用户名: 密码: 验证码:
新型宽带光子晶体光纤的设计与制作研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现有网络向超高速率超大容量全光网络的演进,支撑光通信网的各种关键器件的性能急需提升。新材料、新结构研究是创新实现高速率、低成本、低功耗宽带全光器件的有效途径。本论文基于光子晶体光纤(Photonic crystal fiber, PCF)结构设计灵活、实现特性可控等优异特性,结合国家自然科学基金项目“系列超宽带双芯光子晶体光纤及其相关器件的研究”以及国家973计划项目“面向光路交换网络的光纤器件理论与关键技术研究”,针对超高速率超大容量全光网络对宽带全光器件的需求,在宽带偏振无关双芯PCF、单偏振单模PCF的设计和制作等方面进行了深入的理论和实验研究。取得的主要创新成果有:
     1.根据实际光子晶体光纤制作及特性分析的需求,首次将数字图像处理技术和全矢量有限元方法相结合,提出了用于光子晶体光纤制作过程的光纤特性快速分析模型,实现了对PCF实际制作过程中的样品进行近实时监测,有效地减小了典型工艺缺陷对光纤特性的影响,减小了所研制PCF特性与设计的偏离。以两种商用光子晶体光纤为例,验证了该方法的正确性。并将该方法应用于辅助光纤拉制,提高光子晶体光纤的制作效率和成品率。
     2.提出一种宽带偏振无关双芯PCF。在研究光纤结构对其宽带特性和偏振无关特性影响规律的基础上进行结构优化设计,所获得的PCF模场面积与普通单模光纤模场面积匹配,两芯区被中心调制区有效分离,为光纤耦合器的研制提供了便利。基于该PCF设计了分光比分别为50:50和90:10的两种光纤定向耦合器,在覆盖整个光通信波段的1.225-1.675μm宽带波长范围内分别实现了分光比误差小于1%、偏振态间误差小于0.5%和分光比误差小于0.2%、偏振态间误差小于0.1%的优良性能。
     3.从制作可行性和应用角度出发,采用小空气孔线阵结构代替椭圆形空气孔,提出一种具有较高制作可行性的宽带偏振无关双芯PCF。经过优化设计可以在波长1.26-1.625μm范围内实现波长无关和偏振无关特性,基于该光纤设计的50:50和90:10光纤定向耦合器在整个工作带宽内具有分光比误差分别小于1%和0.2%、两偏振态间误差均小于0.2%的优良特性。并对该光子晶体光纤进行了制作研究,实验表明这种采用小空气孔线阵结构代替椭圆形空气孔的设计方案是可行的。
     4.基于谐振耦合理论,提出一种实现单偏振单模的PCF新结构,可在0.8-1.8μm波长范围内实现单偏振单模特性,工作带宽可达1000nm,在工作带宽内低损耗芯区的限制损耗低于1dB/km,而高损耗芯区的限制损耗高达100dB/km,其传输模场呈类高斯型分布,在波长1.55μm处与单模光纤直接接续时的模场失配损耗仅有0.0079dB,在实际应用中,易于与普通光纤实现低损耗接续。
     5.提出并研制出一种矩形空气孔排布的单偏振单模PCF。基于模式截止法,设计出矩形空气孔排布的单偏振单模PCF,并首次成功研制,可在覆盖全光通信波段的1.3-1.7μm波长范围内实现单偏振单模传输,低损耗偏振态限制损耗约为0.01dB/km,高损耗偏振态限制损耗约为100dB/km。通过实际PCF样品特性分析,表明其有效模场面积在波长1.55μm处约为91μm2,与SMF接续时模场失配损耗仅约为0.0051dB,克服了通常基于模式截止法设计的单偏振单模PCF模场面积过小,不利于与SMF接续的缺点。
With development of the current networks towards ultra high bit rate and large capacity all-optical network, it is urgent to improve the performance of key optical devices to support the future all-optical network. The study of new materials and novel structures offer an effective ways to achieve high-speed, low cost and low-power broadband optical devices.
     This dissertation is supported by the State Key Development Program for Basic Research of China "Theory and key technology of fiber optic devices for optical switching network" and the National Natural Science Foundation of China "A series of ultra-broadband dual-core photonic crystal fiber and its related devices". It is mainly focus on the theoretical and experimental investigations on the design and fabrication of the broadband polarization-independent dual-core photonic crystal fiber (PCF) and single-polarization single-mode PCF due to the flexibility structure design and controllable features and other outstanding features of PCFs. The main achievements of the dissertation are listed below:
     1. A combining model for rapid analysis and monitoring the fiber properties during the PCF fabrication process is proposed by using the digital image processing technology and full-vector finite element method. This model can be used not only to analyze the properties of PCF samples in the fabrication process but also to reduce efficiently the impact of the typical fabrication defects on the fiber characteristics and deviations of the actual properties from the design properties. The correctness of this model is verified by analysis results of two kinds of commercial PCFs. We use this method to monitor the fabrication process of the actual PCF in real time. Experimental results demonstrate that this model can improve the fabrication efficiency and quality of PCFs.
     2. Based on analysis of the dependence of the fiber structure parameters on the fiber broadband characteristics and polarization-independent characteristics, an optimized broadband polarization-independent dual-core PCF is proposed. The mode field area of the proposed PCF can match with that of and the single mode fiber. The distance of the two cores are far from each other to easily design fiber coupler due to adopting a independent center modulation region. Two fiber directional couplers with coupling ratio of50:50and90:10are designed, respectively, which cover the all optical communication band over the wavelength range of1.225-1.675μm. The achieved coupling ratio error is less than1%and the difference of the coupling ratio between the two polarizations is less than0.5%for50:50coupler. For90:10coupler, the coupling ratio of error is less than0.2%and the difference of the coupling ratio between the two polarizations is less than0.1%.
     3. A novel broadband polarization-independent dual-core PCF is proposed from the view of the fabrication feasibility and application. The small air holes arranged in the linear lattice are adopted instead of the elliptical air hole in the central modulation region to improve the fiber fabrication feasibili-ty. By optimizing the fiber structure parameters, the wavelength-independent and polarization-independent characteristics can be implemented in the wave-length range of1.26-1.625μm. Two fiber directional couplers with coupling ratio of50:50and90:10are designed, respectively, covering the all optical communication band. The splitting ratio errors of50:50and90:10coupler are less than1%and0.2%, respectively and the two polarization states error are both less than0.2%. It is confirmed from the fabrication experiment that the novel structure with the array of small holes is easier to fabricate than that with elliptical air hole.
     4. Based on the coupling theory, a novel single-polarization single-mode PCF is proposed. The fiber can realized the single-polarization single-mode property in the wavelength range from0.8μm tol.8μm, covering the operating band-width of1000nm, The confinement loss is less than ldB/km in the low-loss core region and up to100dB/km in the high-loss core region. Mode field distribution has the Gaussian profile that low splice loss of0.0079dB can be realized between this fiber and the SMF at the wavelength of1.55μm.
     5. Based on the mode cutoff method, a novel square lattice single-polarization single-mode PCF is proposed and fabricated, which realized the single-mode operation in the wavelength range from1.3μm to1.7μm over all-optical com-munication band wavelength range. The confinement loss is about the0.01d-B/km for the low-loss polarization state and up to100dB/km for the high-loss polarization state. Through modeling the properties of the actual PCF sam- ple, the effective modal field area is about91/μm2at the wavelength of1.55μm and the splice loss with SMF is only0.0051dB. The results show that the novel square lattice single-polarization single-mode PCF has the advantage of easy splice with SMF over other PCFs which have been reported to realize single-polarization single-mode with mode cutoff method.
引文
[1]Mukasa K, Imamura K, Tsuchida Y, et al. Photonic Crystal Multi-Core Fibers for Fu-ture High-Capacity Transmission Systems[J]. IEICE Transactions on Communications, 2011, E94B(2):376-383.
    [2]Tucker R S. Green Optical Communications-Part Ⅰ:Energy Limitations in Transport[J]. IEEE Journal of Selected Topics in Quantum Electronics,2011,17(2):245-260.
    [3]Chan F Y M, Yasumoto K. Sharma E K. Analysis of cladding modes in an asymmetric dual-core fiber[J]. Microwave and Optical Technology Letters,2009,51(2):507-510.
    [4]Joindot M, Gosselin S. Optical fiber transport systems and networks:fundamentals and prospects[J]. Comptes Rendus Physique,2008,9(9-10):914-934.
