用户名: 密码: 验证码:
基于萘酚吡喃的层层自组装薄膜和光响应胶囊的制备及其光致变色性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
萘酚吡喃类化合物作为一类重要的光致变色功能性材料,近年来引起了广泛的关注与研究。由于其具有较好的光响应性、易调节的消色速率和好的抗疲劳性等特殊的光学性质,所以在光敏性眼镜玻璃、光信息存储、光电开关和光制动器等商业应用领域有着很大的优势。
     本文制备了含有萘酚吡喃的层层自组装薄膜,目的在于增强萘酚吡喃在潜在的应用方面的光致变色性能,并通过紫外-可见光谱(UV-Vis)、傅立叶红外光谱(FT-IR)、原子力显微镜(AFM)对其进行表征。此外,我们还利用萘酚吡喃的疏水性和光响应性制备了含有单分子萘酚吡喃的胶囊,通过紫外-可见光谱(UV-Vis)、透射电子显微镜(TEM)、荧光光谱、动态光散射(DLS)对其形貌和光响应行为进行研究。本论文的主要研究内容如下:
     1.利用氢键层层自组装的方法,在含有萘酚吡喃-丙烯酸共聚物(PAA-NP)和含有聚(4-乙烯基吡啶)(P4VP)的有机溶液中交替沉积,制备了具有光致变色性质的聚合物多层膜。此多层膜的组装过程和形貌通过UV-Vis、FT-IR、AFM进行表征。结果表明该多层膜在每一次沉积过程中是以统一有序的方式增长的,表面是相对平滑的。对自组装薄膜中萘酚吡喃的光致变色性能进行研究,消色动力学结果证实:与之前的研究相比在自组装薄膜中的着色体部花青更加的稳定,表现出特别慢的消色速度(重要参数T1/2的消色时间在3层膜中增加到64min)。最后,着色-消色的可逆性测试(以最大吸收波长481nm处收集数据作图)显示在5个着色/消色的循环后,萘酚吡喃的着色程度有轻微的下降。
     2.利用单分子的光致变色材料萘酚吡喃(NP)作为疏水性和光响应性组分,与聚乙二醇(PEG)通过“点击化学”方法合成了两亲性聚合物。这种两亲性聚合物在水溶液里能够自发的形成以NP为核,PEG为壳的光响应性胶囊,并且通过DLS和TEM进行确证。通过UV-Vis光谱测试可以确证萘酚吡喃的光致异构化行为能够快速可逆的调控胶囊的裂解和再生。在此基础上,将荧光染料尼罗红(NR)包裹在聚合物胶囊内部,通过紫外光刺激后其荧光光谱在60s内的变化可以表明:该聚合物胶囊可以作为纳米容器,通过紫外光刺激控制其对客体的封装,释放和再封装。此外,3次的循环测试确证了包裹-释放的可逆性能,结果显示了特别良好的耐疲劳性质。对聚合物胶囊快速高效的光控为其在生物领域的药物传输提供了潜在的可能。
     3.我们设计合成了一种含有双磺酸基负离子的萘酚吡喃衍生物:DSNP。首先,DSNP可以用来制备层层自组装薄膜,通过将基片交替浸泡在含有阳离子的季氨化聚(4-乙烯基吡啶)(P4VPQ)和含有阴离子的DSNP的水溶液中。多层膜的组装过程通过UV-Vis进行表征,结果表明随着每一次沉积多层膜都是以统一有序的方式增长的。对自组装薄膜中萘酚吡喃的光致变色性能进行研究,消色动力学数据证实萘酚吡喃的消色速率呈现出的趋势如下:在溶液中的NP>在其他聚合物介质中的NP>以离子键形成的层层自组装薄膜中的NP>以氢键形成的层层自组装薄膜中的NP。其次,DSNP也可以作为光响应模块用来制备光响应性胶囊,通过与三乙胺溴化的聚乙二醇(PEG-NEt3)以离子键结合。胶囊的形貌通过TEM进行表征。通过UV-Vis光谱测试可以确证萘酚吡喃的光致变色行为能够快速可逆的调控胶囊的裂解和再组装。在此基础上,将荧光染料尼罗红(NR)包裹在在聚合物胶囊水溶液里,通过紫外光刺激后其荧光光谱的变化可以表明:该聚合物胶囊可以作为纳米容器,通过光刺激控制其对客体的封装,释放和再封装。此外,为了确证包裹-释放的可逆性能进行3次可逆循环测试,结果显示了特别良好的耐疲劳性质。
Naphthopyrans, which are an important class of photochromic dyes, attract muchattention and motivate interesting research in recent years. In addition, naphthopyranshave the advantages in commercial application in light-sensitive ophthalmic lenses,optical memories, optical and electrical switching and light-actuated nanovalves dueto their special optical properties, such as the fine control over fading kinetics andgood resistance to photochemical fatigue.
     In this thesis, we fabricated the layer-by-layer assembled films containingnaphthopyrans, and aimed at enhancing the photochromic properties of naphthopyransfor potential applications. The properties of the films were well characterized by theUV-Vis, FT-IR, and AFM. In addition, the photochromic materials of single-moleculeNP were used as the hydrophobic and light-responsive group to fabricate micelles.The surface morphology and the light-responsive properties of micelles were wellcharacterized by UV-Vis, Transmission Electron Microscopy (TEM), Dynamic lightScattering (DLS) and Fluorescence Spectra. The main contents of this dissertation areas following:
     1. A photochromic polymer film has been fabricated by the layer-by-layer (LBL)self-assembly through alternating the deposition of poly(acrylic acid) bearing anaphthopyran copolymer(PAA-NP) and poly(4-vinylpyridine)(P4VP) in an organicsolvent via H-bond. The multilayer assembly process and surface morphology weremonitored via UV-Vis, FT-IR, AFM. The results reveal that the multilayer films growin a uniform way in each deposition, and the surface was relatively smooth. Thephotochromic properties of the naphthopyran in the LBL films were investigated andthe kinetic results confirm that the colored merocyanine in the LBL films show asignificant slow fading speed (critical T1/2decoloration time increased to64min inthe3-bilayer film) and are more stable than those in previous reports. Finally, weconfirmed the reversibility of coloration and decoloration at481nm. After5cycles ofcoloration/decoloration, the coloration of naphthopyran was not complete, thereappeared to be minor degradation.
