用户名: 密码: 验证码:
微纳光纤—金纳米棒复合结构:微纳尺度“光子—表面等离激元”研究新平台
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
得益于其独特的局域表面等离激元共振(1ocalized surface plasmon resonance, LSPR)特性,金属纳米颗粒在生物化学传感、表面增强拉曼光谱、生物医学和纳米光子学等领域有着广泛的应用前景。到目前为止,金属纳米颗粒LSPR的激发一般采用自由空间光束直接照射方式。一方面,由于单个金属纳米颗粒消光截面很小而照射光斑面积相对较大,激发效率受到很大限制(一般小于1%);另一方面,这种激发方式往往需要利用大体积的光学元件(如物镜或棱镜等)来转折光路。这些均使得研制基于金属纳米颗粒的小型化和低功耗的光子器件变得相对困难。此外,在金属纳米颗粒中,金属材料的本征吸收和纳米颗粒的散射损耗一般比较大,导致其LSPR线宽相对较宽,严重限制了金属纳米颗粒在很多领域如高灵敏度生物化学传感或表面增强拉曼光谱中的应用。因此,如何提高金属纳米颗粒LSPR的激发效率和集成度,以及如何降低金属纳米颗粒LSPR的线宽,是目前金属纳米颗粒LSPR研究领域所面临的关键问题。基于上述考虑,我们提出了使用金属纳米颗粒和微纳光纤组成的复合结构(金纳米棒掺杂的聚合物纳米光纤和表面沉积金纳米棒的微光纤)来提高金属纳米颗粒LSPR激发效率和降低金属纳米颗粒LSPR线宽的方案,成功地将其应用于光学传感,并演示了金纳米棒LSPR峰的动态调控。
     在本论文的第一章,我们综述了微纳光波导和金属纳米颗粒LSPR的研究背景以及典型的金属纳米颗粒-微纳光波导复合结构的研究进展。
     在本论文的第二章,我们主要介绍了微纳光纤的基本光学特性。首先,我们简单介绍了氧化硅和聚合物微纳光纤的制备方法。其次,通过计算机数值模拟,我们分析了微纳光纤的光学传输特性,结果表明微纳光纤具有强的光场束缚能力和大比例倏逝场,同时我们还介绍了微纳光纤的光学输入输出方法。接着,我们介绍了微纳光纤常用的功能化方法,包括表面修饰、掺杂和电子束活化等。最后,我们演示了将微纳光纤组装成各种复杂结构的微纳操作技术。上述研究为我们后续的微纳光纤-金纳米棒复合结构研究准备了理论和技术基础。
     在本论文的第三章,我们研究了纳米光纤导波高效激发金纳米棒的LSPR。首先,我们将金纳米棒掺杂进聚丙烯酰胺(polyacrylamide, PAM)溶液并制备聚合物纳米光纤,实现了金纳米棒在PAM纳米光纤中的高度有序排列。其次,我们通过倏逝波耦合方式将激发光耦合进聚合物纳米光纤,首次利用纳米光纤中的导波模式实现了掺杂金纳米棒LSPR的激发。实验测得,在纵向表面等离激元共振峰处,单个金纳米棒中的光子-激元转换效率高达70%。这一高效且紧凑的激发方式为发展小型化和低功耗的基于金属纳米颗粒的微纳光子器件提供了新的思路。
     作为上述金纳米棒-聚合物纳米光纤复合结构的应用之一,我们演示了基于纳米光纤导波激发的金纳米棒的光学相对湿度(relative humidity, RH)传感。我们通过监测掺杂的单个金纳米棒LSPR峰的移动来实现湿度传感,获得了约0.19nm/%RH的灵敏度,比其它基于裸露的金纳米颗粒的传感器的灵敏度高一个数量级;另外,我们也通过监测纳米光纤输出端光功率变化来实现传感,获得的灵敏度约为0.07dB/%RH,分辨率低于1%RH,响应时间优于110ms,光功耗只需500pW。
     在本论文的第四章,我们提出了将金纳米棒沉积在微光纤表面来实现对金纳米棒LSPR线宽的压缩的方案。当金纳米棒沉积在微光纤表面时,金纳米棒的LSPR模式和微光纤截面的回音壁模式发生耦合,其散射谱受到明显的周期性调制。在与直径为1.46μm的氧化硅微光纤耦合时,我们得到了约3.4nm线宽的单个散射峰,相比于正常的线宽压缩了将近15倍,同时散射峰的强度增强了约30倍。当用PAM微光纤代替氧化硅微光纤时,我们可以实现对耦合的金纳米棒散射峰的动态调控,可调范围约为40nm。
     最后,在第五章中,我们总结了本论文的主要工作、创新点及未来可开展的研究计划。微纳光纤-金纳米棒组成的复合结构为微纳尺度“光子-表面等离激元”研究提供了一个新的平台,在高灵敏度生物化学传感、表面增强拉曼光谱、等离激元激光器和光学调制等领域具有广泛的应用前景。
Owing to their shape-and size-dependent optical properties know as localized surface plasmon resonance (LSPR), metal nanoparticles are finding use in a range of emerging applications such as biological and chemical sensing, surface-enhanced Raman spectroscopy, biomedicine and nanophotonics. To date, LSPR excitation in metal nanoparticles is commonly realized using free-space irradiation. Because of the small extinction cross section of a single nanoparticle and the relatively large irradiation area of a free-space light beam, the efficiency of photon-to-plasmon conversion is rather limited (usually less than1%). In addition, to redirect a light beam to a nanoparticle in free space, bulky components such as prisms or objectives are often required, making it difficult to realize nanoparticle-based photonic devices with miniaturized sizes and low operation optical powers. And at the same time, metal nanoparticles usually suffer from large losses because of metal's intrinsic absorption and nanoparticles" radiative scattering, which significantly broaden the plasmonic resonance linewidths of single metal nanoparticles, severely deteriorating the performance of metal nanoparticles in applications such as high-sensitivity biological and chemical sensing and surface-enhanced Raman spectroscopy. Therefore, the development of a highly efficient and compact approach for LSPR excitation in metal nanoparticles, and also a method for the dramatic reduction of plasmonic resonance linewidths of single metal nanoparticles are the current critical issues faced by the research fields of LSPR in metal nanoparticles. With this regard, we propose to integrate metal nanoparticles and one-dimensional optical waveguides (optical micro-/nanofibers), including Au nanorods embedded polymer nanofibers and Au nanorods surface-deposited optical microfibers. for the efficient and compact excitation of LSPR in Au nanorods, and also for the dramatic reduction of localized plasmonic resonance linewidths of single Au nanorods. Furthermore, we successfully apply these hybrid plasmonic-photonic structures to optical sensing, and demonstrate the dynamical tuning of plasmonic resonance wavelength of Au nanorods.
