用户名: 密码: 验证码:
聚电解质层层自组装多层膜在光纤传感器中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在众多制备纳米尺寸的薄膜技术中,层层自组装(layer-by-layer, LbL)技术通过特定的作用力将两种物质组装在基底上,可制得结构均一、厚度在纳米尺度可控的多层膜。由于可用的LbL的材料种类很多,因此能制备出各种功能的纳米多层膜。本文选用光纤(optical fiber)为组装基底,通过聚电解质LbL技术,分别制备了可用于检测pH值、重金属离子及湿度的光纤传感器(fiber-optic sensor)。
     采用紫外-可见吸收光谱(UV-vis)和石英晶体微天平(quartz crystal microbalance, QCM)研究了聚电解质在石英片和金电极基底上LbL自组装过程。研究发现制备的LbL多层膜(如(PDDA/PAA)1.5(PAA/P4VP)10多层膜(P4VP·HCl/PSS)10多层膜、(P4VP·HCl/PVS)1O多层膜等)随着组装层数的增加都呈现了线性增长,表明了所制备的多层膜比较均一。采用原子力显微镜(atomic force microscope, AFM)和扫描电子显微镜(scanning electronic microscope, SEM)表征了LbL多层膜表面形貌。结果发现,LbL多层膜的表面粗糙度越大,传感器响应时间越短。
     采用LbL技术将(PAH/PAA)25多层膜组装在细芯光纤模式干涉仪(TCFMI)表面上,制备了光纤pH传感器。该传感器波长随着介质的pH增加呈现先上升后下降的趋势(在pH=7时,波长最大),其灵敏度在酸性和碱性区域分别为0.32 nm/pH和-0.45nm/pH,响应时间为120s。改用含聚电解质络合物(PEC-)的(PDDA/PSS)3(PDDA/PEC-)10自组装多层膜,制备了另一种光纤pH传感器。该传感器灵敏度在酸性和碱性区域分别为0.6 nm/pH和-0.85nm/pH,响应时间为30s,PEC-的引入显著的改进了光纤pH传感器的性能。
     采用LbL技术,将(PDDA/PAA)1.5(PAA/P4VP)10多层膜组装在细芯光纤模式干涉仪(TCFMI)表面上,制备了光纤重金属离子传感器。该传感器对重金属离子如Cu2+、Fe2+、Zn2+等均具有响应性,其最低检测限可达10-8M,响应时间为60s,且可多次重复使用。将LbL多层膜改为(P4VP·HC1/PSS)10时,制得了对汞离子具有高度选择性的汞离子传感器。在氯化汞溶液中,当pH=5时,具有最佳性能,最低检测限可达10-9M,响应时间仅30s。
     采用LbL技术,将(P4VP·HCl/PVS)10多层膜组装在布拉格光栅(fiber Bragggrating, FBG)的TCFMI光纤表面上,制备了FBG-TCFMI湿度传感器。考察传感器在20℃、40℃、和60℃和20%-90%的相对湿度范围内的湿度响应性,结果表明FBG-TCFMI湿度传感器具有温度补偿效应,重复性好,灵敏度和响应时间分别为0.1nm/1%相对湿度和2s。
Of many nano-fabrication methods, the water-based layer-by-layer (LbL) assembly technique, offers the finest control and tunability of materials properties and architecture at the nanometre scale. Because the materials that can be chosen for LbL process are ranging widely, various functional multilayers could be obtained by the LbL technique. In this study, optical fiber was used as substrate for LbL assembly, preparing various fiber-optic sensors to detect pH, metal ion and relative humidity, respectively.
     The process of preparing multilayers on quartz slides and AT-cut quartz crystals with gold electrode was followed by UV-vis spectroscopy and quartz crystal microbalance (QCM), respectively. It was shown that multilayers, such as (PDDA/PAA)1.5(PAA/P4VP)10 multilayers, (P4VP·HCl/PSS)10 multilayers and (P4VPHCl/PVS)10 multilayers and so on, display a linear growth with bilayer number, which indicates that the films are uniform. Moreover, the surface morphology of multilayers was characterized by atomic force microscope (AFM) and scanning electronic microscope (SEM). It is found that the surface roughness of multilayers influences the respond time of fiber-optic sensor, that is the larger the surface roughness, the shorter the respond time.
     (PAH/PAA)25 multilayers were LbL self-assembled onto the surface of thin-core fiber modal interferometer (TCFMI), fabricating a fiber-optic pH sensor. When immersed into different pH solution, the wavelength of TCFMI pH sensor increased firstly with the pH growth, and then it became decrease as pH still growing. Moreover, the sensitivities of the fabricated TCFMI pH sensor were 0.32 nm/pH unit and-0.45 nm/pH unit for acid and alkali solutions, respectively. And respond time of it was 120 s. Then polyelectrolyte complex (PEC) was introduced into LbL multilayers. Due to the large size of PEC nanoparticles, the performance of new TCFMI pH sensor was greatly improved. The sensitivities of it were 0.6nm/pH unit and-0.85 nm/pH unit for acid and alkali solutions, respectively. And respond time of it was only 30 s.