    [5]Desurvire E B. Capacity demand and technology challenges for lightwave systems in the next two decades[J]. J. Lightwave Technol.,2006,24(12):4697-4710.
    [6]Van Daele P. BONE:Your Gateway to European Optical Networks Re-search[C]//ICTON:2009 11th International Conference on Transparent Optical Net-works. S Miguel:IEEE,2009:767-771.
    [7]Harai H. Designing new-generation network:Overview of akari architecture de-sign[C]//Asia Communications and Photonics Conference and Exhibition. Shanghai: IEEE,2009.
    [8]Chiu A, Choudhury G, Clapp G, et al. Network design and architectures for highly dy-namic next-generation IP-over-optical long distance networks[J]. Journal of Lightwave Technology,2009,27(12):1878-1890.
    [9]Wei-Wei J, Lin-Yong F, Rui-Feng Z, et al. Comb-filter based on two core fiber coupler and its CO(2) laser trimming[J]. Acta Physica Sinica,2011,60(4):044214.
    [10]Chan F Y M, Yasumoto K. Design of wavelength tunable long-period grating couplers based on asymmetric nonlinear dual-core fibers[J]. Optics Letters,2007,32(23):3376-3378.
    [11]He X, Xie K, Xiang A. Optical solitons switching in asymmetric dual-core nonlinear fiber couplers[J]. Optoelectronics and Advanced Materials-Rapid Communications,2010, 4(3):284-286.
    [12]Sarma A K. Soliton switching in a highly nonlinear dual-core holey fiber coupler[J]. Japanese journal of applied physics,2008,47(7):5493-5495.
    [13]Cvijetic N, Qian D, Hu J.100 Gb/s optical access based on optical orthogonal frequency-division multiplexing[J]. IEEE Communications Magazine,2010,48(7):70-77.
    [14]Shieh W, Yi X, Ma Y, et al. Coherent optical OFDM:has its time come?[J]. Journal of Optical Networking,2008,7(3):234-255.
    [15]Chen H, Chen M, Xie S. All-optical sampling orthogonal frequency-division multiplexing scheme for high-speed transmission system [J]. Journal of Lightwave Technology,2009, 27(21):4848-4854.
    [16]Shieh W, Chen W, Tucker R. Polarisation mode dispersion mitigation in coherent optical orthogonal frequency division multiplexed systems[J]. Electronics Letters,2006, 42(17):996-997.
    [17]Knight J C, Birks T A, Russell P S J, et al. All-silica single-mode optical fiber with photonic crystal cladding[J]. Optics Letters,1996,21(19):1547-1549.
    [18]Russell P S J. Photonic band gaps[J]. Physics World,1992,15(8):37-42.
    [19]Knight J, Broeng J, Birks T, et al. Photonic band gap guidance in optical fibers[J]. Science,1998,282(5393):1476-1478.
    [20]Knight J. Photonic crystal fibres[J]. Nature,2003,424(6950):847-851.
    [21]Xiao-Yi L, Fang-Di Z, Min Z, et al. Numerical investigation on single-mode single-polarization photonic crystal fiber using resonant absorption effect [J]. Acta Physica Sinica,2007,56(1):301-307.
    [22]Zhang F, Li J, Liu X, et al. Novel design for a single-polarization single-mode photonic crystal fiber at 1310 nm[J]. Optical Engineering,2007,46(6):065005.
    [23]Xiao-Juan Z, Jian-Lin Z, Jian-Ping H. A novel photonic crystal fiber with high bire-fringence[J]. Acta Physica Sinica,2007,56(8):4668-4676.
    [24]Haxha S, Ademgil H. Novel design of photonic crystal fibres with low confinement losses, nearly zero ultra-flatted chromatic dispersion, negative chromatic dispersion and improved effective mode area[J]. Optics Communications,2008,281(2):278-286.
    [25]Wu T, Chiang J, Chao C. A novel approach for calculating the dispersions of photonic crystal fibers[J]. IEEE Photonics Technology Letters,2004,16(6):1492-1494.
    [26]Hwang K J, Kim G H, Lim S D, et al. A Novel Birefringent Photonic Crystal Fiber and Its Application to Curvature Measurement [J]. Japanese journal of applied physics, 2011,50(3):032202.
    [27]Begum F, Namihira Y, Razzak S M A, et al. Novel broadband dispersion compensating photonic crystal fibers:Applications in high-speed transmission systems[J]. Optics and laser technology,2009,41(6):679-686.
    [28]Yu-He L, Wan-De F, Qiu-Qin S. A Novel Photonic Quasicrystal Fiber with Broadband Large Negative Dispersion[J]. Chinese Physics Letters,2010,27(11):114211.
    [29]Mescia L, Fornarelli G, Magarielli D, et al. Refinement and design of rare earth doped photonic crystal fibre amplifier using an ANN approach[J]. Optics and laser technology, 2011,43(7):1096-1103.
    [30]Laurila M, Alkeskjold T T, Laegsgaard J, et al. Modal analysis of a large-mode area photonic crystal fiber amplifier using spectral-resolved imaging[J]. Optical Engineering, 2011,50(11):111604.
    [31]Liu Z B, He X, Wang D N. Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution [J]. Optics Letters, 2011.36(16):3024-3026.
    [32]Liu S, Jin L, Jin W, et al. Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser[J]. Optics Express,2010, 18(6):5496-5503.
    [33]HaiMing J, Kang X, YaFei W. C band single pump photonic crystal fiber Raman amplifier [J]. Chinese Science Bulletin,2010,55(6):555-559.
    [34]Varshney A D, Sinha R K. Non-Linear Properties of Photonic Crystal Fiber:Improved Effective Index Method[J]. Chinese Journal of Physics,2009,47(2):184-191.
    [35]Harduar M K, Mariampillai A, Vuong B, et al. Dual-core ytterbium fiber amplifier for high-power 1060 nm swept source multichannel optical coherence tomography imag-ing[J]. Optics Letters,2011,36(15):2976-2978.
    [36]Chen W, Lou S, Wang L, et al. Switchable multi-wavelength fiber ring laser using a side-leakage photonic crystal fiber based filter[J]. Optics and laser technology,2012, 44(3):611-616.
    [37]Cardenas-Sevilla G A, Monzon-Hernandez D, Minkovich V P. Demonstration of an All-Fiber Band-Rejection Filter Based on a Tapered Photonic Crystal Fiber[J]. Applied Physics Express,2012,5(2):022502.
    [38]Seraji F E, Farsinezhad S, Anzabi L C. Optimization of long-period grating inscribed in large mode area photonic crystal fiber for design of bandstop filter [J]. OPTIK,2011, 122(1):58-62.
    [39]Sang X, Wang Y, Yuan J, et al. Broadband large channel count comb filter based on small-core photonic crystal fiber [J]. Optoelectronics and Advanced Materials-Rapid Communications,2010,4(4):457-458.
    [40]Du J, Liu Y, Wang Z, et al. Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused[J]. Optics Letters,2008,33(19):2215-2217.
    [41]Hua D, Fu L. Numerical Analysis of Coupling Characteristics of Tunable Photonic Crystal Fiber Coupler for Nonlinear Optical Microscopy [J]. IEEE Photonics Technology Letters,2012.24(2):125-127.
    [42]Mao D, Guan C, Yuan L.1 x 4 coupler based on all solid five-core photonic crystal fibers[J]. Optics Communications,2011,284(19):4460-4464.
    [43]Lou S, Tang Z, Wang L. Design and optimization of broadband and polarization-insensitive dual-core photonic crystal fiber coupler [J]. Applied Optics,2011, 50(14):2016-2023.
    [44]Pricking S, Vieweg M, Giessen H. Influence of the retarded response on an ultrafast nonlinear optofluidic fiber coupler[J]. Optics Express,2011,19(22):21673-21679.
    [45]Lee B H, Eom J B, Park K S, et al. Specialty Fiber Coupler:Fabrications and Appli-cations[J]. Journal of the Optical Society of Korea,2010,14(4, SI):326-332.
    [46]Chen M, Zhang Y, Yu R. Wavelength-selective coupling of dual-core photonic crystal fiber and its application [J]. Chinese Optics Letters,2009,7(5):390-392.
    [47]Sarkissian R, Farrell S, O'Brien J D. Spectroscopy of a tapered-fiber photonic crystal waveguide coupler[J]. Optics Express,2009,17(13):10738-10747.
