用户名: 密码: 验证码:
纳米线波导的光纤耦合及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在亚波长尺度上实现对光束的操控是光子器件的发展趋势。微纳光波导,特别是半导体纳米线波导,作为在介观尺度上对光子非常有效的二维约束结构吸引了众多的研究热情,并有望成为微纳光子器件的基本元件之一。在最近几年逐渐兴起的一个新兴领域——表面等离激元(SPP)光子学也对集成光学的发展有很重要的影响。SPP波导打破了衍射极限的限制,使得光信号可以以深亚波长尺度约束进行传输。在上述光子结构的研究和应用中,利用纳米光纤耦合及传输光信号是近年来发展起来的一种简单高效的新方法.也是目前连接微纳结构与宏观器件的最有效方式之一。本工作对纳米线波导与纳米光纤探针的耦合做了深入研究,并利用这一结构的高效率耦合特性,研制成功带有尾纤输出的纳米带环形激光器,同时直接测量了SPP纳米线的传输损耗。
     作为典型的微纳光波导之一,半导体纳米线具有制作方便、损耗低、增益强、非线性系数大和光约束能力强等优异性能。本文在第二章介绍了半导体纳米线的光学特性,将氧化锌纳米线近似看成圆柱形波导后对其模场求解析解得到其模场特性:线偏振和圆偏振的导模的电场分布情况、纳米线内部及周围的电场和能量的分布及不同直径的纳米线的色散特性。之后我们用微扰理论从物理图像上分析了纳米线间的倏逝波耦合,并对不同参数的纳米线之间的耦合做了分析。在第三章中,我们利用微操作将半导体纳米线制备成带有尾纤输出的环形谐振腔来制作纳米线激光器。使用的单根纳米带的横截面积为600nm X300nm。当用超连续光对制备的环形腔进行泵浦时,在523nm附近可以得到半高宽为0.27nm的多模激光输出。这一结构的输出具有大约为5:1偏振比和3.7nW的激光输出功率。所获得的激光输出功率高于其他纳米线激光器的结果。
     在第四章我们对SPP波导的导波特性进行研究。首先介绍了SPP的基本概念,接着对单根银纳米线在均匀介质中的导模进行分析,然后在实验上对单根银纳米线的传输损耗进行直接测量。利用纳米光纤探针的导波特性,我们实现了从纳米光纤到银纳米线的稳定高效的光子-SPP耦合。通过改变SPP在银纳米线中的传输长度,我们对银纳米线中的SPP传输损耗进行了测量。测得的结果为:0.64dB/μm (532nm),0.41dB/μm (633nm)和0.33dB/μm (980nm),该结果与有限元分析结果符合。这一结果证实了之前对银纳米线的传输损耗的间接实验结果,表明之前的理论计算值偏高。
     综上所述,基于纳米线波导与纳米光纤的高效率耦合特性,本论文工作在半导体纳米线激光器输出与SPP波导损耗特性表征方面获得重要进展,研究结果将为发展基于半导体纳米线和银纳米线的光子器件提供有价值的参考或指导作用。
The control and manipulation of photons on the subwavelength scale is one of the current trends in photonic devices. Nano optical waveguides, especially semiconductor nanowire waveguides, are promising nanostructures for2-dimensional tight confinement of propagating light, and have been attracting intensive interests for using as nanoscale building blocks for nanophotonic devices. Recent advances in plasmonics have made significant impact on the development of integrated photonics. Surface plasmon polariton waveguide have the inherent ability to break the diffraction limit and guide light on the deep subwavelength scale, and for both scientific study and practical application, optical connection by the nanofiber is a simple and efficient approaches. In this work, we have investigated the coupling between nanowire waveguides and optical nanofibers, and its applications in pigtailed semiconductor nanoribbon ring lasers and direct measurement of propagation loss of silver nanowires.