     In the first chapter of the work, we briefly review the backgrounds of optical micro-/nanofibers and LSPR in Au nanorods. and also the research progress in hybrid metal nanoparticle-optical micro-/nanowaveguide structure.
     In the second chapter of the work, we mainly introduce the optical properties of single optical micro-/nanofibers. Firstly, we briefly introduce the fabrication of silica and polymer micro-/nanofibers. Secondly, based on theoretical analysis and numerical calculations, we investigate the waveguiding properties of single optical micro-/nanofibers. which offer many fascinating properties such as tight optical confinement and large fraction of evanescent fields. At the same time, we introduce methods for launching light into or out of single optical micro-/nanofibers. Thirdly, we introduce methods for micro-/nanofiber functionalization, including surface modification, doping, and electron-beam activation. Finally, we introduce micromanipulation technique used to assemble micro-/nanofibers into desired structures or patterns. Above research backgrounds provide theoretical and technical basis for our following research on optical micro-/nanofiber-Au nanorod hybrid structures.
     In the third chapter of the work, with the use of waveguiding polymer nanofibers embedded with Au nanorods, we demonstrate a highly efficient approach to photon-to-plasmon conversion in Au nanorods. The nanofibers are directly drawn from a polyacrylamide (PAM) solution containing Au nanorods. which are uniaxially aligned along the long axes of the fibers. When light is coupled into and guided through a single nanofiber. LSPR in the embedded Au nanorods could be efficiently excited with a photon-to-plasmon-conversion efficiency as high as70%for a single nanorod at its longitudinal plasmonic resonance wavelength. The highly efficient waveguiding excitation approach demonstrated here may open up new opportunities for developing Au-nanorod-based photonic components and devices with miniaturized sizes, high compactness, and low optical power consumption.
     To demonstrate this capability, we also apply the Au-nanorod-embedded waveguiding PAM nanofibers to optical relative humidity (RH) sensing. We first investigate the spectral shift of LSPR of a single embedded Au nanorod when exposed to different levels of humidity. The sensitivity of the single Au nanorod is estimated to be~0.19nm/%RH. which is1order of magnitude higher than that of bare Au nanoparticles. Also, we realize intensity-dependent RH sensing using PAM nanofibers containing multiple Au nanorods by measuring the intensity of light output. The sensor offers a sensitivity of~0.07dB/%RH and an estimated resolution better than1%RH with a response time of110ms and an operation optical power as low as500pW.
     In the fourth chapter of the work, we demonstrate dramatic reduction in plasmonic resonance linewidths of single Au nanorods by coupling them with optical microfibers. The LSPR modes of Au nanorods couple with whispering gallery modes of optical microfibers when Au nanorods are deposited on the surface of optical microfibers, which results in dramatic modulation in the scattering spectra of single Au nanorods. When the diameter of a silica microfiber goes down to1.46μm,there is only one main peak exists in the scattering spectrum of an Au nanorod with a linewidth of about3.4nm. providing a15-fold spectral narrowing as compared with linewidths of uncoupled single Au nanorods. Also, there is about30-time increase in the scattering intensities of coupled Au nanorods, which is of great importance in the enhancement of light-matter interactions. Moreover, based on PAM microfiber coupled Au nanorods, we demonstrate dynamical tuning of plasmonic resonance wavelength of Au nanorods by controlling the environmental RH, with a spectral tunability as large as~40nm.
     Finally, in the fifth chapter, we provide a brief summary of our work, the innovations, and future research plans. The optical micro-/nanofiber-Au nanorod hybrid structures demonstrated here provide a new platform for "photonic-plasmonic" research at nanoscale, and show great potential in applications such as high-sensitivity biological and chemical sensing, surface enhanced Raman spectroscopy, plasmonic lasing. and optical modulations.
引文
1. Sepulveda B., Angelome P. C., Lechuga L. M., and Liz-Marzan. L. M., LSPR-based nanobiosensors. Nano Today 2009,4,244-251.
    2. Mayer K. M. and Hafner, J. H., Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111. 3828-3857.
    3. Liu N., Tang M. L., Hentschel M.. Giessen H., and Alivisatos A. P., Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater.2011,10,631-636.
    4. Talley C. E., Jackson J. B., Oubre C, Grady N. K., Hollars C. W., Lane S. M, Huser T. R., Nordlander P., and Halas N. J., Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett.2005,5.1569-1574.
    5. McLellan J. M., Li Z. Y., Siekkinen A. R.. and Xia Y. N., The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization. Nano Lett. 2007,7,1013-1017.