     2. The photochromic materials of single-molecule naphthopyrans(NP) were usedas hydrophobic and light-responsive group to synthesize amphiphilic polymer withthe poly(ethylene glycol)(PEG) via Click-Chemistry. Such an amphiphilic polymer can self-assemble to light-responsive micelles with NP-core and PEG-shell in aqueoussolution, as were confirmed by DLS and TEM. The photoisomerization ofnaphthopyrans moieties can fast and reversibly tune the disassembly and re-assemblyof the micelle, as were confirmed by UV-Vis spectroscopy. The changes offluorescent spectra of nile red (NR) in water solution of polymeric micelle within60sdemonstrate that the polymeric micelle can be used as nanocarriers to encapsulate,release and re-encapsulate guest solutes on demand controlling of light irradiation.Moreover, we have tried three cycles to confirm the reversibility of encapsulation andrelease, the result shows a particularly good fatigue resistance. The fast and highlyefficient photo-control of polymeric micelles is a potential candidate in biomedicalarea for drug delivery.
     3. We designed and synthesized a bifunctional naphthopyran derivative withnegative-charged di-sulfatoethoxy: DSNP. Firstly, DSNP can be used to prepare theLBL self-assembly films by dipping charged substrates alternately into aqueoussolutions of cationic quaternized poly(4-vinylpyridine)(P4VPQ) and anionic DSNP.The multilayer assembly process was monitored via UV-Vis, The results reveal thatthe multilayer films grow in a uniform way in each deposition. The photochromicproperties of the naphthopyran in the LBL films were investigated and the kineticresults confirm that the trend of fading speed is as following: NP in THF> NP inother polymeric matrix> NP in LBL self-assembly films via ionic-bond> NP in LBLself-assembly films via H-bond. Secondly, DSNP also can be used as thelight-responsive group to fabricate light-responsive micelles with polyethyleneglycol-triethylamine bromide (PEG-NEt3), as were confirmed by TEM. Thephotoisomerization of naphthopyrans moieties can fast and reversibly tune thedisassembly and re-assembly of the micelle, as were confirmed by UV-Visspectroscopy. The changes of fluorescent spectra of nile red (NR) in water solution ofpolymeric micelle demonstrate that the polymeric micelle can be used as nanocarriersto encapsulate, release and re-encapsulate guest solutes on demand controlling of lightirradiation. Moreover, we have tried three cycles to confirm the reversibility ofencapsulation and release, the result shows a particularly good fatigue resistance.
引文
[1] Brown G H. Photochromism[M]. Wiley-Interscience, New York,1971.
    [2] Pardo R, Zayat M, Levy D. Photochromic organic–inorganic hybrid materials[J],Chem Soc Rev,2011,40:672-687.
    [3] Durr H, Bouas-Laurent H. Photochromism: Molecules and Systems [M], Elsevier,Amsterdam,1990.
    [4] Stobbe H. Ein Produkt der Lichtwirkung auf Diphenylfulgid und der Polymerisationder Phenylpropiols ure [J]. Berichte der deutschen chemischen Gesellschaft,1907,40:3372-3382.
    [5] Yokoyama Y. Fulgides for Memories and Switches [J]. Chem Rev,2000,100:1717-1740.
    [6] Heller H G. The development of photochromic compounds for use in opticalinformation storge [J]. Chemistry and Industry,1978,18:173.
    [7] Fan M G, Yu L H, Zhao W L. Organic photochromic and Thermochromic compounds
    [M]. Plenum Press, New York,1999:141-186.
    [8] Fischer E, Hirshberg Y. Formation of colored forms of spirans by low-temperatureirradiation [J]. J Chem Soc,1952:4522-4524.
    [9] Hirshberg Y. Reversible formation and eradication of colors by irradiationat low temperature, A photochemical memory modle [J]. J Am Chem Soc,1956,78:2304-2312.
    [10] Guglielmetti R. Systems: Spiropyrans, Chap8, Durr H, Bouas-Laurent,Photochromism: Molecules and Systems [M]. Elsevier, Amsterdam,1990.
    [11] Fox R E. Research Reports and Test Items Pertaining to Eye Protection of AirCrew Personal, Final Report on Concract AF41(657)-215, April1961, AD440,226.
    [12] Hartley G S. The cis-form of azobenzene and velocity of the thermalcis-transconversion of azobenzene and some derivatives [J]. J Chem Soc,1938:633-642.
    [13] Shinkai S, Okawa T, Kusano Y, et al. Photoresponsive crown ethers.4. Influenceof alkali metal cations on photoisomerization and thermal isomerization ofazobis(benzocrown ethers)[J]. J Am, Chem Soc,1982,104:1960-1967.
    [14] Luigi A, Tiziana B, Loris G. Improvement of Photoinduced BirefringenceProperties of Optically Active Methacrylic Polymers through Copolymerization ofHonomers Bearing Azoaromatic Moieties [J]. Macromolecules,39:489-497.
    [15] Durr H, Bouas L H. Photochromism Molecules and Systems in Studies in OrganicChemistry40[M]. Elsevier, Amsterdam,1990, chapter3,64.