    [48]Yue Y, Kai G, Wang Z, et al. Broadband single-polarization single-mode photonic crystal fiber coupler[J]. IEEE Photonics Technology Letters,2006,18(17-20):2032-2034.
    [49]Chremmos I, Kakarantzas G, Uzunoglu N. Modeling of a highly nonlinear chalcogenide dual-core photonic crystal fiber coupler[J]. Optics Communications,2005,251(4-6):339-345.
    [50]Salgueiro J, Kivshar Y. Nonlinear dual-core photonic crystal fiber couplers[J]. Optics Letters,2005,30(14):1858-1860.
    [51]Glesk I, Bock P J, Cheben P, et al. All-optical switching using nonlinear subwavelength Mach-Zehnder on silicon [J]. Optics Express,2011,19(15):14031-14039.
    [52]Bajcsy M, Hofferberth S, Balic V, et al. Efficient All-Optical Switching Using Slow Light within a Hollow Fiber[J]. Physical Review Letters,2009,102(20):203902.
    [53]Wang Y, Jin W, Jin L, et al. Optical switch based on a fluid-filled photonic crystal fiber Bragg grating[J]. Optics Letters,2009,34(23):3683-3685.
    [54]Betlej A, Suntsov S, Makris K, et al. All-optical switching and multifrequency generation in a dual-core photonic crystal fiber[J]. Optics Letters,2006,31(10):1480-1482.
    [55]Chen D, Hu G, Chen L. Dual-Core Photonic Crystal Fiber for Hydrostatic Pressure Sensing[J]. IEEE Photonics Technology Letters,2011,23(24):1851-1853.
    [56]Tokushima M, Kamei A, Horikawa T. Dual-Tapered 10-mu m-Spot-Size Converter with Double Core for Coupling Polarization-Independent Silicon Rib Waveguides to Single-Mode Optical Fibers[J]. Applied Physics Express,2012,5(2):022202.
    [57]Ramon Salgueiro J, Santos F. Nonlinear vortex modes in dual-core photonic crystal fiber couplers[J]. Journal of the Optical Society of America, B-Optical Physics,2009, 26(12):2301-2307.
    [58]Wang Z, Taru T, Birks T A, et al. Coupling in dual-core photonic bandgap fibers: theory and experiment [J]. Optics Express,2007,15(8):4795-4803.
    [59]Salgueiro J R, Michinel H, Ferrando A, et al. Switching and instabilities of optical vor-tices in nonlinear dual-core photonic crystal fibre couplers [J]. Journal of the European Optical Society-Rapid publications,2006,1:06014.
    [60]Ni Y, Zhang L, An L, et al. Dual-core photonic crystal fiber for dispersion compensa-tion[J]. IEEE Photonics Technology Letters,2004,16(6):1516-1518.
    [61]Tan B, Chen X, Li S. Total internal reflection photonic crystal fiber[J]. Journal of Optoelectronics Laser,2002,13(5):491-495.
    [62]Cregan R, Mangan B, Knight J, et al. Single-mode photonic band gap guidance of light in air[J]. Science,1999,285(5433):1537-1539.
    [63]Birks T, Luan F, Pearce G, et al. Bend loss in all-solid bandgap fibres[J]. Optics Express,2006,14(12):5688-5698.
    [64]Cerqueira S, Luan F, Cordeiro C, et al. Hybrid photonic crystal fiber[J]. Optics Express, 2006,14(2):926-931.
    [65]Goto R, Fsaifes I, Baz A, et al. UV-induced Bragg grating inscription into single-polarization all-solid hybrid microstructured optical fiber[J]. Optics Express,2011, 19(14):13525-13530.
    [66]Kishor K, Sinha R K, Varshney A D. Experimental verification of improved effective index method for endlessly single mode photonic crystal fiber [J]. Optics and Lasers in Engineering,2012,50(2):182-186.
    [67]Yuan J, Sang X, Yu C, et al. Cladding-ring-equivalent effective index method for analyzing the dispersion characteristic of W-shape photonic crystal fibers [J]. Journal of Optoelectronics and Advanced Materials,2011,13(2-4):196-199.
    [68]Varshney S K, Saitoh K, Koshiba M, et al. Design of S-Band Erbium-Doped Concentric Dual-Core Photonic Crystal Fiber Amplifiers With ASE Suppression[J]. J. Lightwave Technol.,2009,27(11):1725-1733.
    [69]Zhao X, Hou L, Liu Z, et al. Improved fully vectorial effective index method in photonic crystal fiber[J]. Applied Optics,2007,46(19):4052-4056.
    [70]Kotynski R, Dems M, Panajotov K. Waveguiding losses of micro-structured fibres-plane wave method revisited [J]. Optical and Quantum Electronics,2007,39(4-6):469-479.
    [71]Yan-Lin L, Qian-Zhong X, Chao-Hai D, et al. Modified finite-difference frequency-domain method for two-dimensional metallic photonic crystal analysis[J]. Acta Physica Sinica,2010,59(4):2556-2563.
    [72]Li Y L, Xue Q Z, Du C H. Two-Dimensional Metallic Photonic Crystal with Point Defect Analysis Using Modified Finite-Difference Frequency-Domain Method[J]. J. Lightwave Technol.,2010,28(2):216-222.
    [73]Vu N H, Jeon B C, Jo D H, et al. Management of Computational Errors in a Finite-difference Time-domain Method for Photonic Crystal Fibers[J]. Journal of the Korean Physical Society,2009,55(4):1335-1343.
    [74]Vu N H, Hwang I K, Lee Y H. Bending loss analyses of photonic crystal fibers based on the finite-difference time-domain method[J]. Optics Letters,2008,33(2):119-121.
    [75]Yioultsis T V, Ziogos G D, Kriezis E E. Explicit finite-difference vector beam propa-gation method based on the iterated Crank-Nicolson scheme [J]. Journal of the Optical Society of America A-Optics and image science,2009,26(10):2183-2191.
    [76]Ziogos G D, Kriezis E E. Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method[J]. Optical and Quantum Electronics,2008,40(10):733-748.
    [77]Campbell S, McPhedran R, de Sterke C, et al. Differential multipole method for mi-crostructured optical fibers[J]. Journal of the Optical Society of America, B-Optical Physics,2004,21(11):1919-1928.
    [78]Dasgupta S, Poletti F. Liu S, et al. Modeling Brillouin Gain Spectrum of Solid and Mi-crostructured Optical Fibers Using a Finite Element Method[J]. J. Lightwave Technol., 2011,29(l):22-30.
    [79]Mishra S, Singh V K. Study of dispersion properties of hollow-core photonic crys-tal fiber by finite element method[J]. Optoelectronics and Advanced Materials-Rapid Communications,2009,3(9):874-878.
    [80]Rahman B M A, Kejalakshmy N, Uthman M, et al. Mode degeneration in bent pho-tonic crystal fiber study by using the finite element method[J]. Applied Optics,2009, 48(31):G131-G138.
    [81]Jia M, Lan-Tian H, Gui-Yao Z, et al. Analysis of the special hollow-core photonic crystal fibre by finite element method[J]. Chinese Physics B,2008,17(10):3779-3784.
    [82]Pomplun J, Zschiedrich L, Klose R, et al. Finite element simulation of radiation losses in photonic crystal fibers [J]. Physica Status Solidi a-Applications and Materials Science, 2007,204(11):3822-3837.
    [83]Kejalakshmy N, Rahman B M A, Agrawal A, et al. Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method[J]. Applied Physics B-Lasers and Optics,2008,93(1, SI):223-230.
    [84]Uranus H P. Theoretical study on the multimodeness of a commercial endlessly single-mode PCF[J]. Optics Communications,2010,283(23):4649-4654.
    [85]Chen Z, Hou J, Xi X, et al. Endlessly single-mode operation of highly nonlinear photonic crystal fibers by controlled hole collapse[J]. Optics Communications,2010, 283(23):4645-4648.
    [86]Akowuah E K, Ademgil H, Haxha S, et al. An Endlessly Single-Mode Photonic Crystal Fiber With Low Chromatic Dispersion, and Bend and Rotational Insensitivity[J]. J. Lightwave Technol.,2009,27(17):3940-3947.
    [87]Delgado-Pinar M, Diez A, Cruz J L, et al. High extinction-ratio polarizing endlessly single-mode photonic crystal fiber[J]. IEEE Photonics Technology Letters,2007,19(5-8):562-564.