    6. Li J. F.. Huang Y. F., Ding Y. Yang Z. L.. Li S. B., Zhou X. S., Fan F. R., Zhang W.. Zhou Z. Y. Wu D. Y., Ren B., Wang Z. L., and Tian Z. Q., Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010.464,392-395.
    7. Huang X. H., El-Sayed I. H.. Qian W., and El-Sayed M. A., Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006,725,2115-2120.
    8. Murphy C. J., Gole A. M., Stone J. W.. Sisco P. N.. Alkilany A. M., Goldsmith E. C., and Baxter S. C. Gold nanoparticles in biology:beyond toxicity to cellular imaging. Acc. Chem. Res.2008,41, 1721-1730.
    9. Lai S., Clare S. E., and Halas N. J., Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res.2008,41.1842-1851.
    10. Cobley C. M., Chen J. Y. Cho E. C., Wang L. V.. and Xia Y. N., Gold nanostructures:a class of multifunctional materials for biomedical applications. Chem. Soc. Rev.2011,40, 44-56.
    11. Zijlstra P., Chon J. W. M., and Gu M., Five-dimensional optical recording mediated by surface palsmons in gold nanorods. Nature 2009.459,410-413.
    12. Noginov M. A., Zhu G., Belgrave A. M., Bakker R.. Shalaev V. M., Narimanov E. E., Stout S.. Herz E., Suteewong T., and Wiesner U., Demonstration of a spaser-based nanolaser. Nature 2009,460,1110-1112.
    13. Knight M. W., Sobhani H., Nordlander P., and Halas N. J.. Photodetection with active optical antennas. Science 2011,332,702-704.
    14. Khatua S., Chang W.-S., Swanglap P., Olson J., and Link S.,Active modulation of nanorod plasmons. Nano Lett.2011,77,3797-3802.
    15. Sivis M., Duwe M., Abel B., and Ropers C. Extreme-ultraviolet light generation in plasmonic nanostructures. Nat. Phys.2013. DOI:10.1038/NPHYS2590.
    16. Ni W. H., Kou X. S.. Yang Z., and Wang J. F., Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. ACS Nano 2008.2, 677-686.
    17. Sonnichsen C., Franzl T., Wilk T., von Plessen G.. and Feldmann J., Drastic reduction of plasmon dampling in gold nanorods. Phys. Rev. Lett.2002.88,077402.
    18. Bogaerts W., Baets R., Dumon P., Wiaux V.. Beckx S., Taillaert D., Luyssaert B., and Campenhout J. V., Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightw. Technol.2005.23,401-412.
    19. Jalali B. and Fathpour S., Silicon photonics. J. Lightw. Technol.2006.24,4600-4615.
    20. Xia F. N., Sekaric L., and Vlasov Y., Ultracompact optical buffers on a silicon chip. Nat. Photon,2007,1,65-71.
    21. Lin S. Y., Chow E., Hietala V., Villeneuve P. R.. and Joannopoulos J. D.,Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal. Science 1998.282.274-276.
    22. Tong L. M., Gattass R. R., Ashcom J. B., He S. L., Lou J. Y., Shen M. Y., Maxwell I., and Mazur E., Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 2003,426,816-819.
    23. Tong L. M. and Sumetsky M., Subwavelength and nanometer diameter optical fibers. Zhejiang University Press and Springer-Verlag,Hangzhou,2009.
    24. Tong L. M., Zi F., Guo X., Lou J. Y., Optical microfibers and nanofibers:a tutorial. Opt. Commun.2012,285,4641-4647.
    25. Xia Y. N., Yang P. D., Sun Y. G., Wu Y. Y., Mayers B., Gates B., Yin Y D., Kim F., and Yan H. Q., One-dimensional nanostructures:synthesis, characterization, and applications. Adv. Mater. 2003,75,353-389.
    26. Law M., Sirbuly D. J., Johnson J. C., Goldberger J., Saykally R. J., and Yang P. D., Nanoribbon waveguides for subwavelength photonics integration. Science 2004,305, 1269-1273.
    27. Yan R. X., Gargas D., Yang P. D., Nanowire photonics. Nat. Photon.2009,3,569-576.
    28. Ozbay E., Plasmonics:Merging photonics and electronics at nanoscale dimensions. Science 2006.577,189-193.
    29. Gramotnev D. K. and Bozhevolnyi S. I., Plasmonics beyond the diffraction limit. Nat. Photon.2010.4,83-91.
    30. Guo X., Qiu M., Bao J. M., Wiley B. J., Yang Q.. Zhang X. N., Ma Y. G.. Yu H. K.. and Tong L. M., Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Lett.2009,9.4515-4519.
    31. Tong L. M., Lou J. Y.. and Mazur E., Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Opt. Express 2004,12, 1025-1035.
    32. Tong L. M., Hu L. L., Zhang J. J., Qiu J. R., Yang Q., Lou J. Y., Shen Y. H., He J. L., and Ye Z. Z., Photonic nanowires directly drawn from bulk glasses. Opt. Express 2006,14, 82-87.
    33. Gu F. X., Yu H. K., Wang P., Yang Z. Y., and Tong L. M., Light-emitting polymer single nanofibers via waveguiding excitation. ACS Nano 2010.4.5332-5338.
    34. Boys C. V., On the production, properties, and some suggested uses of the finest thread. Phil. Mag.1887,23.489-499.
    35. Kao K. C. and Hockham G. A., Dielectric-fibre surface waveguides for optical frequency. Proc. IEE 1966,115,1151-1158.
    36. Love J. D. and Henry W. M., Quantifying loss minimisation in single-mode fibre tapers. Electron. Lett,1986,22.912-914.