    [16] Irie M, Mohri M. Thermally irreversible Photoehromie systems reversiblePhotoeyelization of dithienylethene derivatives [J]. J Org Chem,1988,53:803-808.
    [17] Tian H, Yang S. Recent progresses on diarylethene based photochromicswitches [J]. Chem Soc Rev,200433:85-97.
    [18] Jung H, You S, Lee C, et al. One-pot synthesis of monodispersed silicananoparticles for diarylethene-based reversible fluorescence photoswitching inliving cells [J]. Chem Commun,2013,49:7528-7530.
    [19] Pu S, Tong Z, Liu G, et al. Multi-addressable molecular switches based ona new diarylethene salicylal Schiff base derivative [J]. J Mater Chem C,2013,1:4726-4739.
    [20] Becker R S, Michl J. Photochromism of synthetic and naturally occurring2H-chromenes and2H-pyrans [J]. J Am Chem Soc,1966,88:5931-5933.
    [21] Crano J C, Flood T, Knowles D, et al. Photochromic compounds: Chemistry andapplication in ophthalmic lenses [J]. Pure&Appl Chem,1996,68:1395-1398.
    [22] Brown G H. Photochromism [M]. Wiley-Interscience, New York,1971.
    [23] Tomasulo M, Kaanumal S L, Sortino S, et al. Synthesis and Properties ofBenzophenone-Spiropyran and Naphthalene-Spiropyran Conjugates [J]. J Org Chem,2007,72:595-605.
    [24] Kobatake S, Takami S, Muto H, et al. Rapid and reversible shape changes ofmolecular crystals on photoirradiation [J]. Nature,2007,446:778-781.
    [25] Koshima H, Ojima N, Uchimoto H. Mechanical Motion of Azobenzene Crystals uponPhotoirradiation [J]. J Am Chem Soc,2009,131:6890-6891.
    [26] Choi H J, Jeong K, Chien L, et al. Photochromic3-dimensional actuator basedon an uncrosslinked liquid crystal elastomer [J]. J Mater Chem,2009,19:7124-7129.
    [27] Nabetani Y, Takamura H, Hayasaka Y, et al. A Photoactivated Artificial MuscleModel Unit: Reversible, Photoinduced Sliding of Nanosheets [J]. J Am Chem Soc,2011,133,:17130-17133.
    [28] Coles H J, Simon R. High-resolution laser-addressed liquid crystal polymerstorage displays [J]. Polymer,1985,26:1801-1806.
    [29] Doolan D. Color changing umbrella [P]. US,6196241,2001.
    [30]李旭,韩杰,庞美丽等,有机光致变色自由基化合物研究进展[J].有机化学,2007.27:696-702.
    [31] Chen Y, Xie N. Modulation of a fluorescent switch based on a controllablephotochromic diarylethene shutter [J]. J Mater Chem,2005,15:3229-3232.
    [32] Sakata T, Yan Y, Marriott G. Family of Site-Selective Molecular Optical Switches[J]. J Org Chem,2005,70:2009-2013.
    [33] Pardo R, Zayat M, Levy D. Effect of the chemical environment on the light-induceddegradation of a photochromic dye in ormosil thin films [J]. J Photochem PhotobiolA,2008,198:232-236.
    [34] Jockusch S, Turro N J, Blackburn F R. Photochromism of2H-Naphtho[1,2-b]pyrans:A Spectroscopic Investigation. J Phys Chem A,2002,106:9236-9241.
    [35] Sallenave X, Delbaere S, Vermeersch G, et al. Photoswitch based on remarkablysimple naphthopyrans. Tetrahedron Lett,2005,46:3257-3259.
    [36] Alberti A, Teral Y, Roubaud G, et al. On the photochromic activity of somediphenyl-3H-naphtho[2,1-b]pyran derivatives: Synthesis, NMR characterisation andspectrokinetic studies [J]. Dyes and Pigments,2009,81:85-90.
    [37] Poizat O, Aloise S, Sliwa M, et al. Transient absorption studies of thephotochromic behavior of3H-naphtho[2,1-b]pyran linked to a p-nitroaniline group[J]. New J Chem,2009,33:1427-1432.
    [38] Guo K, Chen Y. A strategy for the design of photochromic naphthopyrans withlarge optical density at photosteady state and fast fading speed at ambienttemperaturein the dark [J]. J Mater Chem,2010,20:4193-4197.
    [39] Han S, Chen Y. Modification of a photochromic3-aryl-3-(a-naphthalene)-3H-naphtho[2,1-b]pyran system with a fast fading speed in solution and in a rigidpolymer matrix [J]. J Mater Chem,2011,21:4961-4965.
    [40] Malic N, Campbell J A, Evans R A. Superior Photochromic Performance ofNaphthopyrans in a Rigid Host Matrix Using Polymer Conjugation: Fast, Dark, andTunable [J]. Macromolecules,2008,41:1206-1214.
    [41] Ercole F, Malic N, Harrisson S, et al. Photochromic Polymer Conjugates: TheImportance of Macromolecular Architecture in Controlling Switching Speed withina Polymer Matrix [J]. Macromolecules,2010,43:249-261.
    [42] Sriprom W, Neto C, Perrier S. Rapid photochromic nanopatterns from blockcopolymers [J]. Soft Matter,2010,6:909-914.
    [43] Zayat M, Levy D. Photochromic naphthopyrans in sol-gel ormosil coatings [J].J Mater Chem,2003,13:727-730.
    [44] Zayat M, Pardo R, Levy D. The role of organic groups in ormosil matrices inthe photochromism of naphthopyrans in sol-gel thin films [J]. J Mater Chem,2003,13:2899-2903.