     (PDDA/PAA)1.5(PAA/P4VP)10 multilayers were LbL self-assembled onto the surface of TCFMI, fabricating a fiber-optic heavy metal ion sensor. The sensor could detect many kinds of heavy metal ion, such as Cu2+, Fe2+ and Zn2+. Its limit of detection (LOD) was 10-8 M and the respond time was 60 s. More importantly, it could be used repeatedly. Another TCFMI metal ion sensor based on (P4VP·HCl/PSS)10 multilayers was fabricated. The sensor showed high selectivity to Hg2+ and it displayed the best performance when the HgCl2 solution was at pH=5. And its LOD was 10-9 M and the respond time was 30 s.
     (P4VP·HCl/PVS)10 multilayers were self-assembled on the surface of fiber Bragg grating (FBG) by LbL technique to prepare a TCFMI-FBG humidity sensor. The sensor was tested with the relative humidity ranging from 20% to 90% at three different temperatures:20℃,40℃and 60℃. The experiments indicated that it did have temperature compensation effect as a humidity sensor. The sensitivity of it was 0.1nm/1% relative humidity and the respond time was 2s.
引文
[1]郑子樵,封孝信,方鹏飞,新材料概论,中南大学出版社,2009年。
    [2]Yin, M. J.; Qian, J. W.; An, Q. F.; Zhao, Q.; Gui, Z. L.; Li, J., Polyelectrolyte layer-by-layer self-assembly at vibration condition and the pervaporation performance of assembly multilayer films in dehydration of isopropanol. J. Memb. Sci.2010,358:43-50.
    [3]van Ackern, F.; Krasemann, L.; Tieke, B., Ultrathin membranes for gas separation and pervaporation prepared upon electrostatic self-assembly of polyelectrolytes. Thin Solid Films.1998,327:762-766.
    [4]Krasemann, L.; Tieke, B., Composite membranes with ultrathin separation layer prepared by self-assembly of polyelectrolytes. Materials Science & Engineering C-Biomimetic and Supramolecular Systems.1999,8-9:513-518.
    [5]Krasemann, L.; Toutianoush, A.; Tieke, B., Self-assembled polyelectrolyte multilayer membranes with highly improved pervaporation separation of ethanol/water mixtures. J. Memb. Sci.2001,181:221-228.
    [6]Zhang, P.; Qian, J. W.; Yang, Y; An, Q. F.; Liu, X. Q.; Gui, Z. L., Polyelectrolyte layer-by-layer self-assembly enhanced by electric field and their multilayer membranes for separating isopropanol-water mixtures. J. Memb. Sci.2008,320: 73-77.
    [7]Zhang, P.; Qian, J. W.; An, Q. F.; Liu, X. Q.; Zhao, Q.; Jin, H. T., Surface morphology and pervaporation performance of electric field enhanced multilayer membranes. J. Memb. Sci.2009,328:141-147.
    [8]Mermut, O.; Barrett, C. J., Stable sensor layers self-assembled onto surfaces using azobenzene-containing polyelectrolytes. Analyst.2001,126:1861-1865.
    [9]Wang, Z. Y.; Heflin, J. R.; Stolen, R. H.; Ramachandran, S., Highly sensitive optical response of optical fiber long period gratings to nanometer-thick ionic self-assembled multilayers. Appl. Phys. Lett.2005,86:223104-1-223104-3.
    [10]Corres, J. M.; Matias, I. R.; del Villar, I.; Arregui, F. J., Design of pH sensors in long-period fiber gratings using polymeric nanocoatings. IEEE Sens. J.2007,7: 455-463.
    [11]Corres, J. M.; del Villar, I.; Matias, I. R.; Arregui, F. J., Fiber-optic pH-sensors in long-period fiber gratings using electrostatic self-assembly. Opt. Lett.2007,32: 29-31.
    [12]Gu, B.; Yin, M. J.; Zhang, A. P.; Qian, J. W.; He, S. L., Low-cost high-performance fiber-optic pH sensor based on thin-core fiber modal interferometer. Opt. Express.2009,17:22296-22302.
    [13]Egawa, Y.; Hayashida, R.; Anzai, J., Covalently cross-linked multilayer thin films composed of diazoresin and brilliant yellow for an optical pH sensor. Polymer.2007,48:1455-1458.
    [14]Arregui, F. J.; Latasa, I.; Matias, I. R.; Ieee, An optical fiber pH sensor based on the electrostatic self-assembly method. In Proceedings of the IEEE Sensors.2003, 2:107-110.