    [88]Chen N K, Chi S. Influence of a holey cladding structure on spectral characteristics of side-polished endlessly single-mode photonic crystal fibers[J]. Optics Letters,2006, 31(15):2251-2253.
    [89]Saitoh K, Koshiba M. Numerical modeling of photonic crystal fibers[J]. J. Lightwave Technol.,2005,23(11):3580-3590.
    [90]Jing Q, Zhang X, Ma H, et al. Flatly broadened supercontinuum generation in dispersion-flattened photonic crystal fibre using compressed picosecond pulses [J]. Jour-nal of Optics,2012,14(1):015203.
    [91]Buczynski R, Pysz D, Stepien R, et al. Dispersion management in nonlinear photonic crystal fibres with nanostructured core[J]. Journal of the European Optical Society-Rapid publications,2011,6:11038.
    [92]Guo W, Kou J1, Xu F, et al. Ultra-flattened and low dispersion in engineered microfibers with highly efficient nonlinearity reduction[J]. Optics Express,2011,19(16):15229-15235.
    [93]Gong T, Luan F, Hu D J, et al. Photonic crystal fibers with high and flattened disper-sion[J]. Optics Communications,2011,284(18):4176-4179.
    [94]Yuan X, Liu K, Ye W, et al. Dispersion compensation based on the combination of coupled ring resonator and photonic crystal structures [J]. Chinese Optics Letters,2011, 9(9):092301.
    [95]Xu H, Wu J, Xu K, et al. Ultra-flattened chromatic dispersion control for circular photonic crystal fibers[J]. Journal of Optics,2011,13(5):055405.
    [96]Zhang W Q, Ebendorff-Heidepriem H, Monro T M, et al. Fabrication and supercontin-uum generation in dispersion flattened bismuth microstructured optical fiber[J]. Optics Express,2011,19(22):21135-21144.
    [97]Han J, Hou S, Wang D, et al. Design of an improved microstructure fibre for broad-band dispersion compensation with low nonlinearity[J]. Journal of Optics,2010, 12(11):115406.
    [98]Zhang X, Ren X, Xu Y, et al. Broadband dispersion compensation using microstructure fibers[J]. Chinese Optics Letters,2007,5(1):11-13.
    [99]Gissibl T, Vieweg M, Vogel M M, et al. Preparation and characterization of a large mode area liquid-filled photonic crystal fiber:transition from isolated to coupled spatial modes[J]. Applied Physics B-Lasers and Optics,2012,106(3, SI):521-527.
    [100]Matsui T, Sakamoto T, Tsujikawa K, et al. Single-Mode Photonic Crystal Fiber De-sign With Ultralarge Effective Area and Low Bending Loss for Ultrahigh-Speed WDM Transmission [J]. J. Lightwave Technol.,2011,29(4):511-515.
    [101]Yan-Yan G, Lan-Tian H. Design of all-solid octagon photonic crystal fiber with large mode area[J]. Acta Physica Sinica,2010,59(6):4036-4041.
    [102]Hossain M A, Namihira Y, Razzak S M A. et al. Design of all normal dispersion highly nonlinear photonic crystal fibers for supercontinuum light sources:Applications to opti-cal coherence tomography systems[J]. Optics and laser technology,2012,44(4):976-980.
    [103]Namihira Y, Liu J, Koga T, et al. Design of highly nonlinear octagonal photonic crystal fiber with near-zero flattened dispersion at 1.31 mu m waveband[J]. Optical Review, 2011,18(6):436-440.
    [104]Wang Y, Zhang X, Ren X, et al. Design and analysis of a dispersion flattened and highly nonlinear photonic crystal fiber with ultralow confinement loss[J]. Applied Optics,2010, 49(3):292-297.
    [105]Razzak S M A, Namihira Y. Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers[J]. IEEE Photonics Technology Letters,2008,20(1-4):249-251.
    [106]Denisov A N, Levchenko A E, Semjonov S L, et al. Highly birefringent low-mode-asymmetry microstructured optical fibres[J]. Quantum Electronics,2011,41(3):243-248.
    [107]Li X, Yang H, Zheng Q, et al. Polarization and modal field properties of quinquangular-core photonic crystal fibers[J]. Chinese Optics Letters,2011,9(9):090602.
    [108]Shi L, Zhu T, Fan Y e, et al. Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings[J]. Optics Communications,2011,284(22):5299-5302.
    [109]Lee S G, Do Lim S, Lee K, et al. Broadband Single-Polarization Single-Mode Operation in Highly Birefringent Photonic Crystal Fiber with a Depressed-Index Core[J]. Japanese journal of applied physics,2010,49(12):122501.
    [110]Razzak S M A, Namihira Y, Kinjo T, et al. Design of highly nonlinear birefringent photonic crystal fibers with ultra-flattened chromatic dispersion[J]. Applied Physics Express,2008, 1(6):062006.
    [111]Liang J, Yun M, Xia F, et al. A kind of single-polarization single-mode photonic crystal fiber[J]. Journal of Modern Optics,2012,59(2):115-120.
    [112]Wang Y, Bartelt H, Ecke W, et al. Thermo-Optic Switching Effect Based on Fluid-Filled Photonic Crystal Fiber[J]. IEEE Photonics Technology Letters,2010,22(3):164-166.
    [113]Zhang Y N. Design of low-loss single-polarization single-mode photonic-crystal fiber based on polymer[J]. Journal of Modern Optics,2008,55(21):3563-3571.
    [114]Ju J, Jin W, Demokan M. Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 mu m[J]. J. Lightwave Technol.,2006,24(2):825-830.
    [115]Issa N. High numerical aperture in multimode microstructured optical fibers[J]. Applied Optics,2004,43(33):6191-6197.
    [116]Salem A M R, Al-Mansoori M H, Hizam H, et al. Multiwavelength L-band fiber laser with bismuth-oxide EDF and photonic crystal fiber [J]. Applied Physics B-Lasers and Optics,2011,103(2):363-368.
    [117]Shahabuddin N S, Ahmad H, Yusoff Z, et al. Spacing-Switchable Multiwavelength Fiber Laser Based on Nonlinear Polarization Rotation and Brillouin Scattering in Photonic Crystal Fiber[J]. IEEE Photonics Journal,2012,4(1):34-38.
    [118]Knight J C, Skryabin D V. Nonlinear waveguide optics and photonic crystal fibers[J]. Optics Express,2007,15(23):15365-15376.
    [119]Sojka L, Jaworski P, Gora W, et al. Polarization-maintaining erbium doped photonic crystal fiber laser[J]. Laser Physics,2012,22(1):240-247.
    [120]Ceballos-Herrera D E, Torres-Gomez I, Martinez-Rios A, et al. Single-to three-wavelength switchable ytterbium-doped fiber laser based on intracavity induced loss by a long-period holey fiber grating[J]. Optics and laser technology,2011,43(4):825-829.
    [121]Cheng J, Ruan S. Tunable and switchable multi-wavelength Erbium-doped photon-ic crystal fiber ring laser incorporating a length of highly nonlinear photonic crystal fiber[J]. Optics Communications,2011,284(21):5185-5188.
    [122]Li-Chao Z, Lan-Tian H, Gui-Yao Z. Study on dispersion compensation property of octagonal photonic crystal fibers[J]. Acta Physica Sinica,2011,60(5):054217.
    [123]Hou S, Han J. The fabrication tolerances and mode mechanism of a microstructured fiber for broadband dispersion-compensating with low nonlinearity[J]. Optical Fiber Technology,2010,16(5):315-317.
    [124]Yu C p, Liou J h, Huang S s, et al. Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation[J]. Optics Express,2008,16(7):4443-4451.
    [125]Zhang Y, Yang S, Xie S, et al. Dispersion-compensating photonic crystal fibers with special characteristics [J]. Microwave and Optical Technology Letters,2008,50(4):1073-1078.
    [126]Konar S, Bhattacharya R. Design of photonic crystal fibers for dispersion compensation over S, C and L bands [J]. Optoelectronics and Advanced Materials-Rapid Communica-tions,2007. 1(9):442-447.
    [127]Zografopoulos D C, Vazquez C, Kriezis E E, et al. Dual-core photonic crystal fiber-s for tunable polarization mode dispersion compensation [J]. Optics Express,2011, 19(22):21680-21691.
    [128]Carvalho J P, Anuszkiewicz A, Statkiewicz-Barabach G, et al. Long period gratings and rocking filters written with a CO (2) laser in highly-birefringent boron-doped photonic crystal fibers for sensing applications [J]. Optics Communications,2012,285(3):264-268.