    [45] Pardo R, Zayat M, Levy D. The influence of sol–gel processing parameterson the photochromic spectral and dynamic behaviour of a naphthopyran dye in anormosil coating [J]. J Mater Chem,2005,15:703-708.
    [46] Pardo R, Zayat M, Levy D. Temperature dependence of the photochromism ofnaphthopyrans in functionalized sol-gel thin films [J]. J Mater Chem,2006,16:1734-1740.
    [47] Savenije T J, Warman J M, Barentsen H M, et al. Long-Lived, Mobile ChargeCarriers Formed on Photoexcitation of UV-Polymerized, Spin-Coated Films ofArylimido Spacer Diacetylene Derivatives [J]. Macromolecules,2000,33:60-66.
    [48] Roberts G G. Langmiur-Blodgett Films [M], Plenum Press,1990, New York.
    [49] Yabe A, Kawabata Y, Niino H, et al. Structural Relaxation of Ultrathin PolymerFilms Prepared by the Langmuir Blodgett Technique: Characteristics of theTwo-Dimensional System [J]. Macromolecules,1998,31:6083-6088.
    [50] Silberzan P, Leger L, Ausserre D, et al. Silanation of silica surfaces: Anew method of constructing pure or mixed monolayers [J]. Langmuir,1991,7:1647-1651.
    [51] Decher G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites [J].Science1997,277:1232-1237.
    [52] Sun J, Wu T, Liu F, et al. Covalently Attached Multilayer Assemblies bySequential Adsorption of Polycationic Diazo-Resins and Polyanionic Poly(acrylicacid)[J]. Langmuir,2000,16:4620-4624.
    [53] Kohli P, Blanchard G J. Design and Demonstration of Hybrid Multilayer Structures:Layer-by-Layer Mixed Covalent and Ionic Interlayer Linking Chemistry [J]. Langmuir,2000,16:8518–8524.
    [54] Stubbe B G, Gevaert K, Derveaux S, et al. Evaluation of Encoded Layer-By-LayerCoated Microparticles as Protease Sensors [J]. Adv Funct Mater,2008,18:1624-1631.
    [55] Cortez C, Tomaskovic-Crook E, Johnston A P R, et al. Targeting and Uptakeof Multilayered Particles to Colorectal Cancer Cells [J]. Adv Mater,2006,18:1998-2003.
    [56] Wang L Y, Wang Z Q, Zhang X, et al. A new approach for the fabrication ofan alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid)based on hydrogen bonding [J]. Macromol Rapid Commun,1997,18:509-514.
    [57] Stockton W B, Rubner M F. Molecular-Level Processing of Conjugated Polymers:Layer-by-Layer Manipulation of Polyaniline via Hydrogen-Bonding Interactions [J].Macromolecules,1997,30:2717-2725.
    [58] Kuila B K, Stamm M. Block copolymer-small molecule supramolecular assemblyin thin film: a novel tool for surface patterning of different functionalnanomaterials [J]. J Mater Chem,2011,21:14127-14134.
    [59] Choi J H, Park Y W, Park T H, et al. Fuzzy Nanoassembly of Polyelectrolyteand Layered Clay Multicomposite toward a Reliable Gas Barrier [J]. Langmuir,2012,28:6826-6831.
    [60] Rahim A, Islam S, BaeLangmuir T S, et al. Metal Ion-Enriched PolyelectrolyteComplexes and Their Utilization in Multilayer Assembly and Catalytic NanocompositeFilms [J].2012,28:8486-8495.
    [61] Wang J X, Lei Q, Luo G F, et al. Controlled Arrays of Self-Assembled PeptideNanostructures in Solution and at Interface [J]. Langmuir,2013,29:6996-7004.
    [62] Zhu X, Guo S, Jańczewski D,et al. Multilayers of Fluorinated AmphiphilicPolyions for Marine Fouling Prevention [J]. Langmuir,2014,30:288-296.
    [63] Pileni M-P. The role of soft colloidal templates in controlling the size andshape of inorganic nanocrystals [J]. Nature materials,2003,2:145-150.
    [64] Gil E S, Hudson S M. Stimuli-responsive polymers and their bioconjugates [J].Prog Polym Sci,2004,29:1173-1222.
    [65] Ercole F, Davis T P, Evans R A. Photo-responsive systems and biomaterials:photochromic polymers, light-triggered self-assembly, surface modification,fluorescence modulation and beyond [J]. Polym Chem,2010,1:37-54.
    [66] Pasparakis G, Manouras T, Argitis P. Photodegradable Polymers forBiotechnological Applications [J]. Macromol Rapid Commun,2012,33:183-198.
    [67] Zhao Y. Light-Responsive Block Copolymer Micelles [J]. Macromolecules,2012,45:3647-3657.
    [68] Babin J, Pelletier M, Lepage M, et al. A New Two-Photon-Sensitive BlockCopolymer Nanocarrier [J]. Angew Chem Int Ed,2009,48:3329-3332.
    [69] Han D, Tong X, Zhao Y. Block Copolymer Micelles with a Dual-Stimuli-ResponsiveCore for Fast or Slow Degradation [J]. Langmuir,2012,28:2327-2331.
    [70] Lee H, Wu W, Oh J K, et al. Light-Induced Reversible Formation of PolymericMicelles [J]. Angew Chem Int Ed,2007,46:2453-2457.
    [71] Wang Y, Han P, Xu H, et al. Photocontrolled Self-Assembly and Disassemblyof Block Ionomer Complex Vesicles: A Facile Approach toward Supramolecular PolymerNanocontainers [J]. Langmuir,2010,26:709-715.