    [15]Shi, G. Y.; Qu, Y. H.; Zhai, Y. Y.; Liu, Y.; Sun, Z. Y.; Yang, J. G.; Jin, L. T., {MSU/PDDA}(n) LBL assembled modified sensor for electrochemicl detection of ultratrace explosive nitroaromatic compounds. Electrochem. Commun.2007, 9:1719-1724.
    [16]Hoshi, T.; Saiki, H.; Anzai, J., Amperometric uric acid sensors based on polyelectrolyte multilayer films. Talanta.2003,61:363-368.
    [17]Grandini, P.; Mancin, F.; Tecilla, P.; Scrimin, P.; Tonellato, U., Exploiting the self-assembly strategy for the design of selective Cu-II ion chemosensors. Angew. Chem. Int. Ed. Engl.1999,38:3061-3064.
    [18]Arregui, F. J.; Liu, Y. J.; Matias, I. R.; Claus, R. O., Optical fiber humidity sensor using a nano Fabry-Perot cavity formed by the ionic self-assembly method. Sens. Actuators. B Chem.1999,59:54-59.
    [19]Su, P. G.; Cheng, K. H., Self-assembly of poly electrolytic multilayer thin films of polyelectrolytes on quartz crystal microbalance for detecting low humidity. Sens. Actuators. B Chem.2009,142:123-129.
    [20]Sun, A. H.; Li, Z. X.; Wei, T. F.; Li, Y.; Cui, P., Highly sensitive humidity sensor at low humidity based on the quaternized polypyrrole composite film. Sens. Actuators. B Chem.2009,142:197-203.
    [21]Del Villar, I.; Matias, I. R.; Arregui, F. J.; Echeverria, J.; Claus, R. O., Strategies for fabrication of hydrogen peroxide sensors based on electrostatic self-assembly (ESA) method. Sens. Actuators. B Chem.2005,108:751-757.
    [22]Liu, S.; Montazami, R.; Liu, Y.; Jain, V.; Lin, M. R.; Heflin, J. R.; Zhang, Q. M.; Layer-by-layer self-assembled conductor network composites in ionic polymer metal composite actuators with high strain response. Appl. Phys. Lett.2009,95: 023505-1-023505-3.
    [23]Son, K. J.; Kim, S.; Kim, J. H.; Jang, W. D.; Lee, Y.; Koh, W. G, Dendrimer porphyrin-terminated polyelectrolyte multilayer micropatterns for a protein microarray with enhanced sensitivity. J. Mater. Chem.2010,20:6531-6538.
    [24]Xu, L.; Zhang, H. Y.; Wang, E.; Kurth, D. G.; Li, Z., Photoluminescent multilayer films based on polyoxometalates. J. Mater. Chem.2002,12:654-657.
    [25]Wang, Y.; Tang, Z.; Podsiadlo, P.; Elkasabi, Y.; Lahann, J.; Kotov, N. A., Mirror-like photoconductive layer-by-layer thin films of te nanowires:the fusion of semiconductor, metal, and insulator properties. Adv. Mater.2006,18: 518-522.
    [26]Liu, S. Q.; Kurth, D. G.; Mohwald, H.; Volkmer, D., A thin-film electrochromic device based on a polyoxometalate cluster. Adv. Mater.2002,14:225-228.
    [27]DeLongchamp, D. M.; Hammond, P. T., Multiple-color electrochromism from layer-by-layer-assembled polyaniline/Prussian Blue nanocomposite thin films. Chem. Mater.2004,16:4799-4805.
    [28]Liang, Z.; Dzienis, K. L.; Xu, J.; Wang, Q., Covalent layer-by-layer assembly of conjugated polymers and CdSe nanoparticles:multilayer structure and photovoltaic properties. Adv. Funct. Mater.2006,16:542-548.
    [29]Stadler, B.; Price, A. D.; Chandrawati, R.; Hosta-Rigau, L.; Zelikin, A. N.; Caruso, F., Polymer hydrogel capsules:en route toward synthetic cellular systems. Nanoscale.2009,1:68-73.
    [30]Dotzauer, D. M.; Dai, J. H.; Sun, L.; Bruening, M. L., Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports. Nano. Lett.2006,6:2268-2272.
    [31]Shchukin, D. G.; Mohwald, H., Urea photosynthesis inside polyelectrolyte capsules:Effect of confined media. Langmuir.2005,21:5582-5587.
    [32]Blodgett, K. B.; Langmuir, I., Built-up films of barium stearate and their optical properties. Phys. Rev.1937,51:964-982.
    [33]Blodgett, K. B., Films built by depositing successive monomolecular layers on a solid surface. J. Am. Chem. Soc.1935,57:1007-1022.
    [34]Decher, G.; Hong, J. D.; Schmitt, J., Buildup of ultrathin multilayer films by a self-assembly process.3. consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films.1992,210: 831-835.
    [35]Decher, G., Fuzzy nanoassemblies:Toward layered polymeric multicomposites. Science.1997,277:1232-1237.