    37. Burns W. K., Abebe M., Villarruel C. A., and Moeller R. P., Loss mechanisms in single-mode fiber tapers. J. Lightw. Lett,1986.4,608-613.
    38. Birks T. A. and Li Y. W., The shape of tapers. J. Lightw, Lett.1992,10,432-438.
    39. Brambilla G., Finazzi V., and Richardson D. J., Ultra-low-loss optical fiber nanotapers. Opt. Express 2004,12,2258-2263.
    40. Sumetsky M., Dulashko Y., and Hale A., Fabrication and study of bent and coiled free silica nanowires:self-coupling microloop optical interferometer. Opt. Express 2004,12, 3521-3531.
    41. Tong L. M., Lou J. Y.,Ye Z. Z., Svacha G. T.. and Mazur E., Self-modulated taper drawing of silica nanowires. Nanotechnology 2005,16,1445-1448.
    42. Ward J. M., O'Shea D. G., Shortt B. J., Morrissey M. J., Deasy K., and Nic Chormaic S. G., Heat-and-pull rig for fiber taper fabrication. Rev. Sci. Instrum,2006,77,083105.
    43. Shi L., Chen X. F., Liu H. J.. Chen Y. P., Ye Z. Q., Liao W. J., and Xia Y. X., Fabrication of submicron-diameter silica fibers using electric strip heater. Opt. Express 2006,14, 5055-5060.
    44. Ma H., Jen A. K. Y., and Dalton L. R., Polymer-based optical waveguides:materials. processing, and devices. Adv. Mater.2002,14.1339-1365.
    45. Li D.,Wang Y. L., and Xia Y. N., Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett.2003,3,1167-1171.
    46. Li D. and Xia Y. N., Electrospinning of nanofibers:reinventing the wheel?. Adv Muter 2004, 16,1151-1170.
    47. Dzenis Y., Spinning continuous fibers for nanotechnology. Science 2004.304,1917-1919.
    48. Harfenist S. A.,Cambron S. D., Nelson E. W.. Berry S. M., Isham A. W.,Crain M. M.. Walsh K. M., Keynton R. S., and Cohn R. W., Direct drawing of suspended filamentary micro-and nanostructures from liquid polymers. Nano Lett.2004,4,1931-1937.
    49. Gu F. X., Zhang L.. Yin X. F., and Tong L. M., Polymer single-nanowire optical sensors. Nano Lett.2008,8,2757-2761.
    50. Xing X. B.. Zhu H., Wang Y. Q., and Li B. J., Ultracompact photonic coupling splitters twisted by PTT nanowires. Nano Lett.2008,8,2839-2843.
    51. O'Carroll D., Lieberwirth I., and Redmond G., Melt-processed polyfluorene nanowires as active waveguides. Small 2007,5,1178-1183.
    52. O'Carroll D., Lieberwirth I., and Redmond G., Microcavity effects and optically pumped lasing in single conjugated polymer nanowires. Nat. Nanotechnol.2007.2.180-184.
    53. Tong L. M.,Lou J. Y., Gattass R. R., He S. L., Chen X. W., Liu L., and Mazur E., Assembly of silica nanowires on silica aerogels for microphotonic devices. Nano Lett 2005, 5,259-262.
    54. Li Y. H. and Tong L. M., Mach-Zehnder interferometers assembled with optical microfibers or nanofibers. Opt. Lett,2008,35,303-305.
    55. Jiang X. S., Yang Q., Vienne G., Li Y. H., Tong L. M., Zhang J. J., and Hu L. L Demonstration of mcrofiber knot laser. Appl. Phys. Lett.2006,89,143513.
    56. Liu Y. X., Meng C., Zhang A. P., Xiao Y., Yu H. K., and Tong L. M., Compact microfiber Bragg gratings with high-index contrast. Opt. Lett.2011.36,3115-3117.
    57. Jiang X. S., Tong L. M., Vienne G., Guo X., Tsao A.. Yang Q., and Yang D. R., Demonstration of optical microfiber knot resonantors.Appl. Phys. Lett.2006,88,223501.
    58. Sumetsky M., Opticla fiber microcoil resonator. Opt. Express 2004,12,2303-2316.
    59. Sumetsky M., Dulashko Y., Fini J. M., and Hale A., Optical microfiber loop resonator. Appl. Phys. Lett,2005,86,161108.
    60. Sumetsky M., Dulashko Y., Fini J. M., Hale A., and DiGiovanni D. J., The microfiber loop resonator:theory, experiment, and application. J. Lightw. Technol.2006,24,242-250.
    61. Guo X.. Li Y. H., Jiang X. S., and Tong L. M., Demonstration of critical coupling in microfiber loops wrapped around a copper rod. Appl. Phys. Lett.2007,91,073512.
    62. Xu F. and Brambilla G., Embedding optical microfiber coil resonators in Teflon. Opt. Lett. 2007.52.2164-2166.
    63. Pal P. and Knox W. H.. Fabrication and characterization of fused microfiber resonators, IEEE Photon. Technol Lett.2009.21,766-768.
    64. Yang Q.. Jiang X. S., Gu F. X., Ma Z., Zhang J. Y.. and Tong L. M., Polymer micro or nanofibers for optical device applications. J. Appl. Polym. Sci.2008.110.1080-1084.
    65. Jiang X. S.,Song Q. H.,Xu L.,Fu J.,and Tong L.M., Microfiber knot dye laser based on the evanescent-wave-coupled gain. Appl. Phys. Lett,2007.90.233501.
    66. Yang Q., Jiang X. S., Guo X., Chen Y., and Tong L. M., Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity. Appl. Phys. Lett,2009,94. 101108.
