switching in fiber nonlinear directional couplers.[J]. Opt. Lett.,1988,13(8):672-674.
    [155]Chen Y., Snyder A. W., Mitchell D. J. Ideal optical switching by nonlinear multiple (parasitic) core couplers.[J]. Electronics Letters,1990,26(1):77-78.
    [156]Nayar B. K., Finlayson N., Doran N. J., Davey S. T., Williams D. L., Arkwright J. W. All-optical switching in a 200-m twin-core fiber nonlinear Mach-Zehnder interferometer.[J]. Opt. Lett.,1991,16(6):408-410.
    [157]Chu P. L., Wu B. Optical switching in twin-core erbium-doped fibers.[J]. Opt. Lett.,1992, 17(4):255-257.
    [158]Chu P. L., Peng G. D., Malomed B. A. Analytical solution to soliton switching in nonlinear twin-core fibers.[J]. Opt. Lett.,1993,18(5):328-330.
    [159]Ramos P. M., Paiva C. R. Optimization and characterization of phase-controlled all-optical switching with fiber solitons.[J]. Selected Topics in Quantum Electronics, IEEE Journal of, 1997,3(5):1224-1231.
    [160]Ramos P. M., Paiva C. R. Optimization of phase-controlled soliton switching in nonlinear optical fibers. Lasers and Electro-Optics Society Annual Meeting,1997. LEOS '97 10th Annual Meeting. Conference Proceedings., IEEE.1997:373-374 vol.1.
    [161]Zhu Y., Handerek V. A., Rogers A. J., Kanka J. Numerical simulation of a passive twin-core fibre coupler ring laser based on nonlinear optical switching. Optoelectronic Integration and Switching (Ref. No:1997/372), IEE Colloquium on.1997:5/1-5/7.
    [162]Arkwright J. W., Elango P., Atkins G. R., Whitbread T., Digonnet J. F. Experimental and theoretical analysis of the resonant nonlinearity in ytterbium-doped fiber.[J]. Lightwave Technology, Journal of,1998,16(5):798-806.
    [163]Marchese D., De Sario M., Jha A., Kar A. K., Smith E. C. Highly nonlinear GeS2-based chalcohalide glass for all-optical twin-core-fiber switching.[J]. J. Opt. Soc. Am. B,1998, 15(9):2361-2370.
    [164]Paiva Carlos R., Topa Antonio L., Barbosa Afonso M. Influence of intermodal dispersion on the switching of solitons at different wavelengths in twin-core fiber couplers.[J]. J. Opt. Soc. Am. B,1999,16(10):1636-1641.
    [165]Ramos P. M., Paiva C. R. All-optical pulse switching in twin-core fiber couplers with intermodal dispersion.[J]. Quantum Electronics, IEEE Journal of,1999,35(6):983-989.
    [166]Sombra A. S. B., Nobrega K. Z., da Silva M. G. Investigation of switching characteristics in a twin-core nonlinear directional coupler using a variational method. LEOS '99. IEEE Lasers and Electro-Optics Society 1999 12th Annual Meeting.1999:62-63 vol.1.
    [167]Costa J. R., Ramos P. M., Paiva C. R., Barbosa A. M. Numerical study of passive gain equalization with twin-core fiber coupler amplifiers for WDM systems.[J]. Quantum Electronics, IEEE Journal of,2001,37(12):1553-1561.
    [168]Attard Alfred E. Optical Bandwidth in Coupling:The Multicore Photonic Switch.[J]. Appl. Opt.,2003,42(15):2665-2673.
    [169]Betlej A., Suntsov S., El-Ganainy R., Christodoulides D. N., George Stegeman, Fini J., Bise R. T., DiGiovanni D. J. All-Optical Switching in a Dual Core Photonic Crystal Fiber. Nonlinear Guided Waves and Their Applications. Optical Society of America,2005:TuD5.