     As a typical nanowaveguide, semiconductor nanowires have advantages including easy fabrication, low loss, high gain, high nonlinearity and strong optical confinement. In the second chapter, we introduced the optical properties of semiconductors based on the guiding modes in a Zinc oxide nanowire. The polarization-dependent mode distribution and waveguide dispersion are studied. In the third chapter, we demonstrated the fabrication of a pigtailed semiconductor nanoribbon ring laser using a600nm wide and330nm thick CdS nanoribbon. When the20-um-diameter ring was irradiated by light from a supercontinuum source, multi-longitudinal mode laser emission was observed around523.5nm with a full widths at half maximum of0.27nm. The laser output from the pigtail showed strong orientation-dependent polarization, with a maximum polarization ratio of5and power up to3.7nW. The laser output power in this work is much higher than many other works reported previously.
     In the fourth chapter, we investigated the waveguiding properties of silver nanowires. We first introduced the basic concepts of surface plasmon polaritons (SPPs), followed by analytical calculation of the fundamental SPP mode of a silver nanowire waveguide. Then, we experimentally demonstrated a simple and direct measurement of propagation losses in single silver nanowires. Using a nanoscale fiber taper for highly efficient plasmonic excitation, propagation-length-dependent SPP waveguiding and output are measured with high accuracy and repeatability. The measured results of SPP propagation losses are0.64dB/μm (532nm),0.41dB/μm (633nm) and0.33dB/μm (980nm). respectively, which agree well with results from FEM analyses. The obtained propagation losses support previously reported indirect measurements, and indicate that the loss reported by previous theoretical calculations was overestimated.
     Overall, based on efficient coupling between nanowire waveguides and optical nanofibers, we have made important progress on efficient output of semiconductor nanoribbon ring lasers and propagation loss measurement of silver nanowires. The results demonstrated here may be helpful for future development of photonic and plasmonic devices based on semiconductor and metal nanowires.
引文
1. R. Kirchain and L. Kimerling, "A roadmap for nanophotonics," Nature Photonics 1,303-305 (2007).
    2. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction," Optics Letters 26,1888-1890 (2001).
    3. S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282,274-276 (1998).
    4. E. Ozbay, "Plasmonics:Merging photonics and electronics at nanoscale dimensions," Science 311,189-193(2006).
    5. D. J. Sirbuly, M. Law, H. Q. Yan, and P. D. Yang, "Semiconductor nanowires for subwavelength photonics integration," Journal of Physical Chemistry B 109,15190-15213 (2005).
    6. K. M. Davis, K. Miura. N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Optics Letters 21,1729-1731 (1996).
    7. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen,I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819(2003).
    8. R. Yan, D. Gargas, and P. Yang, "Nanowire photonics," Nature Photonics 3,569-576 (2009).
    9. M. Yazawa, M. Koguchi, and K. Hiruma, "Heteroepitaxial ultrafine wire-like growth of InAs on GaAs substrates," Applied Physics Letters 58,1080-1082 (1991).
    10. Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, "One-dimensional nanostructures:Synthesis, characterization, and applications," Advanced Materials 15,353-389 (2003).
    11. P. J. Pauzauskie and P. Yang, "Nanowire photonics," Materials Today 9,36-45 (2006).
    12. R. S. Wagner and W. C. Ellis, "Vapor-Liquid-Solid Mechanism of Single Crystal Growth (New Method Growth Catalysis from Impurity Whisker Epitaxial+Large Crystals Si E)," Applied Physics Letters 4,89-91 (1964).
    13. P. Yang and C. M. Lieber, "Nanorod-Superconductor Composites:A Pathway to Materials with High Critical Current Densities," Science 273,1836-1840 (1996).
    14. A. M. Morales and C. M. Lieber, "A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires," Science 279,208-211 (1998).
    15. Y. Wu and P. Yang, "Direct Observation of Vapor-Liquid-Solid Nanowire Growth," Journal of the American Chemical Society 123,3165-3166 (2001).
    16. M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, "One-dimensional heterostructures in semiconductor nanowhiskers," Applied Physics Letters 80,1058-1060 (2002).