    [36]Zhang. X.; Chen, H.; Zhang, H. Y., Layer-by-layer assembly:from conventional to unconventional methods. Chem. Comm.2007,1395-1405.
    [37]何曼君,陈维孝,董西侠, 高分子物理, 复旦大学出版社,2000年。
    [38]沈家骢等, 超分子层状结构-组装与功能, 科学出版社,2005年。
    [39]Ariga, K.; Hill, J. P.; Ji, Q. M., Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys. Chem. Chem. Phys.2007,9:2319-2340.
    [40]Ulman, A., Formation and structure of self-assembled monolayers. Chem. Rev. 1996,96:1533-1554.
    [41]Bigelow, W. C.; Pickett, D. L.; Zisman, W. A., Oleophobic monolayers:I. Films adsorbed from solution in non-polar liquids. J. Colloid Sci.1946,1:513-538.
    [42]Iler, R. K., Multilayers of colloidal particles. J. Colloid Interface Sci.1966,21: 569-594.
    [43]Lee, H.; Kepley, L. J.; Hong, H. G.; Mallouk, T. E., Inorganic analogs of langmuir-blodgett films-adsorption of ordered zirconium 1,10-decanebisphosphonate multilayers on silicon surfaces. J. Am. Chem. Soc. 1988,110:618-620.
    [44]Lee, H.; Kepley, L. J.; Hong, H. G.; Akhter, S.; Mallouk, T. E., Adsorption of ordered zirconium phosphonate multilayer films on silicon and gold surfaces. J. Phys. Chem.1988,92:2597-2601.
    [45]Wanunu, M.; Vaskevich, A.; Cohen, S. R.; Cohen, H.; Arad-Yellin, R.; Shanzer, A.; Rubinstein, I., Branched coordination multilayers on gold. J. Am. Chem. Soc. 2005,127:17877-17887.
    [46]Schutte, M.; Kurth, D. G.; Linford, M. R.; Colfen, H.; Mohwald, H., Metallosupramolecular thin polyelectrolyte films. Angew. Chem. Int. Ed. Engl. 1998,37:2891-2893.
    [47]Kurth, D. G.; Schutte, M., Layer-by-layer self-assembly of a metallo-supramolecular coordination polyelectrolyte studied by infrared spectroscopy, microgravimetry, and X-ray reflectance. Macromol. Symp.2001, 164:167-179.
    [48]Kurth, D. G.; Schutte, M.; Wen, J., Metallo-supramolecular polyelectrolyte multilayers with cobalt(Ⅱ):preparation and properties. Colloids. Surf. A Physicochem. Eng. Asp.2002,198:633-643.
    [49]Krass, H.; Papastavrou, G.; Kurth, D. G, Layer-by-layer self-assembly of a polyelectrolyte bearing metal ion coordination and electrostatic functionality. Chem. Mater.2003,15:196-203.
    [50]Kurth, D. G.; Lopez, J. P.; Dong, W. F., A new Co(II)-metalloviologen-based electrochromic material integrated in thin multilayer films. Chem. Comm.2005, 2119-2121.
    [51]Muller, W.; Ringsdorf, H.; Rump, E.; Wildburg, G.; Zhang, X.; Angermaier, L. Knoll, W.; Liley, M.; Spinke, J., Attempts to mimic docking processes of the immune system:recognition-induced formation of protein multilayers. Science. 1993,262:1706-1708.
    [52]Bourdillon, C.; Demaille, C.; Moiroux, J.; Saveant, J.-M., Step-by-step immunological construction of a fully active multilayer enzyme electrode. J. Am. Chem. Soc.1994,116:10328-10329.
    [53]Ichinose, I.; Senzu, H.; Kunitake, T., Stepwise adsorption of metal alkoxides on hydrolyzed surfaces:A surface sol-gel process. Chem. Lett.1996,831-832.
    [54]Ichinose, I.; Senzu, H.; Kunitake, T., A surface sol-gel process of TiO2 and other metal oxide films with molecular precision. Chem. Mater.1997,9:1296-1298.
    [55]Lee, S. W.; Ichinose, I.; Kunitake, T., Molecular imprinting of azobenzene carboxylic acid on a TiO2 ultrathin film by the surface sol-gel process. Langmuir. 1998,14:2857-2863.
    [56]Stockton, W. B.; Rubner, M. F., Molecular-level processing of conjugated polymers.4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules.1997,30:2717-2725.
    [57]Wang, L. Y.; Wang, Z. Q.; Zhang, X.; Shen, J. C.; Chi, L. F.; Fuchs, H., A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Macromol. Rapid. Commun.1997,18:509-514.
    [58]Liang, Z.; Cabarcos,0. M.; Allara, D. L.; Wang, Q., Hydrogen-bonding-directed layer-by-layer assembly of conjugated polymers. Adv. Mater.2004,16:823-827.
    [59]Chen, J.; Huang, L.; Ying, L.; Luo, G.; Zhao, X.; Cao, W., Self-assembly ultrathin films based on diazoresins. Langmuir.1999,15:7208-7212.