    [170]Betlej A., Suntsov S., Makris K. G., Jankovic L., Christodoulides D. N., Stegeman G. I., Fini J., Bise R. T., DiGiovanni D. J. All-optical switching and multifrequency generation in a dual-core photonic crystal fiber.[J]. Opt. Lett.,2006,31(10):1480-1482.
    [171]Yuan Libo, Liu Zhihai, Yang Jun, Guan Chunying. Bitapered fiber coupling characteristics between single-mode single-core fiber and single-mode multicore fiber. [J]. Appl. Opt.,2008 47(18):3307-3312.
    [172]Yuan Libo, Yang Jun, Guan Chunying, Dai Qiang, Tian Fengjun. Three-core fiber-based shape-sensing application.[J]. Opt. Lett.,2008,33(6):578-580.
    [173]Peterka P., Kasik I., Kanka J., Honzatko P., Matejec V, Hayer M. Twin-core fiber design and preparation for easy splicing.[J]. Photonics Technology Letters, IEEE,2000,12(12): 1656-1658.
    [174]江微微,范林勇,赵瑞峰,卫延,裴丽,简水生.基于双芯光纤耦合器的梳状滤波器及其CO2激光调节.[J].物理学报,2011,60(4):044214-5.
    [175]Libo Yuan, Jun Yang, Zhihai Liu. A Compact Fiber-Optic Flow Velocity Sensor Based on a Twin-Core Fiber Michelson Interferometer.[J]. Sensors Journal, IEEE,2008,8(7): 1114-1117.
    [176]Xiaoliang Zhu, Libo Yuan, Zhihai Liu, Jun Yang, Chunying Guan. Coupling Theoretical Model Between Single-Core Fiber and Twin-Core Fiber.[J]. Lightwave Technology, Journal of,2009,27(23):5235-5239.
    [177]Poole S. B., Love J. D. Single-core fibre to twin-core fibre connector.[J]. Electronics Letters, 1991,27(17):1559-1560.
    [178]Ortega B., Dong L. Selective fused couplers consisting of a mismatched twin-core fiber and a standard optical fiber.[J]. Lightwave Technology, Journal of,1999,17(1):123-128.
    [1]Marcuse D. The coupling of degenerate modes in two parallel dielectric waveguides.[J]. Bell Syst. Tech. J.,1971,50(1791-1816).
    [2]Marcuse D. Coupled mode theory of round optical fibers.[J]. J. Bell Syst Tech,1973,52: 817-843.
    [3]Yariv A. Coupled-mode theory for guided-wave optics.[J]. Quantum Electronics, IEEE Journal of,1973,9(9):919-933.
    [4]Taylor H.F., Yariv A. Guided wave optics.[J]. Proceedings of the IEEE,1974,62(8): 1044-1060.
    [5]Kogelnik H. Theory of dielectric waveguides.[J]. in Integrated Optics, T. Tamir, ed. (Springer-Verlag, New York,1975) Chap.2.,1975.
    [6]Sammut Rowland, Snyder Allan W. Leaky modes on a dielectric waveguide:orthogonality and excitation.[J].Appl. Opt.,1976,15(4):1040-1044.
    [7]Snyder Allan W., Love John D. Optical Waveguide Theory [M]. Chapman and Hall, London,1983.
    [8]Chen Kuo-Liang, Wang Shyh. Cross-talk problems in optical directional couplers.[J]. Applied Physics Letters,1984,44(2):166-168.
    [9]Haus H. A. Waves and Fields in Optoelectronics [M]. Prentice Hall, Englewood Cliffs, N.J, 1984.
    [10]吴重庆.光波导理论(第二版)[M].北京:清华大学出版社,2005:196-198.
    [11]Haus H., Huang W., Kawakami S., Whitaker N. Coupled-mode theory of optical waveguides.[J]. Lightwave Technology, Journal of,1987,5(1):16-23.
    [12]马春生,刘式庸.光波导模式理论[M].吉林大学出版社,2007:305-329.