    17. Y. Wu and P. Yang, "Germanium Nanowire Growth via Simple Vapor Transport," Chemistry of Materials 12,605-607 (2000).
    18. K. M(?)lhave, B. A. Wacaser, D. H. Petersen, J. B. Wagner, L. Samuelson. and P. Boggild, "Epitaxial Integration of Nanowires in Microsystems by Local Micrometer-Scale Vapor-Phase Epitaxy," Small 4,1741-1746 (2008).
    19. C. J. Barrelet, Y. Wu, D. C. Bell, and C. M. Lieber, "Synthesis of CdS and ZnS Nanowires Using Single-Source Molecular Precursors," Journal of the American Chemical Society 125, 11498-11499(2003).
    20. P. V. Radovanovic, C. J. Barrelet, S. Gradecak, F. Qian, and C. M. Lieber, "General Synthesis of Manganese-Doped Ⅱ-Ⅵ and Ⅲ-Ⅴ Semiconductor Nanowires," Nano Letters 5, 1407-1411 (2005).
    21. J. Johansson, L. S. Karlsson, C. Patrik T. Svensson, T. Martensson, B. A. Wacaser, K.. Deppert, L. Samuelson, and W. Seifert, "Structural properties of [lang] 111[rang]B-oriented Ⅲ-Ⅴ nanowires," Nat Mater 5,574-580 (2006).
    22. T. Martensson, J. B. Wagner, E. Hilner, A. Mikkelsen, C. Thelander, J. Stangl, B. J. Ohlsson. A. Gustafsson, E. Lundgren, L. Samuelson, and W. Seifert, "Epitaxial Growth of Indium Arsenide Nanowires on Silicon Using Nucleation Templates Formed by Self-Assembled Organic Coatings," Advanced Materials 19,1801-1806 (2007).
    23. X. Duan and C. M. Lieber, "General Synthesis of Compound Semiconductor Nanowires," Advanced Materials 12,298-302 (2000).
    24. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind. E. Weber, R. Russo, and P. Yang, "Room-Temperature Ultraviolet Nanowire Nanolasers," Science 292,1897-1899 (2001).
    25. R. Agarwal, C. J. Barrelet, and C. M. Lieber, "Lasing in single cadmium sulfide nanowire optical cavities," Nano Letters 5,917-920 (2005).
    26. J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, "Single gallium nitride nanowire lasers." Nature Materials 1,106-110 (2002).
    27. A. Pan, R. Liu, Q. Zhang, Q. Wan, P. He, M. Zacharias, and B. Zou, "Fabrication and red-color lasing of individual highly uniform single-crystal CdSe nanobelts," Journal of Physical Chemistry C 111,14253-14256(2007).
    28. J. A. Zapien, Y. Jiang, X. M. Meng, W. Chen, F. C. K. Au, Y. Lifshitz, and S. T. Lee, "Room-temperature single nanoribbon lasers," Applied Physics Letters 84,1189-1191 (2004).
    29. J. Bao, M. A. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, "Broadband ZnO single-nanowire light-emitting diode," Nano Letters 6,1719-1722 (2006).
    30. C. J. Barrelet, J. M. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, "Hybrid single-nanowire photonic crystal and microresonator structures," Nano Letters 6,11-15 (2006).
    31. M. A. Zimmler, J. Bao, F. Capasso, S. Mueller, and C. Ronning, "Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation," Applied Physics Letters 93,051101 (2008).
    32. M. A. Zimmler, T. Voss, C. Ronning, and F. Capasso, "Exciton-related electroluminescence from ZnO nanowire light-emitting diodes," Applied Physics Letters 94,241120 (2009).
    33. L. K. van Vugt, S. Ruhle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, "Exciton polaritons confined in a ZnO nanowire cavity," Physical Review Letters 97,147401 (2006).
    34. L. K. van Vugt, S. Ruhle, and D. Vanmaekelbergh, "Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire," Nano Letters 6,2707-2711 (2006).
    35. M. A. M. Versteegh, T. Kuis, H. T. C. Stoof, and J. I. Dijkhuis, "Ultrafast screening and carrier dynamics in ZnO:Theory and experiment," Physical Review B 84,035207 (2011).