    67. Zhang L., Lou J. Y., and Tong L. M., Micro/nanofiber optical sensors. Photon. Sens.2011, 7,31-42.
    68. Lou J. Y., Tong L. M., and Ye Z. Z., Modeling of silica nanowires for optical sensing. Opt. Express 2005,13,2135-2140.
    69. Polynkin P., Polynkin A., Peyghambarian N., and Mansuripur M., Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels. Opt. Lett.2005,30,1273-1275.
    70. Zhang L., Wang P., Xiao Y., Yu H. K., and Tong L. M., Ultra-sensitive microfibre absorption detection in a microfluidic chip. Lab Chip 2011,77,3720-3724.
    71. Zhu H., Wang Y. Q., and Li B. J.. Tunable refractive index sensor with ultracompact structure twisted by poly(trimethylene terephthalate) nanowires. ACS Nano 2009,3. 3110-3114.
    72. Villatoro J. and Monzon-Hernandez D., Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers. Opt. Express 2005,13,5087-5092.
    73. Zhang L., Gu F. X., Lou J. Y., Yin X. F., and Tong L. M., Fast detection of humidity with a subwavelength-diameter fiber coated with geltan film. Opt. Express 2008,16,13349-13353.
    74. http://www.britishmuseum.org/explore/highlights/highlight_objects/pe_mla/t/the_lycurgus_cup.aspx.
    75. Faraday M., Experimental relations of gold (and other metals) to light. Philos. Trans.1857. 147,145-181.
    76. Romo-Herrera J. M., Alvarez-Puebla R. A., and Liz-Marzan L. M., Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 2011,3,1304-1315.
    77. Foss C. A., Hornyak G. L., Stockert J. A., and Martin C. R., Opticla properties of composite membranes containing arrays of nanpscopic gold cylinders.J. Phys. Chem.1992,96, 7497-7499.
    78. Martin C. R.. Nanomaterials:a membrane-based synthetic approach. Science 1994.266, 1961-1966.
    79. Martin C. R., Membrane-based synthesis of nanomaterials. Chem. Mater.1996,8, 1739-1746.
    80. Yu Y. Y., Chang S. S., Lee C. L., and Wang C. R. C., Gold nanorods:electrochemical synthesis and optical properties. J. Phys. Chem. B 1997,101,6661-6664.
    81. Chang S. S., Shih C. W., Chen C. D., Lai W. C. and Wang C. R. C., The shape transition of gold nanorods. Langmuir 1999,75,701-709.
    82. Kim F., Song J. H., and Yang P. D., Photochemical synthesis of gold nanorods. J. Am. Chem. Soc.2002,124,14316-14317.
    83. Nikoobakht B., and El-Sayed M. A., Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater.2003,75,1957-1962.
    84. Sau T. K. and Murphy C. J., Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 2004,20,6414-6420.
    85. Tsung C.-K., Kou X. S., Shi Q. H., Zhang J. P., Yeung M. H., Wang J. F., and Stucky G. D., Selective shortening of single-crystalline gold nanorods by mild oxidation. J. Am. Chem. Rev.2006,128,5352-5353.
    86. Kou X. S., Zhang S. Z.. Yang Z., Tsung C.-K., Stucky G. D., Sun L. D., Wang J. F., and Yan C. H., Glutathione- and cysteine-induced transverse overgrowth on gold nanorods. J. Am. Chem. Soc.2007,129,6402-6404.
    87. Ye X. C., Zheng C., Chen J., Gao Y. Z., Murray C. B., Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett.2013,13,765-771.
    88. Chen H. J., Shao L., Li Q., and Wang J. F.,Gold nanorods and their plasmonic properties. Chem. Soc. Rev.2013.42.2679-2724.
    89. Bohren C. F. and Huffman D. R.. Absorption and scattering of light by small particles. John Wiley & Sons. New York. USA.1983.
    90. Link S., Mohamed M. B., and El-Sayed M. A., Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant.J Phys. Chem. B 1999,103,3073-3077.
    91. Zuloaga J., Prodan E., and Nordlander P., Quantum plasmonics:optical properties and tunability of metallic nanorods. ACS Nano 2010,4,5269-5276.
    92. Hu M., Novo C., Funston A.. Wang H. N.,Staleva H., Zou S. L., Mulvaney P., Xia Y. N., and Hartland G. V., Dark-field microscopy studies of single metal nanoparticles: understading the factors that influence the linewidth of the localized surface plasmon resonance. J. Mater. Chem.2008,18,1949-1960.
    93. Sonnichsen C., Geier S., Hecker N. E., von Plessen G., and Feldmann J., Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl. Phys. Lett. 2000,77,2949-2951.
    94. Yang S.-C., Kobori H., He C.-L., Lin M.-H., Chen H.-Y., Li C. C., Kanehara M., Teranishi T., and Gwo S., Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes. Nano Lett,2010.10,632-637.
    95. Cognet L., Tardin C., Boyer D., Choquet D., Tamarat P.,and Lounis B., Single metallic nanoparticle imaging for protein detection in cells. Proc. Natl. Acad.Sci. U. S. A.2003.100, 11350-11355.
    96. Mikhailovsky A. A., Petruska M. A.. Stockman M. I., and Klimov V. I., Broadband near-field interference spectroscopy of metal nanoparticles using a femtosecond white-light continuum. Opt. Lett.2003.28,1686-1688.
    97. Imura K., Nagahara T., and Okamoto H., Imaging of surface plasmon and ultrafast dynamics in gold nanorods by near-field microscopy. J. Phys. Chem. B 2004,108, 16344-16347.