    [60]Such, G. K.; Quinn, J. F.; Quinn, A.; Tjipto, E.; Caruso, F., Assembly of ultrathin polymer multilayer films by click chemistry. J. Am. Chem. Soc.2006,128: 9318-9319.
    [61]Shimazaki, Y.; Mitsuishi, M.; Ito, S.; Yamamoto, M., Preparation and characterization of the layer-by-layer deposited ultrathin film based on the charge-transfer interaction in organic solvents. Langmuir.1998,14:2768-2773.
    [62]Shimazaki, Y.; Mitsuishi, M.; Ito, S.; Yamamoto, M., Alternate adsorption of polymers on a gold surface through the charge-transfer interaction. Macromolecules.1999,32:8220-8223.
    [63]Shimazaki, Y.; Ito, S.; Tsutsumi, N., Adsorption-induced second harmonic generation from the layer-by-layer deposited ultrathin film based on the charge-transfer interaction. Langmuir.2000,16:9478-9482.
    [64]Serizawa, T.; Hamada, K.; Kitayama, T.; Fujimoto, N.; Hatada, K.; Akashi, M., Stepwise stereocomplex assembly of stereoregular poly(methyl methacrylate)s on a substrate. J. Am. Chem. Soc.2000,122:1891-1899.
    [65]Serizawa, T.; Hamada, K.; Kitayama, T.; Katsukawa, K.; Hatada, K.; Akashi, M., Stepwise assembly of isotactic poly(methyl methacrylate) and syndiotactic poly(methacrylic acid) on a substrate. Langmuir.2000,16:7112-7115.
    [66]Hamada, K.; Serizawa, T.; Kitayama, T.; Fujimoto, N.; Hatada, K.; Akashi, M., Stepwise stereocomplex assembly of isotactic poly(methyl methacrylate) and syndiotactic poly(alkyl methacrylate)s on surfaces. Langmuir.2001,17: 5513-5519.
    [67]Serizawa, T.; Hamada, K.; Kitayama, T.; Akashi, M., Recognition of stereoregular polymers by using structurally regulated ultrathin polymer films. Angew. Chem. Int. Ed.2003,42:1118-1121.
    [68]Serizawa, T.; Hamada, K.; Akashi, M., Polymerization within a molecular-scale stereoregular template. Nature.2004,429:52-55.
    [69]Serizawa, T.; Akashi, M., Stereoregular polymerization within template nanospaces. Polym. J.2006,38:311-328.
    [70]Emoto, K.: Iijima, M.; Nagasaki, Y.; Kataoka, K., Functionality of polymeric micelle hydrogels with organized three-dimensional architecture on surfaces. J. Am. Chem. Soc.2000,122:2653-2654.
    [71]Emoto, K.; Nagasaki, Y.; Kataoka, K., A core-shell structured hydrogel thin layer on surfaces by lamination of a poly(ethylene glycol)-b-poly(D,L-lactide) micelle and polyallylamine. Langmuir.2000,16:5738-5742.
    [72]Lvov, Y.; Ariga, K.; Onda, M.; Ichinose, I.; Kunitake, T., A careful examination of the adsorption step in the alternate layer-by-layer assembly of linear polyanion and polycation. Colloids. Surf. A Physicochem. Eng. Asp.1999,146:337-346.
    [73]Shiratori, S. S.; Rubner, M. F., pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules.2000,33:4213-4219.
    [74]Bucur, C. B.; Sui, Z.; Schlenoff, J. B., Ideal mixing in polyelectrolyte complexes and multilayers:Entropy driven assembly. J. Am. Chem. Soc.2006,128: 13690-13691.
    [75]Bharadwaj, S.; Montazeri, R.; Haynie, D. T., Direct determination of the thermodynamics of polyelectrolyte complexation and implications thereof for electrostatic layer-by-layer assembly of multilayer films. Langmuir.2006,22: 6093-6101.
    [76]Steitz, R.; Jaeger, W.; von Klitzing, R., Influence of charge density and ionic strength on the multilayer formation of strong polyelectrolytes. Langmuir.2001, 17:44714474.
    [77]Steitz, R.; Leiner, V.; Siebrecht, R.; v. Klitzing, R., Influence of the ionic strength on the structure of polyelectrolyte films at the solid/liquid interface. Colloids. Surf. A Physicochem. Eng. Asp.2000,163:63-70.
    [78]Antipov, A. A.; Sukhorukov, G. B.; Mohwald, H., Influence of the ionic strength on the polyelectrolyte multilayers'permeability. Langmuir.2003,19:2444-2448.
    [79]Dubas, S. T.; Schlenoff, J. B., Factors controlling the growth of polyelectrolyte multilayers. Macromolecules.1999,32:8153-8160.