    [72]王立艳.共聚和掺杂螺噁嗪聚合物的制备及其光致变色性能研究[D]:[博士学位论文].长春:吉林大学化学学院,2009.
    [1] Sriprom W, Ne′el M, Gabbutt C D, et al. Tuning the color switching ofnaphthopyrans via the control of polymeric architectures [J]. J Mater Chem,2007,17:1885-1893.
    [2] Guo Kunpeng, Chen Yi. A strategy for the design of photochromic naphthopyranswith large optical density at photosteady state and fast fading speed at ambienttemperature in the dark [J]. J Mater Chem,2010,20:4193–4197.
    [3] Han S, Chen Y. Modification of a photochromic3-aryl-3-(a-naphthalene)-3H-naphtho[2,1-b]pyran system with a fast fading speedin solution and in a rigid polymer matrix [J]. J Mater Chem,2011,21:4961-4965.
    [4] Song L, Yang Y, Zhang Q, et al. Synthesis and Photochromism of NaphthopyransBearing Naphthalimide Chromophore: Predominant Thermal Reversibility inColor-Fading and Fluorescence Switch [J]. J Phys Chem B,2011,115:14648-14658.
    [5] Zhang J, Zou Q, Tian H. Photochromic Materials: More Than Meets The Eye [J].Adv Mater,2013,25:378-399.
    [6] Ercole F, Davis T P, Evans R A. Comprehensive modulation of naphthopyranphotochromism in a rigid host matrix by applying polymer conjugation [J].Macromolecules,2009,42:1500-1511.
    [7] Decher G, Hong J D. Buildup of ultrathin multilayer films by a self-assemblyprocess,1consecutive adsorption of anionic and cationic bipolar amphiphiles oncharged surfaces [J]. Makromol Chem Macromol Symp,1991,46:321-327.
    [8] Decher G, Hong J D, Schmitt J. Buildup of ultrathin multilayer films by aself-assembly process: III. Consecutively alternating adsorption of anionic andcationic polyelectrolytes on charged surfaces [J]. Thin Solid Films,1992,210:831-835.
    [9] Lvov Y, Decher G, M hwald H. Assembly, structural characterization, and thermalbehavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) andpoly(allylamine)[J]. Langmuir,1993,9:481-486.
    [10] Decher G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites[J].Science1997,277:1232-1237.
    [11] Sun J, Wu T, Liu F, et al. Covalently Attached Multilayer Assemblies bySequential Adsorption of Polycationic Diazo-Resins and Polyanionic Poly(acrylicacid)[J]. Langmuir,2000,16:4620-4624.
    [12] Stockton W B, Rubner M F. Molecular-Level Processing of Conjugated Polymers.4. Layer-by-Layer Manipulation of Polyaniline via Hydrogen-Bonding Interactions[J]. Macromolecules,1997,30:2717-2725.
    [13] Xiong H M, Cheng M H, Zhou Z, et al. A New Approach to the Fabrication ofa Self-Organizing Film of Heterostructured Polymer/Cu2S Nanoparticles [J]. AdvMater,1998,10:529-532.
    [14] Kohli P, Blanchard G J. Design and Demonstration of Hybrid Multilayer Structures:Layer-by-Layer Mixed Covalent and Ionic Interlayer Linking Chemistry [J]. Langmuir,2000,16:8518-8524.
    [15] Shimazaki Y, Mitsuishi M, Ito S, et al. Preparation of the Layer-by-LayerDeposited Ultrathin Film Based on the Charge-Transfer Interaction [J]. Langmuir,1997,13:1385-1387.
    [16] Stubbe B G, Gevaert K, Derveaux S, et al. Evaluation of Encoded Layer-By-LayerCoated Microparticles as Protease Sensors [J]. Adv Funct Mater,2008,18:1624-1631.
    [17] Cortez C, Tomaskovic-Crook E, Johnston A P R, et al. Targeting and Uptakeof Multilayered Particles to Colorectal Cancer Cells [J]. Adv Mater,2006,18:1998-2003.
    [18] Rogach A, Susha A, Caruso F, et al. Nano-and Microengineering:3-D ColloidalPhotonic Crystals Prepared from Sub-μ m-sized Polystyrene Latex SpheresPre-Coated with Luminescent Polyelectrolyte/Nanocrystal Shells [J]. Adv Mater,2000,12:333-337.
    [19] Peyratout C S, D hne L. Tailor-made polyelectrolyte microcapsules: frommultilayers to smart containers [J]. Angew Chem Int Ed,2004,43:3762–3783.
    [20] Yang S Y, Rubner M F. Micropatterning of Polymer Thin Films with pH-Sensitiveand Cross-linkable Hydrogen-Bonded Polyelectrolyte Multilayers [J]. J Am ChemSoc,2002,124:2100-2101.
    [21] Wang L Y, Fu Y, Wang Z Q, et al. Investigation into an Alternating MultilayerFilm of Poly(4-Vinylpyridine) and Poly(acrylic acid) Based on Hydrogen Bonding[J]. Langmuir,1999,15:1360-1363.
    [22] Wang L Y, Cui S X, Wang Z Q, et al. Multilayer Assemblies of Copolymer PSOHand PVP on the Basis of Hydrogen Bonding [J]. Langmuir,2000,16:10490-10494.
    [23] Han J, Yan D, Shi W, et al. Layer-by-Layer Ultrathin Films ofAzobenzene-Containing Polymer/Layered Double Hydroxides with ReversiblePhotoresponsive Behavior [J]. J Phys Chem B,2010,114:5678-5685.
    [24] Advincula R, Park M-K, Baba A, et al. Photoalignment in Ultrathin Films ofa Layer-by-Layer Deposited Water-Soluble Azobenzene Dye [J]. Langmuir,2003,19:654-665.