    36. C. Z. Ning, "Semiconductor nanolasers," Physica Status Solidi B-Basic Solid State Physics 247,774-788(2010).
    37. B. Zou, R. Liu, F. Wang, A. Pan, L. Cao, and Z. L. Wang, "Lasing mechanism of ZnO nanowires/nanobelts at room temperature," Journal of Physical Chemistry B 110, 12865-12873(2006).
    38. A. Pan, W. Zhou, E. S. P. Leong, R. Liu, A. H. Chin, B. Zou, and C. Z. Ning, "Continuous Alloy-Composition Spatial Grading and Superbroad Wavelength-Tunable Nanowire Lasers on a Single Chip," Nano Letters 9,784-788 (2009).
    39. W. Zhou, A. Pan, Y. Li, G. Dai, Q. Wan, Q. Zhang, and B. Zou, "Controllable fabrication of high-quality 6-fold symmetry-branched CdS nanostructures with ZnS nanowires as templates," Journal of Physical Chemistry C 112,9253-9260 (2008).
    40. Q. Yang, X. Jiang, X. Guo, Y. Chen, and L. Tong, "Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity," Applied Physics Letters 94, 101108(2009).
    41. Y. Ma, X. Li, Z. Yang, H. Yu, P. Wang, and L. Tong, "Pigtailed CdS nanoribbon ring laser," Applied Physics Letters 97,153122 (2010).
    42. Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, and L. Tong, "Single-Nanowire Single-Mode Laser," Nano Letters 11,1122-1126 (2011).
    43. Y. Xiao, C. Meng, X. Wu, and L. Tong, "Single mode lasing in coupled nanowires," Applied Physics Letters 99,023109 (2011).
    44. A. Sommerfeld, "Fortpflanzung elektrodynamischer Wellen an einem zylindrischen Leiter," Ann. der Physik und Chemie 67,233-290 (1899).
    45. J. Zenneck, "Uber die Fortpflanzung ebener elektromagnetischer Wellen langs einer ebenen Leiterflache und ihre Beziehung zur drahtlosen Telegraphie," Annalen Der Physik 328, 846-866(1907).
    46. R. W. Wood, "On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum," Proceedings of the Physical Society of London 18,269 (1902).
    47. U. Fano, "The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld?s Waves)," J. Opt. Soc. Am.31,213-222 (1941).
    48. R. H. Ritchie, "Plasma Losses by Fast Electrons in Thin Films," Physical Review 106, 874-881 (1957).
    49. K. Kneipp, "Surface-Enhanced Raman Scattering," Physics Today 60,40-46 (2007).
    50. T. W. Ebbesen, C. Genet, and S.I. Bozhevolnyi, "Surface-plasmon circuitry," Physics Today 61,44-50(2008).
    51. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett.22,475-477 (1997).
    52. K. V. Nerkararyan, "Superfocusing of a surface polariton in a wedge-like structure," Physics Letters A 237,103-105(1997).
    53. E. N. Economou, "Surface Plasmons in Thin Films," Physical Review 182,539-554 (1969).
    54. J. J. Burke, G.I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Physical Review B 33,5186-5201 (1986).
    55. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett.23,1331-1333 (1998).
    56. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer. E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat Mater 2,229-232 (2003).
    57. T. Onuki, Y. Watanabe, K. Nishio, T. Tsuchiya, T. Tani, and T. Tokizaki, "Propagation of surface plasmon polariton in nanometre-sized metal-clad optical waveguides," Journal of Microscopy 210,284-287 (2003).
    58. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width:Bound modes of asymmetric structures," Physical Review B 63,125417 (2001).
    59. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," EPL (Europhysics Letters) 60,663 (2002).
    60. R. Zia, J. A. Schuller, and M. L. Brongersma, "Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides," Physical Review B 74,165415 (2006).
    61. E. Verhagen, A. Polman, and L. Kuipers, "Nanofocusing in laterally tapered plasmonic waveguides," Opt. Express 16,45-57 (2008).