    [80]Salomaki, M.; Tervasmaki, P.; Areva, S.; Kankare, J., The Hofmeister anion effect and the growth of polyelectrolyte multilayers. Langmuir.2004,20: 3679-3683.
    [81]Tan, H. L.; McMurdo, M..J.; Pan, G. Q.; Van Patten, P. G, Temperature dependence of polyelectrolyte multilayer assembly. Langmuir.2003,19: 9311-9314.
    [82]Shimazaki, Y.; Nakamura, R.; Ito, S.; Yamamoto, M., Molecular weight dependence of alternate adsorption through charge-transfer interaction. Langmuir. 2001,17:953-956.
    [83]Wang, Y.; Tang, Z. Y.; Podsiadlo, P.; Elkasabi, Y.; Lahann, J.; Kotov, N. A., Mirror-like photoconductive layer-by-layer thin films of Te nanowires:The fusion of semiconductor, metal, and insulator properties. Adv. Mater.2006,18: 518-522.
    [84]Park, M. K.; Deng, S.; Advincula, R. C., pH-sensitive bipolar ion-permselective ultrathin films. J. Am. Chem. Soc.2004,126:13723-13731.
    [85]Lee, D.; Nolte, A. J.; Kunz, A. L.; Rubner, M. F.; Cohen, R. E., pH-induced hysteretic gating of track-etched polycarbonate membranes:Swelling/deswelling behavior of polyelectrolyte multilayers in confined geometry. J. Am. Chem. Soc. 2006,128:8521-8529.
    [86]Krasemann, L.; Tieke, B., Ultrathin self-assembled polyelectrolyte membranes for pervaporation. J. Memb. Sci.1998,150:23-30.
    [87]Onda, M.; Ariga, K.; Kunitake, T., Activity and stability of glucose oxidase in molecular films assembled alternately with polyions. J. Biosci. Bioeng.1999, 87:69-75.
    [88]何道清,张禾,谌海云,传感器与传感器技术,科学出版社,2008年。
    [89]Orellana, G.; Haigh, D., New trends in fiber-optic chemical and biological sensors. Curr. Anal. Chem.2008,4:273-295.
    [90]Del Villar, I.; Matias, I. R.; Arregui, F. J., Fiber-optic chemical nanosensors by electrostatic molecular self-assembly. Curr. Anal. Chem.2008,4:341-355.
    [91]James, S. W.; Tatam, R. P., Fibre optic sensors with nano-structured coatings. J. Optic. Pure. Appl. Optic.2006,8:S430-S444.
    [92]Leung, A.; Shankar, P. M.; Mutharasan, R., A review of fiber-optic biosensors. Sens. Actuators. B Chem.2007,125:688-703.
    [93]Bosch, M. E.; Sanchez, A. J. R.; Rojas, F. S.; Ojeda, C. B., Recent development in optical fiber biosensors. Sensors.2007,7:797-859.
    [94]Marazuela, M.; Moreno-Bondi, M., Fiber-optic biosensors-an overview. Anal. Bioanal. Chem.2002,372:664-682.
    [95]Grattan, K. T. V.; Sun, T., Fiber optic sensor technology:an overview. Sens. Actuators. A Phys.2000,82:40-61.
    [96]Arnold, M. A., Fiber optic chemical sensors. Anal. Chem.1992,64: 1015A-1025A.
    [97]Wolfbeis, O. S., Fiber optic chemical sensors and biosensors. Anal. Chem.2000, 72:81R-89R.
    [98]Wolfbeis,O. S., Fiber-optic chemical sensors and biosensors. Anal. Chem.2002, 74:2663-2677.
    [99]Wolfbeis,O. S., Fiber-optic chemical sensors and biosensors. Anal. Chem.2004, 76:3269-3283.
    [100]Wolfbeis, O. S., Fiber-optic chemical sensors and biosensors. Anal. Chem.2006, 78:3859-3873.
    [101]Wolfbeis, O. S., Fiber-optic chemical sensors and biosensors. Anal. Chem.2008, 80:4269-4283.
    [102]Luna-Moreno, D.; Monzon-Hernandez, D., Effect of the Pd-Au thin film thickness uniformity on the performance of an optical fiber hydrogen sensor. Appl. Surf. Sci.2007,253:8615-8619.
    [103]Chu, C. S.; Lo, Y. L., High-performance fiber-optic oxygen sensors based on fluorinated xerogels doped with Pt(II) complexes. Sens. Actuators. B Chem. 2007,124:376-382.
    [104]Dooly, G.; et al., On-board monitoring of vehicle exhaust emissions using an ultraviolet optical fibre based sensor. J. Optic. Pure. Appl. Optic.2007,9:S24.
    [105]Dong, S.; Luo, M.; Peng, G.; Cheng, W., Broad range pH sensor based on sol-gel entrapped indicators on fibre optic. Sens. Actuators. B Chem.2008, 129:94-98.