    [13]陈根祥.光纤通信技术基础[M].北京:高等教育出版社,2010:30-37.
    [14]Haus H. A. Electron beam waves in microwave tubes [R]. Symposium on Electronic Waveguides, Polytechnic Institute of Brooklyn, April 8-10,,1958.
    [15]Haus H. A., Huang W. P., Snyder A. W. Coupled-mode formulations.[J]. Opt. Lett.,1989, 14(21):1222-1224.
    [16]Huang Wei-Ping. Coupled-mode theory for optical waveguides:an overview.[J]. J. Opt. Soc. Am. A,1994,11(3):963-983.
    [1]陈根祥.光纤通信技术基础[M]. 北京:高等教育出版社,2010:30-37.
    [2]Folland Gerald B.数学物理方程--傅里叶分析及其应用(影印版)[M].北京:机械工业出版社,2005:138-140.
    [3]Yuan Libo, Liu Zhihai, Yang Jun. Coupling characteristics between single-core fiber and multicore fiber.[J]. Opt. Lett.,2006,31(22):3237-3239.
    [4]Schiffner G., Schneider H., Schoner G. Double-core single-mode optical fiber as directional coupler [J]. Applied Physics A:Materials Science & Processing 1980,23(1):41-45.
    [5]Peterka P., Kasik I., Kanka J., Honzatko P., Matejec V., Hayer M. Twin-core fiber design and preparation for easy splicing.[J]. Photonics Technology Letters, IEEE,2000,12(12): 1656-1658.
    [6]Zhao Ruifeng, Pei Li, Dong Xiaowei, Ning Tigang, Li Zhuoxuan, Jiang Weiwei, Fan Linyong, Zhang Chenfang. Precise method for modifying birefringence of stress-induced high-birefringence fiber.[J]. Opt. Lett.,2010,35:2967-2969.
    [7]Koshiba M. Optical Waveguide Theory by the Finite Element Method [M]. KTK Scientific,1992.
    [8]Zhao Ruifeng, Pei Li, Li Zhuoxuan, Ning Tigang, Fan Linyong, Jiang Weiwei. Experiment research of the temperature sensor based on twin-core fiber.[J]. Chinese Optics Letters, 2010.
    [9]Zou Y., Dong X., Lin G., Adhami R. Wide Range FBG Displacement Sensor Based on Twin-Core Fiber Filter.[J]. Lightwave Technology, Journal of,2012,30(3):337-343.
    [10]马春生,刘式庸.光波导模式理论[M].吉林大学出版社,2007:305-329.
    [11]江微微,范林勇,赵瑞峰,卫延,裴丽,简水生.基于双芯光纤耦合器的梳状滤波器及其CO2激光调节.[J].物理学报,2011,60(4):044214-5.
    [1]Lei Yao, Shuqin Lou, Lisong Liu, Jian Peng, Shuisheng Jian. Fabrication and Design of Asymmetrical Twin Core Fiber for Passive Mode-Locking. Optical Society of America, 2009:ThJ4.
    [2]Zhu B., Taunay T. F., Yan M. F., Fini J. M., Fishteyn M., Monberg E. M., Dimarcello F. V. Seven-core multicore fiber transmissions for passive optical network.[J]. Opt. Express,2010, 18(11):11117-11122.
    [3]Yuan Libo, Liu Zhihai, Yang Jun. Coupling characteristics between single-core fiber and multicore fiber.[J]. Opt. Lett.,2006,31(22):3237-3239.
    [4]卫延.新型特种光纤和相关制作工艺的研究[D].北京:北京交通大学,2007:110-118.
    [5]Schiffner G., Schneider H., Schoner G. Double-core single-mode optical fiber as directional coupler [J]. Applied Physics A:Materials Science & Processing 1980,23(1):41-45.
    [6]Zetterlund E., Loriette A., Sterner C., Eriksson M., Eriksson-Quist H., Margulis W. Gemini Fiber for Interferometry and Sensing Applications.[J]. Journal of Sensors,2009,2009.