    [25] Ariga K, Lvov Y, Kunitake T, Assembling Alternate Dye-Polyion Molecular Filmsby Electrostatic Layer-by-Layer Adsorption [J]. J Am Chem Soc,1997,119:2224-2231.
    [26] Advincula R, Aust E, Meyer W, et al. In Situ Investigations of PolymerSelf-Assembly Solution Adsorption by Surface Plasmon Spectroscopy [J]. Langmuir,1996,12:3536-3540.
    [27] Camilo C S, Santos D S, Rodrigues J J, et al. Surface-Relief Gratings andPhotoinduced Birefringence in Layer-by-Layer Films of Chitosan and an Azopolymer[J]. Biomacromolecules,2003,4:1583-1588.
    [28] Kang E-H, Bu T, Jin P, et al. Layer-by-Layer Deposited Organic/Inorganic HybridMultilayer Films Containing Noncentrosymmetrically Orientated AzobenzeneChromophores [J]. Langmuir,2007,23:7594-7601.
    [29] Saremi F, Tieke B. Photoinduced Switching in Self-Assembled Multilayers ofan Azobenzene Bolaamphiphile and Polyelectrolytes [J]. Adv Mater,1998,10:388-391.
    [30] Fu Y, Chen H, Qiu D, et al. Multilayer Assemblies of Poly(4-vinylpyridine)and Poly(acrylic acid) Bearing Photoisomeric Spironaphthoxazine via HydrogenBonding [J]. Langmuir,2002,18:4989-4995.
    [31] Haller I. Covalently attached organic monolayers on semiconductor surfaces[J]. J Am Chem Soc,1978,100:8050-8055.
    [32] Moustrou C, Rebiere N, Samat A, et al. Synthesis of Thiophene-Substituted3H-Naphtho[2,1-b]pyrans, Precursors of Photomodulated Materials [J]. Helv ChimActa,1998,81:1293-1302.
    [33] Frigoli M, Moustrou C, Samat A, et al. Photomodulable Materials. Synthesisand Properties of Photochromic3H-Naphtho[2,1-b]pyrans Linked to Thiophene Unitsvia an Acetylenic Junction [J]. Helv Chim Acta,2000,83:3043-3052.
    [34] Frigoli M, Moustrou C, Samat A, et al. Synthesis of New Thiophene-Substituted3,3-Diphenyl-3H-naphtho[2,1-b]pyrans by Cross-Coupling Reactions, Precursors ofPhotomodulated Materials [J]. Eur J Org Chem,2003,2003:2799-2812.
    [35] Lyubimov A V, Zaichenko N L, Marevtsev V S. Photochromic network polymers[J]. J Photochem Photobiol A,1999,120:55-62.
    [36] Malic N, Campbell J A, Evans R A. Superior Photochromic Performance ofNaphthopyrans in a Rigid Host Matrix Using Polymer Conjugation: Fast, Dark, andTunable [J]. Macromolecules,2008,41:1206-1214.
    [37] Ercole F, Malic N, Davis T P, et al. Optimizing the photochromic performanceof naphthopyrans in a rigid host matrix using poly(dimethylsiloxane) conjugation[J].J Mater Chem,2009,19:5612-5623.
    [38] Zhang J, Zou Q, Tian H. Photochromic Materials: More Than Meets The Eye [J].Adv Mater,2013,25:378-399.
    [39] Song L, Yang Y, Zhang Q, et al. Synthesis and Photochromism of NaphthopyransBearing Naphthalimide Chromophore: Predominant Thermal Reversibility inColor-Fading and Fluorescence Switch [J]. J Phys Chem B,2011,115:14648-14658.
    [40] Evans R A, Hanley T L, Skidmore M A, et al. The generic enhancement ofphotochromic dye switching speeds in a rigid polymer matrix [J]. Nat Mater,2005,4:249-253.
    [41] Evans R A, Such G K. Research Trends in Photochromism: Control of Photochromismin Rigid Polymer Matrices and other Advances [J]. Aust J Chem,2005,58:825-830.
    [42] Zhao X C, Wang G, Zhang K. Photochromic behavior of naphthopyran instyrene-butadiene-styrene elastomer thin films: Effect of stretching of film andlinker [J]. J Appl Polym Sci,2013,127:1794-1802.
    [43] Zhao X C, Wang G, Zhang K. Influence of polymer polarity on photochromic behaviorof naphthodipyran doped in different polymeric matrixes [J]. J Appl Polym Sci,2012,124:4157-4164.
    [44] Pardo R, Zayat M, Levy D. Effect of the chemical environment on the light-induceddegradation of a photochromic dye in ormosil thin films [J]. J Photochem PhotobiolA,2008,198:232-236.
    [1] Lazzari M, Liu G, Lecommandoux S. Block Copolymers in Nanoscience[M]. Wiley-VCH:Weinheim,2006.
    [2] Savic R, Luo L B, Eisenberg A, Maysinger D. Micellar nanocontainers distributeto defined cytoplasmic organelles [J]. Science,2003,300(5619):615-618.
    [3] Georgiev N I, Asiri A M, Qusti A H, et al. A pH sensitive and selective ratiometricPAMAM wavelength-shifting bichromophoric system based on PET, FRET and ICT [J].Dyes and Pigments2014,102:35-45.
    [4] Gaudon M, Deniard P, Voisin L, et al. How to mimic the thermo-induced red togreen transition of ruby with control of the temperature via the use of an inorganicmaterials blend?[J]. Dyes and Pigments,2012,95:344-350.
    [5] Gohy J F, Zhao Y. Photo-responsive block copolymer micelles: design andbehavior[J]. Chem Soc Rev,2013,42:7117-7229.