    [106]Li, C. Y.; Zhang, X. B.; Han, Z. X.; Akermark, B.; Sun, L.; Shen, G. L.; Yu, R. Q., A wide pH range optical sensing system based on a sol-gel encapsulated amino-functionalised corrole. Analyst.2006,131:388-393.
    [107]Isha, A.; Yusof, N. A.; Ahmad, M.; Suhendra, D.; Yunus, W. M. Z. W.; Zainal, Z., Optical fibre chemical sensor for trace vanadium(V) determination based on newly synthesized palm based fatty hydroxamic acid immobilized in polyvinyl chloride membrane. Spectrochim Acta A Mol Biomol Spectrosc.2007,67: 1398-1402.
    [108]Oter,O.; Ertekin, K.; Kirilmis, C.; Koca, M.; Ahmedzade, M., Characterization of a newly synthesized fluorescent benzofuran derivative and usage as a selective fiber optic sensor for Fe(III). Sens. Actuators. B Chem.2007,122: 450-456.
    [109]Zilbermann, I.; Meron, E.; Maimon, E.; Soifer, L.; Elbaz, L.; Korin, E.; Bettelheim, A., Tautomerism in N-confused porphyrins as the basis of a novel fiber-optic humidity sensor. J. Porphyr. Phthalocyanines.2006,10:63-66.
    [110]Corres, J. M.; Arregui, F. J.; Matias, I. R., Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings. Sens. Actuators. B Chem.2007,122: 442-449.
    [111]Topliss, S. M.; James, S. W.; Davis, F.; Higson, S. P. J.; Tatam, R. P., Optical fibre long period grating based selective vapour sensing of volatile organic compounds. Sens. Actuators. B Chem.2010,143:629-634.
    [112]Corres, J. M.; Matias, I. R.; Bravo, J.; Arregui, F. J., Tapered optical fiber biosensor for the detection of anti-gliadin antibodies. Sens. Actuators. B Chem. 2008,135:166-171.
    [113]Portaccio, M.; Lepore, M.; Della Ventura, B.; Stoilova, O.; Manolova, N.; Rashkov, I.; Mita, D. G, Fiber-optic glucose biosensor based on glucose oxidase immobilised in a silica gel matrix. J. Sol-Gel. Sci. Techn.2009,50: 437-448.
    [114]Wang, Y. M.; Cooper, K. L.; Wang, A. B., Microgap structured optical sensor for fast label-free DNAdetection. J. Lightwave. Technol.2008,26:3181-3185.
    [115]Xu, J. C.; Pickrell, G.; Huang, Z. Y.; Qi, B.; Zhang, P.; Duan, Y. H.; Wang, A. B., Double-tubing encapsulated fiber optic temperature sensor. In Temperature:Its Measurement and Control in Science and Industry.2003,684:1021-1026.
    [116]Wang, X. W.; Xu, J. C; Zhu, Y. Z.; Cooper, K. L.; Wang, A. B., All-fused-silica miniature optical fiber tip pressure sensor. Opt. Lett.2006,31:885-887.
    [117]Mehrvar, M.; Bis, C.; Scharer, J. M.; Moo-Young, M.; Luong, J. H., Fiber-optic biosensors-Trends and advances. Anal. Sci.2000,16:677-692.
    [118]Fan, X. D.; White, I. M.; Shopoua, S. I.; Zhu, H. Y.; Suter, J. D.; Sun, Y. Z., Sensitive optical biosensors for unlabeled targets:A review. Anal. Chim. Acta. 2008,620:8-26.
    [119]Grant, S. A.; Glass, R. S., A sol-gel based fiber optic sensor for local blood pH measurements. Sens. Actuators. B Chem.1997,45:35-42.
    [120]Netto, E. J.; Peterson, J. I.; McShane, M.; Hampshire, V., A fiber-optic broad-range pH sensor system for gastric measurements. Sens. Actuators. B Chem.1995,29:157-163.
    [121]Young, O. A.; Thomson, R. D.; Merhtens, V. G.; Loeffen, M. P. F., Industrial application to cattle of a method for the early determination of meat ultimate pH. Meat Sci.2004,67:107-112.
    [122]Jeevarajan, A. S.; Vani, S.; Taylor, T. D.; Anderson, M. M., Continuous pH monitoring in a perfused bioreactor system using an optical pH sensor. Biotechnol. Bioeng.2002,78:467-472.
    [123]Zhao, Q.; Qian, J. W.; Gui, Z. L.; An, Q. F.; Zhu, M. H., Interfacial self-assembly of cellulose-based polyelectrolyte complexes:pattern formation of fractal "trees". Soft Matter.2010,6:1129-1137.
    [124]Zhao, Q.; Qian, J. W.; An, Q. F.; Sun, Z. W., Layer-by-layer self-assembly of polyelectrolyte complexes and their multilayer films for pervaporation dehydration of isopropanol. J. Memb. Sci.2010,346:335-343.