    [129]Sun Z, Liu Y g, Wang Z, et al. Long period grating assistant photonic crystal fiber modal interferometer [J]. Optics Express,2011,19(14):12913-12918.
    [130]Allsop T, Kalli K, Zhou K, et al. Spectral characteristics and thermal evolution of long-period gratings in photonic crystal fibers fabricated with a near-IR radiation fem-tosecond laser using point-by-point inscription [J]. Journal of the Optical Society of America, B-Optical Physics,2011,28(9):2105-2114.
    [131]Liou J h, Chang T h, Lin T, et al. Reversible photo-induced long-period fiber gratings in photonic liquid crystal fibers[J]. Optics Express,2011,19(7):6756-6761.
    [132]Iadicicco A, Campopiano S. Cusano A. Long-Period Gratings in Hollow Core Fibers by Pressure-Assisted Arc Discharge Technique [J]. IEEE Photonics Technology Letters, 2011,23(21):1567-1569.
    [133]Mescia L. Design of long-period gratings in cladding-pumped microstructured op-tical fiber[J]. Journal of the Optical Society of America, B-Optical Physics,2008, 25(11):1833-1839.
    [134]Aref S H, Amezcua-Correac R, Carvalho J P, et al. Spectral characterization of a photonic bandgap fiber for sensing applications [J]. Applied Optics,2010,49(10):1870-1875.
    [135]Frazao O, Santos J L, Araujo F M, et al. Optical sensing with photonic crystal fibers[J]. Laser & Photonics Reviews,2008,2(6):449-459.
    [136]Wang Y, Zhao C L, Kang J, et al. A highly-birefringent fiber loop mirror temperature sensor demodulationbased on a long-period grating in photonic crystal fiber with differ-ential processing[J]. Microwave and Optical Technology Letters,2012,54(1):176-179.
    [137]Wang Y, Zhao C L, Dong X, et al. A fiber loop mirror temperature sensor demodulation technique using a long-period grating in a photonic crystal fiber and a band-pass filter [J]. Review of Scientific Instruments,2011,82(7):073101.
    [138]Wu D K C, Kuhlmey B T, Eggleton B J. Ultrasensitive photonic crystal fiber refractive index sensor [J]. Optics Letters,2009,34(3):322-324.
    [139]Wen K, Peng H, Wang J, et al. Finite element analysis of a novel weak-pressure sensor based on fiber Bragg gratings in photonic crystal fibers[J]. Optical Engineering,2009, 48(3):034402.
    [140]Rao Y J, Deng M, Duan D W, et al. In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber[J]. Sensors And Actuators A-Physical,2008, 148(1):33-38.
    [141]Li J, Wang J, Wang R, et al. A novel polarization splitter based on dual-core hybrid photonic crystal fibers[J]. Optics and laser technology,2011,43(4):795-800.
    [142]Kamakshi K, Rastogi V, Singh P, et al. Design of dual-core resonant leaky optical fibre based gain flattening filters for erbium doped fibre amplifiers [J]. Optics Communica-tions,2010,283(24):5025-5027.
    [143]Kim S, Kee C S. Dispersion properties of dual-core photonic-quasicrystal fiber[J]. Optics Express,2009,17(18):15885-15890.
    [144]Mangan B, Arriaga J, Birks T, et al. Fundamental-mode cutoff in a photonic crystal fiber with a depressed-index core[J]. Optics Letters,2001,26(19):1469-1471.
    [145]Laegsgaard J, Bang O, Bjarklev A. Photonic crystal fiber design for broadband direc-tional coupling[J]. Optics Letters,2004,29(21):2473-2475.
    [146]Varshney S, Florous N, Saitoh K, et al. The impact of elliptical deformations for op-timizing the performance of dual-core fluorine-doped photonic crystal fiber couplers[J]. Optics Express,2006,14(5):1982-1995.
    [147]Kaminow I, Li T, Willner A. Optical fiber telecommunications VB:systems and net-works[J]. Burlington:Academic Pr,2008.
    [148]Keiser G. Optical fiber communications[M]. Hoboken:Wiley Online Library,2000.
    [149]Menyuk C, Marks B. Interaction of polarization mode dispersion and nonlinearity in optical fiber transmission systems[J]. Journal of lightwave technology,2006,24(7):2806.
    [150]Shtaif M. The Brownian-bridge method for simulating polarization mode dispersion in optical communications systems[J]. IEEE Photonics Technology Letters,2003,15(1):51-53.
    [151]Sunnerud H, Karlsson M, Xie C, et al. Polarization-mode dispersion in high-speed fiber-optic transmission systems[J]. Journal of Lightwave Technology,2002,20(12):2204-2219.
    [152]Wang J, Kahn J. Impact of chromatic and polarization-mode dispersions on DPSK sys-tems using interferometric demodulation and direct detection [J]. Journal of Lightwave Technology,2004,22(2):362-371.
    [153]Suzuki K, Kubota H, Kawanishi S, et al. Optical properties of a low-loss polarization-maintaining photonic crystal fiber[J]. Optics Express,2001,9(13):676-680.
    [154]Dave D, Akkin T, Milner T. Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefringence [J]. Optics Letters,2003, 28(19):1775-1777.
    [155]Wang H, Al-Qaisi M, Akkin T. Polarization-maintaining fiber based polarization-sensitive optical coherence tomography in spectral domain[J]. Optics Letters,2010, 35(2):154-156.
    [156]Ferrando A, Miret J. Single-polarization single-mode intraband guidance in supersquare photonic crystals fibers[J]. Applied Physics Letters,2001,78:3184.
    [157]Saitoh K, Koshiba M. Single-polarization single-mode photonic crystal fibers[J]. IEEE Photonics Technology Letters,2003,15(10):1384-1386.
    [158]Kubota H, Kawanishi S, Koyanagi S, et al. Absolutely single polarization photonic crystal fiber[J]. IEEE Photonics Technology Letters,2004,16(1):182-184.
    [159]Szpulak M, Martynkien T, Olszewski J, et al. Single-polarization single-mode photonic band gap fiber [J]. Acta physica Polonica A,2007, 111(2):239-245.
    [160]Zhang F, Zhang M, Liu X, et al. Design of wideband single-polarization single-mode photonic crystal fiber[J]. J. Lightwave Technol.,2007,25(5):1184-1189.
    [161]Xue-Heng Z. Single-mode single-polarisation fibre using resonant absorbing effect [J]. Electronics Letters,1987,23(1):14-15.
    [162]Xiao-Yi L, Fang-Di Z, Min Z, et al. Design and analysis of a novel single-mode single-polarization photonic crystal fibre based on polarization-dependent coupling and ab-sorption effect [J]. Chinese Physics,2007,16(6):1710-1718.
    [163]Tsuchida Y, Saitoh K, Koshiba M. A design method for single-polarization holey fibers with improved beam quality factor [J]. Journal of Lightwave Technology,2008, 26(14):2162-2167.
    [164]Russell P. Photonic-crystal fibers[J]. Journal of Lightwave Technology,2006, 24(12):4729-4749.
    [165]Kiang K, Frampton K, Monro T, et al. Extruded singlemode non-silica glass holey optical fibres [J]. Electronics Letters.2002,38(12):546-547.
    [166]Kumar V, George A, Reeves W, et al. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation[J]. Optics Express,2002,10(25):1520-1525.
    [167]Falkenstein P, Merritt C, Justus B. Fused preforms for the fabrication of photonic crystal fibers[J]. Optics Letters,2004,29(16):1858-1860.
    [168]Feng X, Mairaj A, Hewak D, et al. Nonsilica glasses for holey fibers[J]. Journal of Lightwave Technology,2005,23(6):2046-2054.
    [169]Bise R, Windeler R, Kranz K, et al. Tunable photonic band gap fiber[J].2002.
    [170]Wang L, Zhang Y, Ren L, et al. A new approach to mass fabrication technology of microstructured polymer optical fiber preform [J]. Chinese Optics Letters,2005, 3(101):S94-S95.
    [171]Zhang Y, Li K, Wang L, et al. Casting preforms for microstructured polymer optical fibre fabrication[J]. Optics Express,2006.14(12):5541-5547.
    [172]Fitt A, Furusawa K, Monro T, et al. Modeling the fabrication of hollow fibers:Capillary drawing[J]. Journal of Lightwave Technology,2001,19(12):1924-1931.