    98. Ni W. H., Chen H. J., Kou X. S., Yeung M. H., and Wang J. F.. Optical fiber-excited surface plasmon resonance spectroscopy of single and ensemble gold nanorods.J. Phys. Chem. C2008,112,8105-8109.
    99. Wang C. G. and Irudayaraj J., Gold nanorod probes for the detection of multiple pathogens. Small 2008.4.2204-2208.
    100.Chen H. J., Shao L., Woo K. C. Ming T., Lin H. Q., and Wang J. F., Shape-dependent refractive index sensitivities of gold nanocrystals with the same plasmon resonance wavelength.J. Phys. Chem. C2009,113,17691-17697.
    101.Nusz G. J., Marinakos S. M., Curry A. C. Dahlin A., Hook F., Wax A., and Chilkoti A. Label-free plasmonic detection of biomolecular binding by a single gold nanorod. Anal. Chem.2008.80.984-989.
    102.Ament I., Prasad J., Henkel A., Schmachtel S., and Sonnichsen C., Single unlabeled protein detection on individual plasmonic nanoparticles. Nano Lett.2012,12,1092-1095.
    103.Yu C. X. and Irudayaraj J., Multiplex biosensor using gold nanorods. Anal. Chem.2007,79, 572-579.
    104.Chen H. J., Kou X. S., Yang Z., Ni W. H., and Wang J. F., Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 2008,24,5233-5237.
    105.Nikoobakht B. and El-Sayed M. A., Surface-enhanced Raman scattering studies on aggregated gold nanorods. J. Phys. Chem. A 2003,107,3372-3378.
    106.Sugikawa K., Furukawa Y., and Sada K., SERS-active metal-organic frameworks embedding gold nanorods. Chem. Mater.2011,23,3132-3134.
    107.Lee A., Andrade G. F. S., Ahmed A., Souza M. L., Coombs N., Tumarkin E., Liu K. Gordon R., Brolo A. G., and Kumacheva E., Probing dynamic generation of hot-spots in self-assembled chains of gold nanorods by surface-enhanced Raman Scattering. J. Am. Chem. Soc.2011,133.7563-7570.
    108.Alvarez-Puebla R. A., Agarwal A., Manna P., Khanal B. P., Aldeanueva-Potel P., Carbo-Argibay E., Pazos-Perez N., Vigderman L., Zubarev E. R., Kotov N. A., and Liz-Marzan L. M., Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proc. Natl. Acad. Sci. U. S. A.2011.108,8157-8161.
    109.Osberg K. D., Rycenga M., Harris N., Schmucker A. L., Langille M. R., Schatz G. C., and Mirkin C. A., Dispersible gold nanorod dimers with sub-5nm gaps as local amplifiers for surface-enhanced Raman scattering. Nano Lett.2012,12,3828-3832.
    110.Muhlschlegel P.,Eisler H. J., Martin O. J. F., Hecht B., and Pohl D. W., Resonant optical antennas. Science 2005,308.1607-1609.
    111.Bouhelier A., Bachelot R., Lerondel G., Kostcheev S.,Rover P., and Wiederrecht G. P., Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. Phys. Rev. Lett.2005,95,267405.
    112.Ming T., Zhao L., Xiao M. D., and Wang J. F., Resonance-coupling-based plasmonic switches. Small 2010,6,2514-2519.
    113.Liu S. Y., Li J.F., Zhou F., Gan L., and Li Z. Y., Efficient surface plasmon amplification from gain-assited gold nanorods. Opt. Lett.2011,36,1296-1298.
    114.Chamanzar M. and Adibi A., Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators. Opt. Express 2011,19,22292-22304.
    115.Fevrier M., Gogol P., Aassime A., Megy R., Delacour C., Chelnokov A., Apuzzo A.. Blaize S., Lourtioz J. M., and Dagens B., Giant coupling effect between metal nanoparticle chain and optical waveguide. Nano Lett.2012,12,1032-1037.
    116.Apuzzo A., Fevrier M., Salas-Montiel R., Bruyant A.,Chelnokov A., Lerondel G., Dagens B., and Blaize S., Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide. Nano Lett.2013,13,1000-1006.
    117.Kekatpure R. D.,Barnard E. S., Cai W. S., and Brongersma M. L., Phase-coupled plasmon-induced transparency. Phys. Rev. Lett.2010,104,243902.
    118.He Y. R.. Zhou H., Jin Y., and He S. L., Plasmon induced transparency in a dielectric waveguide. Appl. Phys. Lett.2011,99,043113.
    119.Arango F. B., Kwadrin A., and Koenderink A. F., Plasmonic antennas hybridized with dielectric waveguides. ACS Nano 2012.6,10156-10167.
    120. Wang P., Wang Y. P., and Tong L. M. Functionalized polymer nanofibers:a versatile platform for manipulating light at nanoscale. Light Sci. Appl.2013 (Accepted).
    121.Huang K. J., Yang S. Y., and Tong L. M., Modeling of evanescent coupling between two parallel optical nanowires. Appl. Opt.2007,46,1429-1434.
    122.Chen Y., Ma Z., Yang Q., and Tong L. M., Compact optical short-pass filters based on microfibers. Opt. Lett.2008,33,2565-2567.
    123.Pal P. and Knox W. H., Low loss fusion splicing of micron scale silica fibers. Opt. Express 2008,16,11568-11573.
    124.Wang P.. Zhang L.. Yang Z. Y.. Gu F. X., Wang S. S., Yang Q., and Tong L. M., Fusion spliced microfiber closed-loop resonators. IEEE Photon. Technol. Lett,2010,22, 1075-1077.