    [125]Zhao, Q.; Qian, J. W.; An, Q. F.; Du, B. Y, Speedy fabrication of free-standing layer-by-layer multilayer films by using polyelectrolyte complex particles as building blocks. J. Mater. Chem.2009,19; 8448-8455.
    [126]Zhao, Q.; Qian, J. W.; An, Q. F.; Yang, Q.; Zhang, P., A facile route for fabricating novel polyelectrolyte complex membrane with high pervaporation performance in isopropanol dehydration. J. Memb. Sci.2008,320:8-12.
    [127]Hiller, J.; Rubner, M.F., Reversible molecular memory and pH-switchable swelling transitions in polyelectrolyte multilayers. Macromolecules.2003,36: 4078-4083.
    [128]Annaka, M.; Tanaka, T., Multiple phases of polymer gels. Nature.1992,355: 430-432.
    [129]Burke, S. E.; Barrett, C. J., pH-dependent loading and release behavior of small hydrophilic molecules in weak polyelectrolyte multilayer films. Macromolecules.2004,37:5375-5384.
    [130.]Schuetz, P.; Caruso, F,.Multilayer thin films based on polyelectrolyte-complex nanoparticles. Colloids. Surf. A Physicochem. Eng. Asp.2002,207:33-40.
    [131]McAloney, R. A.; Sinyor, M.; Dudnik, V.; Goh, M. C., Atomic force microscopy studies of salt effects on polyelectrolyte multilayer film morphology. Langmuir. 2001,17:6655-6663.
    [132]McAloney, R. A.; Dudnik, V.; Goh, M. C., Kinetics of salt-induced annealing of a polyelectrolyte multilayer film morphology. Langmuir.2003,19:3947-3952.
    [133]Itano, K.; Choi, J. Y.; Rubner, M. F., Mechanism of the pH-induced discontinuous swelling/deswelling transitions of poly(allylamine hydrochloride)-containing polyelectrolyte multilayer films. Macromolecules. 2005,38:3450-3460.
    [134]Sui, Z. J.; Jaber, J. A.; Schlenoff, J. B., Polyelectrolyte complexes with pH-tunable solubility. Macromolecules.2006,39:8145-8152.
    [135]Harris, H. H.; Pickering, I. J.; George, G. N., The chemical form of mercury in fish. Science.2003,301:1203-1203.
    [136]Zhang, Z.; Wu, D.; Guo, X.; Qian, X.; Lu, Z.; Xu, Q.; Yang, Y.; Duan, L.; He, Y.; Feng, Z., Visible study of mercuric ion and its conjugate in living cells of mammals and plants. Chem Res Toxicol.2005,18:1814-1820.
    [137]Nguyen, D. M.; Frazer, A.; Rodriguez, L.; Belfield, K. D., Selective Fluorescence Sensing of Zinc and Mercury Ions with Hydrophilic 1,2,3-Triazolyl Fluorene Probes. Chem. Mater.2010,22:3472-3481.
    [138]Cho, U. H.; Park, J. O., Mercury-induced oxidative stress in tomato seedlings. Plant Sci.2000,156:1-9.
    [139]Hu, D. H.; Sheng, Z. H.; Gong, P.; Zhang, P. F.; Cai, L. T., Highly selective fluorescent sensors for Hg2+based on bovine serum albumin-capped gold nanoclusters. Analyst.2010,135:1411-1416.
    [140]Jin, H. T.; An, Q. F.; Zhao, Q.; Qian, J. W.; Zhu, M. H., Pervaporation dehydration of ethanol by using polyelectrolyte complex membranes based on poly (N-ethyl-4-vinylpyridinium bromide) and sodium carboxymethyl cellulose. J. Memb. Sci.2010,347:183-192.
    [141]Rivas, B. L.; Maturana, H. A.; Luna, M., Selective binding of mercury ions by poly(4-vinylpyridine) hydrochloride resin. J. Appl. Polym. Sci.1999,74: 1557-1562.
    [142]Pearson, R. G, Hard and soft acids and bases. J. Am. Chem. Soc.1963,85: 3533-3539.
    [143]Adhikari, B.; Majumdar, S., Polymers in sensor applications. Prog. Polym. Sci. 2004,29:699-766.
    [144]Fuke, M. V.; Vijayan, A.; Kanitkar, P.; Aiyer, R. C., Optical humidity sensing characteristics of Ag-polyaniline nanocomposite. IEEE. Sens. J.2009,9: 648-653.
    [145]Claus, R.O.; Distler, T.; Mecham, J.; Davis, B.; Arregui, F. J.; Matias, I. R., Optical fiber sensors for breathing diagnostics. In Optical Fibers and Sensors for Medical Applications Iv, Ed.2004,5317:167-171.
    [146]Corres, J. M.; Arregui, F. J.; Matias, I. R., Design of humidity sensors based on tapered optical fibers. J. Lightwave. Technol.2006,24:4329-4336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700