    [173]Xue S, Tanner R, Barton G, et al. Fabrication of microstructured optical fibers-Part I: Problem formulation and numerical modeling of transient draw process [J]. Journal of lightwave technology,2005,23(7):2245.
    [174]Xue S, Tanner R, Barton G, et al. Fabrication of microstructured optical fibers-Part II: Numerical modeling of steady-state draw process [J]. Journal of Lightwave Technology, 2005,23(7):2255-2266.
    [175]Xue S, Large M, Barton G, et al. Role of material properties and drawing conditions in the fabrication of microstructured optical fibers [J]. Journal of Lightwave Technology, 2006,24(2):853-860.
    [176]Xin-Zhi S, Shu-Qin L. Influence of deformation holes on properties of photonic crystal fibres[J]. Chinese Physics Letters,2005,22:2588.
    [177]Gander M, McBride R, Jones J, et al. Experimental measurement of group velocity dispersion in photonic crystal fibre[J]. Electronics Letters,1999,35(1):63-64.
    [178]Yoshida M, Nakamura K, Ito H. A new method for measurement of group velocity dispersion of optical fibers by using a frequency-shifted feedback fiber laser[J]. IEEE Photonics Technology Letters,2001,13(3):227-229.
    [179]Hansen T, Broeng J, Libori S, et al. Highly birefringent index-guiding photonic crystal fibers[J]. Photonics Technology Letters, IEEE,2001,13(6):588-590.
    [180]Chartier T, Hideur A, Ozkul C, et al. Measurement of the elliptical birefringence of single-mode optical fibers[J]. Applied Optics,2001,40(30):5343-5353.
    [181]Folkenberg J, Mortensen N, Hansen K, et al. Experimental investigation of cutoff phenomena in nonlinear photonic crystal fibers[J]. Optics Letters,2003,28(20):1882-1884.
    [182]Ritari T, Niemi T, Ludvigsen H, et al. Polarization-mode dispersion of large mode-area photonic crystal fibers[J]. Optics Communications,2003,226(1-6):233-239.
    [183]Bouwmans G, Luan F, Knight J, et al. Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength[J]. Optics Express,2003, 11(14):1613-1620.
    [184]Ritari T, Ludvigsen H, Wegmuller M, et al. Experimental study of polarization proper-ties of highly birefringent photonic crystal fibers[J]. Optics Express,2004,12(24):5931-5939.
    [185]Wong G, Chen A, Ha S, et al. Characterization of chromatic dispersion in photonic crystal fibers using scalar modulation instability [J]. Optics Express,2005,13(21):8662-8670.
    [186]Chen X, Li M, Venkataraman N, et al. Highly birefringent hollow-core photonic bandgap fiber[J].2005.
    [187]Guiyao Z, Zhiyun H, Shuguang L, et al. Fabrication of glass photonic crystal fibers with a die-cast process [J]. Applied optics,2006,45(18):4433-4436.
    [188]Martynkien T, Olszewski J, Szpulak M, et al. Experimental investigations of bending loss oscillations in large mode area photonic crystal fibers[J]. Optics Express,2007, 15(21):13547-13556.
    [189]Wong G, Zang L, Kang M, et al. Measurement of group-velocity dispersion of Bloch modes in photonic-crystal-fiber rocking filters [J]. Optics Letters,2010,35(23):3982-3984.
    [1]Knight J C, Birks T A, Russell P S J, et al. All-silica single-mode optical fiber with photonic crystal cladding[J]. Optics Letters,1996,21(19):1547-1549.
    [2]Russell P. Photonic-crystal fibers[J]. Journal of Lightwave Technology,2006, 24(12):4729-4749.
    [3]Feng X, Mairaj A, Hewak D, et al. Nonsilica glasses for holey fibers[J]. Journal of Lightwave Technology,2005,23(6):2046-2054.
    [4]Kiang K, Frampton K, Monro T, et al. Extruded singlemode non-silica glass holey optical fibres[J]. Electronics Letters,2002,38(12):546-547.
    [5]Kumar V, George A, Reeves W, et al. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation[J]. Optics Express,2002,10(25):1520-1525.
    [6]Falkenstein P, Merritt C, Justus B. Fused preforms for the fabrication of photonic crystal fibers[J]. Optics Letters,2004,29(16):1858-1860.
    [7]Bise R. Windeler R, Kranz K, et al. Tunable photonic band gap fiber [J].2002.
    [8]Wang L, Zhang Y, Ren L, et al. A new approach to mass fabrication technology of mi-crostructured polymer optical fiber preform[J]. Chinese Optics Letters,2005,3(101):S94-S95.
    [9]Zhang Y, Li K, Wang L, et al. Casting preforms for microstructured polymer optical fibre fabrication [J]. Optics Express,2006,14(12):5541-5547.
    [10]Fitt A, Furusawa K, Monro T, et al. Modeling the fabrication of hollow fibers:Capillary drawing[J]. Journal of Lightwave Technology,2001,19(12):1924-1931.
    [11]Xue S, Tanner R. Barton G, et al. Fabrication of microstructured optical fibers-Part I: Problem formulation and numerical modeling of transient draw process [J]. Journal of lightwave technology,2005,23(7):2245.
    [12]Xue S, Tanner R, Barton G, et al. Fabrication of microstructured optical fibers-Part II: Numerical modeling of steady-state draw process [J]. Journal of Lightwave Technology, 2005,23(7):2255-2266.
    [13]Xue S, Large M, Barton G, et al. Role of material properties and drawing conditions in the fabrication of microstructured optical fibers[J]. Journal of Lightwave Technology, 2006,24(2):853-860.
    [14]Temam R. Navier-Stokes equations:theory and numerical analysis[M]. Vol.2. Provi-dence:Amer Mathematical Society,2001.
    [15]Schultz W, Davis S. Effects of boundary conditions on the stability of slender viscous fibers[J]. Journal of applied mechanics,1984,51:1.
    [16]Doremus R. Viscosity of silica[J]. Journal of Applied Physics,2002,92:7619.
    [17]郭铁英,娄淑琴,李宏雷,简水生.光子晶体光纤拉制中工艺参数的控制[J].物理学报,2009,58(9):412-419.
    [18]Gander M, McBride R, Jones J, et al. Experimental measurement of group velocity dispersion in photonic crystal fibre[J]. Electronics Letters,1999,35(1):63-64.
    [19]Yoshida M, Nakamura K, Ito H. A new method for measurement of group velocity dispersion of optical fibers by using a frequency-shifted feedback fiber laser [J]. IEEE Photonics Technology Letters,2001,13(3):227-229.
    [20]Hansen T, Broeng J, Libori S, et al. Highly birefringent index-guiding photonic crystal fibers[J]. Photonics Technology Letters, IEEE,2001,13(6):588-590.
    [21]Chartier T, Hideur A, Ozkul C, et al. Measurement of the elliptical birefringence of single-mode optical fibers[J]. Applied Optics,2001,40(30):5343-5353.
    [22]Folkenberg J, Mortensen N, Hansen K, et al. Experimental investigation of cutoff phe-nomena in nonlinear photonic crystal fibers[J]. Optics Letters,2003; 28(20):1882-1884.
    [23]Ritari T, Niemi T, Ludvigsen H, et al. Polarization-mode dispersion of large mode-area photonic crystal fibers[J]. Optics Communications,2003,226(1-6):233-239.
    [24]Bouwmans G, Luan F, Knight J, et al. Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength [J]. Optics Express,2003, 11(14):1613-1620.
    [25]Ritari T, Ludvigsen H, Wegmuller M, et al. Experimental study of polarization properties of highly birefringent photonic crystal fibers[J]. Optics Express,2004,12(24):5931-5939.
    [26]Wong G, Chen A, Ha S, et al. Characterization of chromatic dispersion in photonic crystal fibers using scalar modulation instability [J]. Optics Express,2005,13(21):8662-8670.
    [27]Chen X, Li M, Venkataraman N, et al. Highly birefringent hollow-core photonic bandgap fiber [J].2005.
    [28]Guiyao Z, Zhiyun H, Shuguang L, et al. Fabrication of glass photonic crystal fibers with a die-cast process[J]. Applied optics,2006,45(18):4433-4436.
    [29]Martynkien T, Olszewski J, Szpulak M, et al. Experimental investigations of bending loss oscillations in large mode area photonic crystal fibers[J]. Optics Express,2007, 15(21):13547-13556.