    [6] Wang G, Tong X, Zhao, Y. Preparation of Azobenzene-Containing AmphiphilicDiblock Copolymers for Light-Responsive Micellar Aggregates [J]. Macromolecules,2004,37:8911-8917.
    [7] Blasco E, Barrio J, Sánchez-Somolinos C, et al. Light induced molecular releasefrom vesicles based on amphiphilic linear-dendritic block copolymers [J]. PolymChem,2013,4:2246-2254.
    [8] Lee H, Wu W, Oh J K, et al. Light-Induced Reversible Formation of PolymericMicelles [J]. Angew Chem Int Ed,2007,46:2453-2457.
    [9] Jin Q, Liu G Y, Ji J. Micelles and Reverse Micelles with a Photo and ThermoDouble-Responsive Block Copolymer [J]. J Polym Sci: Part A: Polym Chem,2010,48:2855-2861.
    [10] Zhang M D, Zhang Y F, Li D H, et al. The high stability of merocyanine andsignificant slow fading speed of naphthopyran in layer-by-layer assembled filmsvia hydrogen bonding [J]. New J Chem,2013,37:1385-1390.
    [11] Sriprom W, Ne′el M, Gabbutt C D, et al. Tuning the color switching ofnaphthopyrans via the control of polymeric architectures [J]. J Mater Chem2007,17:1885-1893.
    [12] Kolb H C, Finn M G, Sharpless K B. Click Chemistry: Diverse Chemical Functionfrom a Few Good Reactions [J]. Angew Chem Int Ed,2001,40:2004-2021.
    [13] Lutz J F.1,3-Dipolar Cycloadditions of Azides and Alkynes: A Universal LigationTool in Polymer and Materials Science [J]. Angew Chem Int Ed,2007,46:1018-1025.
    [14] Binder W H, Sachsenhofer R.“Click” chemistry in polymer and materials science[J]. Macromol Rapid Commun,2007,28:15-54.
    [15] Thibault R J, Takizawa K, Lowenheilm P, et al. A Versatile New Monomer Family:Functionalized4-Vinyl-1,2,3-Triazoles via Click Chemistry [J]. J Am Chem Soc,2006,128:12084-12085.
    [16] Tsarevsky N V, Sumerlin B S, Matyjaszewski K. Step-Growth “Click” Couplingof Telechelic Polymers Prepared by Atom Transfer Radical Polymerization [J].Macromolecules,2005,38:3558-3561.
    [17] Binder W H, Kluger C. Combining Ring-Opening Metathesis Polymerization (ROMP)with Sharpless-Type “Click” Reactions: An Easy Method for the Preparation ofSide Chain Functionalized Poly(oxynorbornenes)[J]. Macromolecules,2004,37:9321-9330.
    [18] Mantovani G, Ladmiral V, Tao L, et al. One-pot tandem living radicalpolymerisation-Huisgens cycloaddition process (“click”) catalysed byN-alkyl-2-pyridylmethanimine/Cu(I)Br complexes [J]. Chem Commun,2005,16:2089-2091.
    [19] Vogt A P, Sumerlin B S. An Efficient Route to Macromonomers via ATRP and ClickChemistry [J]. Macromolecules,2006,39:5286-5292.
    [20] Kluger C, Binder W H. Functionalized poly(oxanorbornene)-block-copolymers:Preparation via ROMP/click-methodology [J]. J Polym Sci: Part A: Polym Chem,2007,45:485-499.
    [21] Gao H F, Matyjaszewski K. Synthesis of Molecular Brushes by “Grafting onto”Method: Combination of ATRP and Click Reactions [J]. J Am Chem Soc,2007,129:6633-6639.
    [22] Jin J, Wu D X, Sun P C, Liu L, Zhao H Y. Amphiphilic Triblock CopolymerBioconjugates with Biotin Groups at the Junction Points: Synthesis, Self-Assembly,and Bioactivity [J]. Macromolecules,2011,44:2016-2024.
    [23] Wu C F, Jin Y H, Schneider T, et al. Ultrabright and Bioorthogonal Labelingof Cellular Targets Using Semiconducting Polymer Dots and Click Chemistry [J].Angew Chem Int Ed,2010,49:9436-9440.
    [24] Lian X, Wu D, Song X, Zhao H. Synthesis and Self-Assembly of AmphiphilicAsymmetric Macromolecular Brushes [J]. Macromolecules,2010,43:7434-7445.
    [25] Zhang X, Lian X, Liu L, et al. Synthesis of Comb Copolymers with PendantChromophore Groups Based on RAFT Polymerization and Click Chemistry and Formationof Electron Donor-Acceptor Supramolecules [J]. Macromolecules,2008,41:7863-7869.
    [26] Whittaker M R, Urbani C N, Monteiro M J. Synthesis of3-Miktoarm Stars and1st Generation Mikto Dendritic Copolymers by “Living” Radical Polymerizationand “Click” Chemistry [J]. J Am Chem Soc,2006,128:11360-11361.
    [27] Chen Y, Pang X H, Dong C M. Dual Stimuli-Responsive SupramolecularPolypeptide-Based Hydrogel and Reverse Micellar Hydrogel Mediated by Host-GuestChemistry [J]. Adv Funct Mater,2010,20:579-586.
    [28] Ercole F, Malic N, Davis T P, et al. Optimizing the photochromic performanceof naphthopyrans in a rigid host matrix using poly(dimethylsiloxane) conjugation[J]. J Mater Chem,2009,19:5612-5623.
    [1] Heron B M, Gabbutt C D, Hepworth J D, et al. Rapid fading photo-responsivematerials [P], WO01/12619A1,2001.