    125.Li W., Wang P., Hu Z. F., and Tong L. M., Fusion splicing soft glass microfibers for photonic devices. IEEE Photon. Technol. Lett.2011,23.831-833.
    126.Heebner J., Grover R., and Ibrahim T., Optical microresonators:theory, fabrication, and applications. Springer-Verlag, Lodon,2008.
    127.Meng C., Xiao Y., Wang P., Zhang L., Liu Y. X., and Tong L. M., Quantum-dot-doped polymer nanofibers for optical sensing. Adv Mater 2011,23,3770-3774.
    128.Bao Q. L., Zhang H., Yang J.-X., Wang S., Tang D. Y., Jose R., Ramakrishna S., Lim C. T., and Loh K. P., Graphnene-polymer nanofiber membrane for ultrafast photonics. Adv. Funct. Mater.2010,20.782-791.
    129.Martinez-Pardo M. E.. Cardoso J., Vazquea H., Aguilar M., Rickards J., and Andrade E., Characterization of MeV proton irradiated PS films. Nucl. Instrum. Methods Phys. Res. Sect. B 1997,731,219-225.
    130.Lee H. M., Kim Y. N., Kim B. H., Kim S. O., and Cho S. O., Fabrication of luminescent nanoarchitectures by electron irradiation of polystyrene. Adv. Mater.2008,20,2094-2098.
    131.Wang P., Li Z. Y., Zhang L., and Tong L. M., Electron-beam-activated light-emitting polymer nanofibers. Opt. Lett.2013,38,1040-1042.
    132.Lakowica J. R., Principles of fluorescence spectroscopy,3rd ed., Springer-Verlag:Berlin, Heidelberg,2006.
    133.Camposeo A., Benedetto F. D., Stabile R., Cingolani R., and Pisignano D., Electrospun dye-doped polymer nanofibers emitting in the near infrared. Appl. Phys. Lett.2007,90, 143115.
    134.Wang P.,Gu F. X., Zhang L., and Tong L. M., Polymer microfiber rings for high-sensitivity optical humidity sensing. Appl. Opt.2011.50. G7-G10.
    135.Perez-Juste J., Rodriguez-Gonzalez B., Mulvaney P.. and Liz-Marzan L. M., Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films. Adv. Funct. Mater. 2005,75.1065-1071.
    136.Chon J. W. M.. Bullen C. Zijlstra P. and Gu M.,Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage. Adv. Funct. Mater,2007,17,875-880.
    137.Kreno L. E., Hupp J. T., and Van Duyne R. P., Metal-organic framework thin film for enhanced localized surface plasmon resonance gas sensing. Anal. Chem.2010,82. 8042-8046.
    138.Li J. F., Liu S. Y., Liu Y., Zhou F., and Li Z. Y.. Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods. Appl. Phys. Lett. 2010,96,263103.
    139.Kim G. M., Wutzler A., Radusch H. J., Michler G. H., Simon P., Sperling R. A., and Parak W., One-dimensional arrangement of gold nanoparticles by electrospinning. Chem. Mater. 2005,17,4949-4957.
    140.Tsung C. K., Hong W. B., Shi Q. H., Kou X. S., Yeung M. H., Wang J. F., and Stucky G. D., Shape- and orientation-controlled gold nanoparticles formed within mesoporous silica nanofibers. Adv. Funct. Mater.2006,16,2225-2230.
    141.Hu M. S., Chen H. L., Shen C. H., Hong L. S., Huang B. R., Chen K. H., and Chen L. C. Photosensitive gold-nanoparticle-embedded dielectric nanowires. Nat. Mater.2006,5, 102-106.
    142.He D.. Hu B., Yao Q. F., Wang K., and Yu S. H., Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity:electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles. ACS Nano 2009.5,3993-4002.
    143.Roskov K. E., Kozek K. A., Wu W. C., Chhetri R. K., Oldenburg A. L., Spontak R. J., and Tracy J. B., Long-range alignment of gold nanorods in electrospun polymer nano/microfibers. Langmuir 2011,27.13965-13969.
    144.Wang P., Zhang L., Xia Y. N., Tong L. M., Xu X., and Ying Y. B., Polymer nanofibers embedded with aligned gold nanorods:a new platform for plasmonic studies and optical sensing. Nano Lett.2012,72.3145-3150.
    145.Gole A. and Murphy C. J.. Polyelectrolyte-coated gold nanorods:synthesis, characterization and immobilization. Chem. Mater.2005,77,1325-1330.
    146.Liu Y., Mills E. N., and Composto R. J., Tuning optical properties of gold nanorods in polymer films through thermal reshaping.J. Mater. Chem.2009.19,2704-2709.
    147.Murphy C. J. and Orendorff C. J.. Alignment of gold nanorods in polymer composites and on polymer surfaces. Adv. Mater,2005,17,2173-2177.
    148.Lee C. H., Tian L. M., Abbas A., kattumenu R., and Singamaneni S., Directed assembly of gold nanorods using aligned electrospun polymer nanofibers for highly efficient SERS substrates. Nanotechnology 2011.22.275311.
    149.Kien F. L., Liang J. Q., Hakuta K., and Balykin V. I., Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber. Opt. Commun.2004,242,445-455.
    150.Barth M., Schietinger S., Fischer S., Becker J., Niisse N., Aichele T., Lochel B., Sonnichsen C., and Benson O., Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling. Nano Lett.2010,10,891-895.
    151.Bingham J. M., Anker J. N., Kreno L. E., and Van Duyne R. P., Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J. Am. Chem. Soc.2010, 132,17358-17359.