    [30]Wong G, Zang L, Kang M, et al. Measurement of group-velocity dispersion of Bloch modes in photonic-crystal-fiber rocking filters[J]. Optics Letters,2010,35(23):3982-3984.
    [31]张少军,艾矫健.利用数字图像处理技术测量几何尺寸[J].北京科技大学学报,2002,24(003):284-287.
    [32]Dasgupta S, Poletti F, Liu S, et al. Modeling Brillouin Gain Spectrum of Solid and Microstructured Optical Fibers Using a Finite Element Method[J]. J. Lightwave Technol., 2011,29(1):22-30.
    [33]Rahman B M A, Kejalakshmy N, Uthman M, et al. Mode degeneration in bent pho-tonic crystal fiber study by using the finite element method[J]. Applied Optics,2009, 48(31):G131-G138.
    [34]Meijering E, Unser M. A note on cubic convolution interpolation[J]. IEEE Transactions on Image Processing,2003,12(4):477-479.
    [35]Shi J, Reichenbach S. Image interpolation by two-dimensional parametric cubic convo-lution[J]. IEEE Transactions on Image Processing,2006,15(7):1857-1870.
    [36]WANG W, LI Z, CHEN J. A Matching Interpolation Algorithm Based on Wavelet Transformation[J]. Microelectronics & Computer,2008,5.
    [37]Haralick R, Sternberg S, Zhuang X. Image analysis using mathematical morphology [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1987(4):532-550.
    [38]Tuia D, Pacifici F, Kanevski M, et al. Classification of very high spatial resolution imagery using mathematical morphology and support vector machines[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(11):3866-3879.
    [39]Chen H, Zhou Z, Wang S. Research Based on Mathematics Morphology Image Chirp Method [J][J]. Journal of Engineering Graphics,2004,2:116-119.
    [40]Kishor K, Sinha R K, Varshney A D. Experimental verification of improved effective index method for endlessly single mode photonic crystal fiber [J]. Optics and Lasers in Engineering,2012,50(2):182-186.
    [41]Kotynski R, Dems M, Panajotov K. Waveguiding losses of micro-structured fibres-plane wave method revisited[J]. Optical and Quantum Electronics,2007,39(4-6):469-479.
    [42]Yan-Lin L, Qian-Zhong X, Chao-Hai D, et al. Modified finite-difference frequency-domain method for two-dimensional metallic photonic crystal analysis [J]. Acta Physica Sinica, 2010,59(4):2556-2563.
    [43]Yioultsis T V, Ziogos G D, Kriezis E E. Explicit finite-difference vector beam propagation method based on the iterated Crank-Nicolson scheme[J]. Journal of the Optical Society of America A-Optics and image science,2009,26(10):2183-2191.
    [44]Campbell S, McPhedran R, de Sterke C, et al. Differential multipole method for mi-crostructured optical fibers[J]. Journal of the Optical Society of America, B-Optical Physics,2004,21(11):1919-1928.
    [45]Kawano K, Kitoh T. Introduction to optical waveguide analysis[M]. Vol.972. Hoboken: Wiley Online Library,2001.
    [46]Guo S, Wu F, Albin S, et al. Loss and dispersion analysis of microstructured fibers by finite-difference method[J]. Optics Express,2004,12(15):3341-3352.
    [47]Boag A, Boag A, Mittra R, et al. A numerical absorbing boundary condition for finite-difference and finite-element analysis of open structures[J]. Microwave and Optical Tech-nology Letters,1994,7(9):395-398.
    [48]Uranus H, Hoekstra H. Modelling of microstructured waveguides using a finite-element-based vectorial mode solver with transparent boundary conditions[J]. Optics Express, 2004,12(12):2795-2809.
    [49]刘长学.超大规模稀疏矩阵计算方法[M].上海:上海科学技术出版社,1991.
    [50]Lehoucq R, Sorensen D, Yang C. ARPACK users'guide:solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods[M]. Vol.6. Philadelphia:Siam,1998.
    [51]Anderson E, Bai Z, Bischof C. LAPACK Users'guide[M]. Vol.9. Philadelphia:Siam, 1999.
    [52]Mortensen N. Semianalytical approach to short-wavelength dispersion and modal prop-erties of photonic crystal fibers[J]. Optics Letters,2005,30(12):1455-1457.
    [53]Poulton C, Schmidt M, Pearce G, et al. Numerical study of guided modes in arrays of metallic nanowires[J]. Optics Letters,2007,32(12):1647-1649.
    [54]Viale P, Fevrier S, Gerome F, et al. Confinement loss computations in photonic crystal fibres using a novel perfectly matched layer design[M]. Boston:Comsol Corporation, 2005.
    [55]李曙光,刘晓东,侯蓝田.光子晶体光纤色散补偿特性的数值研究[J].物理学报,2004,53(6):1880-1886.
    [56]Ferrarini D, Vincetti L, Zoboli M, et al. Leakage properties of photonic crystal fibers[J]. Optics Express,2002,10(23):1314-1319.
    [1]Mukasa K, Imamura K, Tsuchida Y, et al. Photonic Crystal Multi-Core Fibers for Future High-Capacity Transmission Systems[J]. IEICE Transactions on Communications,2011, E94B(2):376-383.
    [2]Tucker R S. Green Optical Communications-Part I:Energy Limitations in Transport[J]. IEEE Journal of Selected Topics in Quantum Electronics,2011,17(2):245-260.
    [3]Joindot M, Gosselin S. Optical fiber transport systems and networks:fundamentals and prospects[J]. Comptes Rendus Physique,2008,9(9-10):914-934.
    [4]Desurvire E B. Capacity demand and technology challenges for lightwave systems in the next two decades[J]. J. Lightwave Technol.,2006,24(12):4697-4710.
    [5]Chan F Y M, Yasumoto K. Design of wavelength tunable long-period grating couplers based on asymmetric nonlinear dual-core fibers[J]. Optics Letters,2007,32(23):3376-3378.
    [6]Lee B H, Eom J B, Park K S, et al. Specialty Fiber Coupler:Fabrications and Applica-tions[J]. Journal of the Optical Society of Korea,2010,14(4, SI):326-332.
    [7]Chen M, Yu R. Coupling characteristics of dual-core rectangular lattice photonic crystal fibres [J]. Journal of Optics A-PURE AND Applied Optics,2004,6(8):805-808.
    [8]Chremmos I, Kakarantzas G, Uzunoglu N. Modeling of a highly nonlinear chalcogenide dual-core photonic crystal fiber coupler [J]. Optics Communications,2005,251(4-6):339-345.
    [9]Salgueiro J, Kivshar Y. Nonlinear dual-core photonic crystal fiber couplers[J]. Optics Letters,2005,30(14):1858-1860.
    [10]Wang Z, Kai G, Liu Y, et al. Coupling and decoupling of dual-core photonic bandgap fibers[J]. Optics Letters,2005,30(19):2542-2544.
    [11]Salgueiro J R, Michinel H, Ferrando A, et al. Switching and instabilities of optical vortices in nonlinear dual-core photonic crystal fibre couplers[J]. Journal of the European Optical Society-Rapid publications,2006,1:06014.
    [12]Khan K R, Wu T X. Finite Element Modeling of Dual-Core Photonic Crystal Fiber [J]. Applied Computational Electromagnetics Society Journal,2008.23(3):215-219.
    [13]Bo F, Shu-Guang L, Yan-Yan Y, et al. Coupling characteristics of dual-core high bire-fringence photonic crystal fibers[J]. Acta Physica Sinica,2009,58(11):7708-7715.
    [14]Hameed M F O, Obayya S S A. Coupling Characteristics of Dual Liquid Crystal Core Soft Glass Photonic Crystal Fiber[J]. IEEE Journal of Quantum Electronics,2011, 47(10):1283-1290.
    [15]Lou S, Tang Z, Wang L. Design and optimization of broadband and polarization-insensitive dual-core photonic crystal fiber coupler [J]. Applied Optics,2011,50(14):2016-2023.
    [16]Mangan B, Knight J, Birks T, et al. Experimental study of dual-core photonic crystal fibre[J]. Electronics Letters,2000,36(16):1358-1359.
    [17]Mangan B, Arriaga J, Birks T, et al. Fundamental-mode cutoff in a photonic crystal fiber with a depressed-index core[J]. Optics Letters,2001,26(19):1469-1471.
    [18]Laegsgaard J, Bang O, Bjarklev A. Photonic crystal fiber design for broadband directional coupling[J]. Optics Letters,2004,29(21):2473-2475.