    62. P. Berini, "Figures of merit for surface plasmon waveguides," Opt. Express 14,13030-13042 (2006).
    63. K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Applied Physics Letters 82,1158-1160 (2003).
    64. B. Wang and G. P. Wang, "Surface plasmon polariton propagation in nanoscale metalgap waveguides," Opt. Lett.29,1992-1994 (2004).
    65. K. Tanaka, M. Tanaka, and T. Sugiyama, "Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides," Opt. Express 13,256-266 (2005).
    66. A. D. Boardman, G. C. Aers, and R. Teshima, "Retarded edge modes of a parabolic wedge," Physical Review B 24,5703-5712 (1981).
    67. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Applied Physics Letters 87,061106 (2005).
    68. A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, "Triangular metal wedges for subwavelengthplasmon-polariton guiding at telecomwavelengths," Opt. Express 16,5252-5260 (2008).
    69. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S.1. Bozhevolnyi, "Channel plasmon-polaritons:modal shape, dispersion, and losses," Opt. Lett.31,3447-3449 (2006).
    70. M. Yan and M. Qiu, "Guided plasmon polariton at 2D metal corners," J. Opt. Soc. Am. B 24, 2333-2342 (2007).
    71. I. V. Novikov and A. A. Maradudin, "Channel polaritons," Physical Review B 66,035403 (2002).
    72. D. F. P. Pile and D. K. Gramotnev, "Channel plasmon-polariton in atriangular groove on a metal surface," Opt. Lett.29,1069-1071 (2004).
    73. D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Applied Physics Letters 85, 6323-6325 (2004).
    74. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves," Physical Review Letters 95,046802 (2005).
    75. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nat Photon 2, 496-500 (2008).
    76. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width:Bound modes of symmetric structures," Physical Review B 61,10484-10503 (2000).
    77. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons," Opt. Express 13,977-984 (2005).
    78. E. Moreno, S. G. Rodrigo, S.I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, "Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons," Physical Review Letters 100,023901 (2008).
    79. L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Express 13,6645-6650 (2005).
    80. G. Veronis and S. Fan, "Guided subwavelength plasmonic mode supported by a slot in a thin metal film," Opt. Lett.30,3359-3361 (2005).
    81. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi. and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Applied Physics Letters 87,261114 (2005).
    82. D. F. P. Pile, D. K. Gramotnev, R. F. Oulton, and X. Zhang, "On long-range plasmonic modes in metallic gaps," Opt. Express 15,13669-13674 (2007).
    83. L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12,1025-1035 (2004).
    84. A. W., Snyder, J. D., and Love, Optical waveguide theory (Chapman and Hall, New York, 1983).
    85. F. L. Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, "Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber," Optics Communications 242,445-455 (2004).
    86. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "High-Density Integrated Optics," J. Lightwave Technol.17,1682 (1999).
    87. T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett.25,1415-1417 (2000).
    88. L. F. Mollenauer, "Nonlinear Optics in Fibers," Science 302,996-997 (2003).
    89. A. W. Snyder and W. R. Young, "Modes of optical waveguides," J. Opt. Soc. Am.68, 297-309(1978).
    90. K. Huang, S. Yang, and L. Tong, "Modeling of evanescent coupling between two parallel optical nanowires," Appl. Opt.46,1429-1434 (2007).
    91. K. J. Vahala, "Optical microcavities," Nature 424,839-846 (2003).
    92. J. X. Ding, J. A. Zapien, W. W. Chen, Y. Lifshitz, S. T. Lee, and X. M. Meng, "Lasing in ZnS nanowires grown on anodic aluminum oxide templates," Applied Physics Letters 85, 2361-2363(2004).
    93. A. L. Pan, R. B. Liu, Q. Yang, Y. C. Zhu, G. Z. Yang, B. S. Zou. and K. Q. Chen, "Stimulated emissions in aligned CdS nanowires at room temperature," Journal of Physical Chemistry B 109,24268-24272(2005).
    94. P. J. Pauzauskie, D. J. Sirbuly, and P. D. Yang, "Semiconductor nanowire ring resonator laser," Physical Review Letters 96,143903 (2006).