    [7]Zhao Ruifeng, Pei Li, Li Zhuoxuan, Ning Tigang, Fan Linyong, Jiang Weiwei. Experiment research of temperature sensor based on twin-core fiber. [J]. Chin. Opt. Lett.,2011,9(4): 041003-.
    [8]江微微,范林勇,赵瑞峰,卫延,裴丽,简水生.基于双芯光纤耦合器的梳状滤波器及其CO2激光调节.[J].物理学报,2011,60(4):044214-5.
    [9]Philippe Yvernault, Mechin D., Goyat E., Brilland L., Pureur D. Fully functional optical add and drop multiplexer using twin-core fiber based mach-zehnder interferometer with photoimprinted fiber bragg gratings. Optical Fiber Communication Conference. Optical Society of America,2001:WDD92.
    [10]. Hanna R. Infrared Absorption Spectrum of Silicon Dioxide.[J]. Journal of The American Ceramic Society,1965,48(11):595-599.
    [11]Hocker G. B. Fiber-optic sensing of pressure and temperature.[J]. Appl. Opt.,1979,18(9): 1445-1448.
    [12]Li Kuo, Zhou Zhen'an, Liu Aichun. A high sensitive fiber Bragg grating cryogenic temperature sensor.[J]. Chin. Opt. Lett.,2009,7(2):121-123.
    [13]Rao Y. J. Recent progress in applications of in-fibre Bragg grating sensors.[J]. Optics and Lasers in Engineering,1999,31:297-324.
    [1]Schiffner G., Schneider H., Schoner G. Double-core single-mode optical fiber as directional coupler [J]. Applied Physics A:Materials Science & Processing 1980,23(1): 41-45.
    [2]Yuan Libo, Yang Jun, Guan Chunying, Dai Qiang, Tian Fengjun. Three-core fiber-based shape-sensing application.[J]. Opt. Lett.,2008,33(6):578-580.
    [3]Peng Feng, Yang Jun, Li Xingliang, Yuan Yonggui, Wu Bing, Zhou Ai, Yuan Libo. In-fiber integrated accelerometer.[J]. Opt. Lett.,2011,36(11):2056-2058.
    [4]Yuan Libo, Yang Jun, Liu Zhihai, Sun Jiaxing. In-fiber integrated Michelson interferometer.[J]. Opt. Lett.,2006,31(18):2692-2694.
    [5]Suchun Feng, Li Honglei, Ou Xu, Shaohua Lu, Shuisheng Jian. Compact in-fiber Mach-Zehnder interferometer using a twin-core fiber. Communications and Photonics Conference and Exhibition (ACP),2009 Asia.2009:1-5.
    [6]Liu Zhihai, Bo Fusen, Wang Lei, Tian Fengjun, Yuan Libo. Integrated fiber Michelson interferometer based on poled hollow twin-core fiber.[J]. Opt. Lett.,2011,36(13): 2435-2437.
    [7]Yuan Libo, Liu Zhihai, Yang Jun, Guan Chunying. Twin-core fiber optical tweezers.[J]. Opt. Express,2008,16(7):4559-4566.
    [8]Rahimi-Kazerooni A., Emami F. Effect of the fiber radious core variations on far-field distribution of twin core optical tweezers. Optical Fibre Technology (ACOFT),2010 35th Australian Conference on.2010:1-3.
    [9]Sadeghi Mojtaba, Sheikhi M. Hossein, Kazeruni Ammar Rahimi, Emami Farzin. Improvements of twin-core fiber optical tweezers'performance. Optical Communications and Networks (ICOCN 2010),9th International Conference on.2010: 108-111.
    [10]Emami F., Rahimi-Kazerooni A., Keshavarz A. Trapping power improvement of twin-core fiber optical tweezers. Numerical Simulation of Optoelectronic Devices (NUSOD),201111th International Conference on.2011:55-56.