    [19]Varshney S, Fujisawa T, Saitoh K, et al. Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band[J]. Optics Express,2006,14(8):3528-3540.
    [20]Chen M, Zhang Y, Yu R. Wavelength-selective coupling of dual-core photonic crystal fiber and its application[J]. Chinese Optics Letters,2009,7(5):390-392.
    [21]Ramon Salgueiro J, Santos F. Nonlinear vortex modes in dual-core photonic crystal fiber couplers[J]. Journal of the Optical Society of America, B-Optical Physics,2009, 26(12):2301-2307.
    [22]Aliramezani M, Nejad S M. Numerical analysis and optimization of a dual-concentric-core photonic crystal fiber for broadband dispersion compensation [J]. Optics and laser technology,2010,42(8):1209-1217.
    [23]He X, Xie K, Xiang A. Optical solitons switching in asymmetric dual-core nonlinear fiber couplers[J]. Optoelectronics and Advanced Materials-Rapid Communications,2010, 4(3):284-286.
    [24]Chen D, Hu G, Chen L. Dual-Core Photonic Crystal Fiber for Hydrostatic Pressure Sensing[J]. IEEE Photonics Technology Letters,2011,23(24):1851-1853.
    [25]Harduar M K, Mariampillai A, Vuong B, et al. Dual-core ytterbium fiber amplifier for high-power 1060 nm swept source multichannel optical coherence tomography imaging[J]. Optics Letters,2011,36(15):2976-2978.
    [26]Shuo L, Shu-Guang L, Bo F, et al. Analysis of coupling characteristics of midinfrared high polarization chalcogenide glass dual-core photonic crystal fiber [J]. Acta Physica Sinica,2011,60(3):034217.
    [27]Zografopoulos D C, Vazquez C, Kriezis E E, et al. Dual-core photonic crystal fiber-s for tunable polarization mode dispersion compensation[J]. Optics Express,2011, 19(22):21680-21691.
    [28]Tokushima M, Kamei A, Horikawa T. Dual-Tapered 10-mu m-Spot-Size Converter with Double Core for Coupling Polarization-Independent Silicon Rib Waveguides to Single-Mode Optical Fibers [J]. Applied Physics Express,2012,5(2):022202.
    [29]Peschel U, Peschel T, Lederer F. A compact device for highly efficient dispersion com-pensation in fiber transmission [J]. Applied Physics Letters,1995,67:2111.
    [30]方宏,娄淑琴,任国斌,王智,简水生.光子晶体光纤接续损耗的理论分析[J].光学学报,2006,26(6):806-811.
    [1]Ferrando A, Miret J. Single-polarization single-mode intraband guidance in supersquare photonic crystals fibers[J]. Applied Physics Letters,2001,78:3184.
    [2]Saitoh K, Koshiba M. Single-polarization single-mode photonic crystal fibers[J]. IEEE Photonics Technology Letters,2003,15(10):1384-1386.
    [3]Zhang F, Li J, Liu X, et al. Novel design for a single-polarization single-mode photonic crystal fiber at 1310 nm[J]. Optical Engineering,2007,46(6):065005.
    [4]Lee S G, Do Lim S, Lee K, et al. Broadband Single-Polarization Single-Mode Operation in Highly Birefringent Photonic Crystal Fiber with a Depressed-Index Core[J]. Japanese journal of applied physics,2010,49(12):122501.
    [5]Kubota H, Kawanishi S, Koyanagi S, et al. Absolutely single polarization photonic crystal fiber[J]. IEEE Photonics Technology Letters,2004,16(1):182-184.
    [6]Yue Y, Kai G, Wang Z, et al. Broadband single-polarization single-mode photonic crystal fiber coupler[J]. IEEE Photonics Technology Letters,2006,18(17-20):2032-2034.
    [7]Li J, Duan K, Wang Y, et al. Design of a single-polarization single-mode photonic crystal fiber double-core coupler[J]. OPTIK,2009,120(10):490-496.
    [8]Knight J C, Birks T A, Russell P S J, et al. All-silica single-mode optical fiber with photonic crystal cladding[J]. Optics Letters,1996,21(19):1547-1549.
    [9]Birks T, Knight J, Russell P. Endlessly single-mode photonic crystal fiber[J]. Optics Letters,1997,22(13):961-963.
    [10]Akowuah E K, Ademgil H, Haxha S, et al. An Endlessly Single-Mode Photonic Crystal Fiber With Low Chromatic Dispersion, and Bend and Rotational Insensitivity[J]. J. Lightwave Technol.,2009,27(17):3940-3947.
    [11]Begum F, Namihira Y, Razzak S M A, et al. Novel broadband dispersion compensating photonic crystal fibers:Applications in high-speed transmission systems[J]. Optics and laser technology,2009,41(6):679-686.
    [12]Kinjo T, Namihira Y, Arakaki K, et al. Polarization-maintaining photonic crystal fibers with near-zero flattened dispersion in 1.06 mu m waveband for medical applications [J]. Optical Review,2010,17(2):66-73.
    [13]Gong T, Luan F, Hu D J, et al. Photonic crystal fibers with high and flattened disper-sion [J]. Optics Communications,2011,284(18):4176-4179.
    [14]Ping-Xue L, Xue-Xia Z, Zhi L, et al. Large-Mode-Area Double-Cladding Photonic Crystal Fiber Laser in the Watt Range at 980 nm[J]. Chinese Physics Letters,2011,28(8):084206.
    [15]Ju J, Jin W, Demokan M. Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 mu m[J]. J. Lightwave Technol.,2006,24(2):825-830.
    [16]Szpulak M, Martynkien T, Olszewski J, et al. Single-polarization single-mode photonic band gap fiber [J]. Acta physica Polonica A,2007, 111(2):239-245.
    [17]Zhang F, Zhang M, Liu X, et al. Design of wideband single-polarization single-mode photonic crystal fiber[J]. J. Lightwave Technol.,2007,25(5):1184-1189.
    [18]Kejalakshmy N, Rahman B M A, Agrawal A, et al. Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method [J]. Applied Physics B-Lasers and Optics,2008,93(1, SI):223-230.
    [19]Zhang Y N. Design of low-loss single-polarization single-mode photonic-crystal fiber based on polymer[J]. Journal of Modern Optics,2008,55(21):3563-3571.
    [20]Goto R, Fsaifes I, Baz A, et al. UV-induced Bragg grating inscription into single-polarization all-solid hybrid microstructured optical fiber[J]. Optics Express,2011, 19(14):13525-13530.
    [21]Xiao-Yi L, Fang-Di Z, Min Z, et al. Design and analysis of a novel single-mode single-polarization photonic crystal fibre based on polarization-dependent coupling and absorp-tion effect[J]. Chinese Physics,2007,16(6):1710-1718.
    [22]Xiao-Yi L, Fang-Di Z, Min Z, et al. Numerical investigation on single-mode single-polarization photonic crystal fiber using resonant absorption effect[J]. Acta Physica Sinica,2007,56(1):301-307.
    [23]Tsuchida Y, Saitoh K, Koshiba M. A design method for single-polarization holey fibers with improved beam quality factor [J]. Journal of Lightwave Technology,2008, 26(14):2162-2167.
    [24]方宏,娄淑琴,任国斌,王智,简水生.光子晶体光纤接续损耗的理论分析[J].光学学报,2006,26(6):806-811.
    [25]Kim S, Kee C, Lee C. Modified rectangular lattice photonic crystal fibers with high birefringence and negative dispersion[J]. Optics Express,2009,17(10):7952-7957.
    [26]Chen M, Sun B, Zhang Y, et al. Design of broadband polarization splitter based on partial coupling in square-lattice photonic-crystal fiber[J]. Applied optics,2010,49(16):3042-3048.
    [27]Kim S, Kee C, Lee C. Hybrid square-lattice photonic crystal fiber[C]//Conference on Lasers and Electro-Optics/Pacific Rim. Washington:Optical Society of America,2009.
    [28]Chau Y. Numerical investigation of birefringence and confinement loss formed by rect-angular/elliptical/circular air holes photonic crystal fibers [J]. Journal of Modern Optics, 2011,58(18)-.1673-1677.
    [29]Geernaert T, Nasilowski T, Chah K, et al. Fiber Bragg gratings in germanium-doped highly birefringent microstructured optical fibers [J]. IEEE Photonics Technology Letters, 2008,20(8):554-556.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700