    152.Karakouz T., Vaskevich A., and Rubinstein I., Polymer-coated gold island films as localized plasmon transducers for gas sensing. J. Phys. Chem. B.2008,112,14530-14538.
    153.Cheng C. S., Chen Y. Q., and Lu C. J., Organic vapor sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer. Talanta 2007,73,358-365.
    154.Novo C., Gomez D., Perez-Juste J., Zhang Z. Y., Petrova H., Reismann M., Mulvaney P., and Hartland G. V.. Contribution from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods:a single particle study. Phys. Chem. Chem. Phys.2006,8,3540-3546.
    155.Maier S. A.,Plasmonics:fundamentals and applications. Springer,2007.
    156.Sherry L. J., Chang S.-H., Schatz G. C. and Van Duyne R. P., Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett.2005,5,2034-2038.
    157.Becker J., Zins I., Jakab A., Khalavka Y., Schubert O.,and Sonnichsen C., Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods. Nano Lett.2008,8, 1719-1723.
    158.Zou S. L. and Schatz G. C., Theoretical studies of plasmon resonances in one-dimensional nanoparticle chains:narrow lineshapes with tunable widths. Nanotechnology 2006,17, 2813-2820.
    159.Auguie B. and Barnes W. L., Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett.2008.101,143902.
    160.Kravets V. G.. Schedin F., and Grigorenko A. N., Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys. Rev,Lett,2008,101,087403.
    161.Prodan E., Radloff C. Halas N. J., and Nordlander P., A hybridization model for the plasmon response of complex nanostructures. Science 2003,77,419-422.
    162.Lassiter J. B., Sobhani H., Fan J. A., Kundu J., Capasso F., Nordlander P., and Halas N. J.. Fano resonances in plasmonic nanoclusters:geometrical and chemical tunability. Nano Lett. 2010,10,3184-3189.
    163.Fan J. A., Wu C., Bao K., Bao J. M., Bardhan R., Halas N. J., Manoharan V. N., Nordlander P., Shvets G., and Capasso F., Self-assembled plasmonic nanoparticle clusters. Science 2010, 525,1135-1138.
    164.Verellen N., Dorpe P. V., Huang C. J.. Lodewijks K., Vandenbosch G. A. E., Lagae L.,and Moshchalkov V. V., Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett.2011,77,391-397.
    165.Ameling R., Langguth L., Hentschel M., Mesch M., Braun P. V., and Giessen H., Cavity-enhanced localized plasmon resonance sensing. Appl. Phys. Lett.2010,97,253116.
    166.Chanda D., Shigeta K., Truong T., Lui E., Mihi A.,Schulmerich M.. Braun P. V.. Bhargava R., and Rogers J. A., Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals. Nat. Commun.2011,2,479.
    167.Schmidt M. A., Lei D. Y., Wondraczek L., Nazabal V.,and Maier S. A.. Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability. Nat. Commun,2012,3,1108.
    168.Huang Y. J. and Kim D.-H., Dark-field microscopy studies of polarization-dependent plasmonic resonance of single gold nanorods:rainbow nanoparticles. Nanoscale 2011.3. 3228-3232.
    169.Sychugov V. A., Torchigin V. P., and Tsvetkov M. Y., Whispering-gallery waves in optical fibres. Quantum Electron.2002.32,738-742.
    170.P6llinger M., O'Shea D., Warken F., and Rauschenbeutel A., Ultrahigh-Q tunable whispering-gallery-mode microresonator. Phys. Rev. Lett.2009,103,053901.
    171.Sumetsky M., Mode localization and the O-factor of a cylindrical microresoantor. Opt. Lett. 2010,55,2385-2387.
    172.Ta V. D., Chen R., Ma L., Ying Y. J., and Sun H. D., Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber. Laser Photonics Rev.2013.7, 133-139.
    173.Novotny L. and Hecht B., Principles of nano-optics. Cambridge University Press, Cambridge, UK,2006.
    174.Liu Q. K., Cui Y. X., Gardner D., Li X., He S. L., and Smalyukh I. I., Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications. Nano Lett.2010,10,1347-1353.
    175.Kippenberg T. J., Spillane S. M, and Vahala K. J., Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip. Appl. Phys. Lett.2004,85,6113-6115.
    176.Yanik A. A., Cetin A. E., Huang M.. Artar A., Mousavi S. H., Khanikaev A., Connor J. H., Shvets G., and Altug H., Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc. Natl. Acad. Sci. U. S. A.2011.108.11784-11789.
    177.Ming T., Zhao L., Xiao M. D.. and Wang J. F.. Resonance-coupling-based plasmonic switches. Small 2010.6,2514-2519.
    178.Khatua S., Chang W.-S. Swanglap P., Olson J., and Link S., Active modulation of nanorod plasmons. Nano Lett.2011.11, 3797-3802.
    179.Kossyrev P. A., Yin A. J., Cloutier S. G., Cardimona D. A., Huang D. H., Alsing P. M., and Xu J. M., Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. Nano Lett.2005.5,1978-1981.
    180.Hsiao V. K. S., Zheng Y. B., Juluri B. K., and Huang T. J.. Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals. Adv. Mater.2008,20, 3528-3532.
    181.Novo C., Funston A. M.. Gooding A. K., and Mulvaney P., Electrochemical charging of single gold nanorods. J. Am. Chem. Soc.2009,131,14664-14666.
    182.Geis W., Sinta R., Mowers W.,Deneault S. J., Marchant M. F.. Krohn K. E., Spector S. J., Calawa D. R.. and Lyszczarz T. M., Fabrcation of crystalline organic waveguides with an exceptionally large electro-optic coefficient.Appl. Phys. Lett.2004,84,3729-3731.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700