    [11]Taghizadeh M., Rahimi A., Azadian H., Mahmoodi D., Zamani M. Modified twin-core optical tweezer for three-dimensional trapping. Computer Science and Electronic Engineering Conference (CEEC),2011 3rd.2011:56-59.
    [12]Drolet Denis, Vallee Real. Dual-core fiber as a tunable directional coupler.[J]. Opt. Lett., 1993,18(6):408-410.
    [13]Arkwright J. W., Hewlett S. J., Atkins G. R., Bin Wu. High-isolation demultiplexing in bend-tuned twin-core fiber.[J]. Lightwave Technology, Journal of,1996,14(7): 1740-1745.
    [14]范林勇.全光纤梳状滤波器和马赫-曾德尔干涉仪的研制[D].北京:北京交通大学,2012.
    [15]Tjugiarto T., Peng G. D., Chu P. L. Bandpass filtering effect in tapered asymmetrical twin-core optical fibres.[J]. Electronics Letters,1993,29(12):1077-1078.
    [16]Ortega B., Dong L. Accurate tuning of mismatched twin-core fiber filters.[J]. Opt. Lett., 1998,23(16):1277-1279.
    [17]Atkins G. R., Arkwright J. W., Hewlett S. J. UV tuning of coupling in twin-core optical fibres.[J]. Electronics Letters,1994,30(25):2165-2166.
    [18]Bethuys S., Lablonde L., Rivoallan L., Bayon J. F., Brilland L., Delevaque E. Optical add/drop multiplexer based on UV-written Bragg gratings in twincore fibre Mach-Zehnder interferometer.[J]. Electronics Letters,1998,34(12):1250-1252.
    [19]Philippe Yvernault, Mechin D., Goyat E., Brilland L., Pureur D. Fully functional optical add and drop multiplexer using twin-core fiber based mach-zehnder interferometer with photoimprinted fiber bragg gratings. Optical Fiber Communication Conference. Optical Society of America,2001:WDD92.
    [20]Yvernault P., Durand D., Mechin D., Boitel M., Pureur D. Passive athermal Mach-Zehnder interferometer twin-core fiber optical add/drop multiplexer. Optical Communication,2001. ECOC '01.27th European Conference on.2001:88-89 vol.6.
    [21]Aslund M., Poladian L., Canning J., de Sterke C. M. Add-drop multiplexing by dispersion inverted interference coupling.[J]. Lightwave Technology, Journal of,2002, 20(8):1585-1589.
    [22]An Honglin, Ashton Brian, Fleming Simon. Long-period-grating-assisted optical add-drop filter based on mismatched twin-core photosensitive-cladding fiber. [J]. Opt. Lett.,2004,29(4):343-345.
    [23]Poole S. B., Love J. D. Single-core fibre to twin-core fibre connector.[J]. Electronics Letters,1991,27(17):1559-1560.
    [24]Ortega B., Dong L. Selective fused couplers consisting of a mismatched twin-core fiber and a standard optical fiber.[J]. Lightwave Technology, Journal of,1999,17(1): 123-128.
    [25]Brambilla G., Xu F., Feng X. Fabrication of optical fibre nanowires and their optical and mechanical characterisation.[J]. Electronics Letters,2006,42(9):517-519.
    [26]江微微,范林勇,赵瑞峰,卫延,裴丽,简水生.基于双芯光纤耦合器的梳状滤波器及其CO2激光调节.[J].物理学报,2011,60(4):044214-5.
    [27]Ortega B., Dong L. Characteristics of mismatched twin-core fiber spectral filters.[J]. Photonics Technology Letters, IEEE,1998,10(7):991-993.
    [28]Baumann I., Seifert J., Nowak W., Sauer M. Compact all-fiber add-drop-multiplexer using fiber Bragg gratings. [J]. Photonics Technology Letters, IEEE,1996,8(10): 1331-1333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700