    95. X. F. Duan and C. M. Lieber, "General synthesis of compound semiconductor nanowires," Advanced Materials 12,298-302 (2000).
    96. P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He, and H. J. Choi, "Controlled growth of ZnO nanowires and their optical properties." Advanced Functional Materials 12,323-331 (2002).
    97. Z. R. Dai, Z. W. Pan, and Z. L. Wang, "Novel nanostructures of functional oxides synthesized by thermal evaporation," Advanced Functional Materials 13,9-24 (2003).
    98. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819(2003).
    99. A. V. Maslov and C. Z. Ning. "Reflection of guided modes in a semiconductor nanowire laser," Applied Physics Letters 83,1237-1239 (2003).
    100. W. L. Barnes, A. Dereux. and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424,824-830 (2003).
    101. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)." Physical Review Letters 78,1667-1670 (1997).
    102. L. Novotny, "Nonlinear Plasmonics," in OSA Technical Digest (CD) (Optical Society of America,2010), FThL4.
    103. J. Homola, Surface plasmon resonance based sensors (Springer-Verlag,2006).
    104. S. A. Maier, "Plasmonics-Fundamentals and Applications," (Springer (US),2007).
    105. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
    106. V. Z. Anatoly and I. S. Igor, "Near-field photonics:surface plasmon polaritons and localized surface plasmons," Journal of Optics A:Pure and Applied Optics 5, S16 (2003).
    107. L. B. William, "Surface plasmon-polariton length scales:a route to sub-wavelength optics," Journal of Optics A:Pure and Applied Optics 8, S87 (2006).
    108. M.I. Stockman, "Nanoplasmonics:past, present, and glimpse into future," Opt. Express 19, 22029-22106(2011).
    109. G. Mie, "Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen," Annalen Der Physik 330,377-445 (1908).
    110. Y. Sun and Y. Xia, "Shape-Controlled Synthesis of Gold and Silver Nanoparticles," Science 298,2176-2179(2002).
    111. M. I. Stockman, "Nanoplasmonics:The physics behind the applications," Physics Today 64, 39-44(2011).
    112. L. R. Baker, "Electromagnetic Surface Modes," Optica Acta:International Journal of Optics 30,257-257(1983).
    113. U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer-Verlag,1995).
    114. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, "Confinement and propagation characteristics of subwavelength plasmonic modes," New Journal of Physics 10,105018 (2008).
    115. D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, "Strong coupling of single emitters to surface plasmons," Physical Review B 76,035420 (2007).
    116. L. Novotny and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function," Physical Review E 50,4094-4106 (1994).
    117. B. Prade and J. Y. Vinet, "Guided optical waves in fibers with negative dielectric constant,' Lightwave Technology, Journal of 12,6-18 (1994).
    118. Y. Ma, X. Li, H. Yu, L. Tong, Y. Gu, and Q. Gong, "Direct measurement of propagation losses in silver nanowires," Opt. Lett.35,1160-1162 (2010).
    119. X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, "Direct Coupling of Plasmonic and Photonic Nanowires for Hybrid Nanophotonic Components and Circuits," Nano Letters 9,4515-4519 (2009).
    120. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver Nanowires as Surface Plasmon Resonators," Physical Review Letters 95,257403 (2005).
    121. A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, "Integration of photonic and silver nanowire plasmonic waveguides," Nat Nano 3,660-665 (2008).
    122. X.-W. Chen, V. Sandoghdar, and M. Agio, "Highly Efficient Interfacing of Guided Piasmons and Photons in Nanowires," Nano Letters 9,3756-3761 (2009).
    123. B. Wiley, Y. Sun, B. Mayers, and Y. Xia, "Shape-Controlled Synthesis of Metal Nanostructures:The Case of Silver," Chemistry-A European Journal 11,454-463 (2005).
    124. Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, and Y. Xia, "Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone)," Chemistry of Materials 14,4736-4745 (2002).
    125. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, "Observation of Plasmon Propagation, Redirection, and Fan-Out in Silver Nanowires," Nano Letters 6,1822-1826(2006).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700