    [2] Clarke D A, Heron B M, Gabbutt C D, et al. Neutral coloring photochromic2H-naphtho[1,2-b]pyrans and heterocyclic pyrans [P], US Pat,6248264B1,2001.
    [3] Clarke D A, Heron B M, Gabbutt C D, et al. Intense colouring photochromic2H-naphtho[1,2-b]pyrans and heterocyclic pyrans [P], WO98/42695,1998.
    [4] Calderara I. Process for the manufacture of a crosslinked, transparent,hydrophilic and photochromic polymeric material, and optical and opthalmic articlesobtained [P], US Pat,6224945,2001.
    [5] Breyne O, Chan Y P. Naphthopyran derivatives, compositions and (co) polymermatrices containing same [P],US Pat,6399791B1,2002.
    [6] Ercole F, Malic N, Harrisson S, et al. Photochromic Polymer Conjugates: TheImportance of Macromolecular Architecture in Controlling Switching Speed withina Polymer Matrix [J]. Macromolecules,2010,43:249-261.
    [7] Ercole F, Malic N, Davis T P, et al. Optimizing the photochromic performanceof naphthopyrans in a rigid host matrix using poly(dimethylsiloxane) conjugation[J]. J Mater Chem,2009,19:5612-5623.
    [8] Ercole F, Davis T P, Evans R A. Comprehensive Modulation of NaphthopyranPhotochromism in a Rigid Host Matrix by Applying Polymer Conjugation [J].Macromolecules,2009,42:1500-1511.
    [9] Bai S Y, Zhao Y. Azobenzene Elastomers for Mechanically Tunable DiffractionGratings [J]. Macromolecules,2002,35:9657-9664.
    [10] Wang Z L, Zhang R L, Ma Y, et al. Transparent and flexible phosphomolybdate–agarose composite thin films with visible-light photochromism [J]. J Mater Chem,2010,20:1107.
    [11] Such G K, Evans R A, Davis T P. Rapid Photochromic Switching in a Rigid PolymerMatrix Using Living Radical Polymerization [J]. Macromolecules,2006,39:1391-1396.
    [12] Lee D K, Cha H G, Pa I U, et al. Kinetics of Decolorization of Spironaphthooxazine-Doped Photochromic Polymer Films [J]. J Phys Chem B,2009,113:12923-12927.
    [13] Kim C W, Oh S W, Kim Y H, et al. Characterization of the SpironaphthooxazineDoped Photochromic Glass: The Effect of Matrix Polarity and Pore Size [J]. J PhysChem C,2008,112:1140-1145.
    [14] Decher G, Hong J. Buildup of ultrathin multilayer films by a self-assemblyprocess,1consecutive adsorption of anionic and cationic bipolar amphiphiles oncharged surfaces [J]. Makromol Chem Macromol Symp,1991,46:321-327.
    [15] Lvov Y, Decher G, M hwald H, Assembly, structural characterization, and thermalbehavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) andpoly(allylamine)[J]. Langmuir,1993,9:481-486.
    [16] Zhao C, Winnik M A, Riess G, et al. Fluorescence probe techniques used tostudy micelle formation in water-soluble block copolymers [J]. Langmuir,1990,6:514-516.
    [17] Xu R, Winnik M A, Hallett F R, et al.Light-Scattering Study of the AssociationBehavior of Styrene-Ethylene Oxide Block Copolymers in Aqueous Solution [J].Macromolecules,1991,24:87-93.
    [18] Zhang L, Eisenberg A. Multiple Morphologies of "Crew-Cut" Aggregates ofPolystyrene-b-poly(acrylic acid) Block Copolymers [J]. Science,1995,268:1728-1731.
    [19] Discher B M, Won Y Y, Ege D S, et al. Polymersomes: Tough Vesicles Made fromDiblock Copolymers [J]. Science,1999,284:1143-1146.
    [20] Kukula H, Schlaad H, Antonietti M, et al. The Formation of Polymer Vesiclesor “Peptosomes” by Polybutadiene-block-poly(l-glutamate)s in Dilute AqueousSolution [J]. J Am Chem Soc,2002,124:1658-1663.
    [21] Dou H, Jiang M, Peng H, et al. pH-Dependent Self-Assembly: Micellization andMicelle-Hollow-Sphere Transition of Cellulose-Based Copolymers [J]. Angew ChemInt Ed,2003,42:1516-1519.
    [22] Zhou Y, Yan D. Supramolecular Self-Assembly of Giant Polymer Vesicles withControlled Sizes [J]. Angew Chem Int Ed,2004,43:4896-4899.
    [23] Pochan D J, Chen Z, Cui H, et al. Toroidal Triblock Copolymer Assemblies[J].Science,2004,306:94-97.
    [24] Torchilin V P. Targeted polymeric micelles for delivery of poorly solubledrugs [J]. Cell Mol Life Sci,2004,61:2549-2559.
    [25] Vriezema D M, Garcia P M L, Oltra N S, et al. Positional Assembly of Enzymesin Polymersome Nanoreactors for Cascade Reactions [J]. Angew Chem Int Ed,2007,46:7378-7382.
    [26] Read E S, Armes S P. Recent advances in shell cross-linked micelles [J]. ChemCommun,2007,29:3021-3035.
    [27] Motala-Timol S, Jhurry D, Zhou J, et al. AmphiphilicPoly(l-lysine-b-caprolactone) Block Copolymers: Synthesis, Characterization, andSolution Properties [J]. Macromolecules,2008,41:5571-5576.
    [28] Wang Y, Xu H, Ma N, et al. Block copolymer micelles as matrixes for incorporatingdiselenide compounds: a model system for a water-soluble glutathione peroxidasemimic fine-tuned by ionic strength [J]. Langmuir,2006,22:5552-5555.
    [29] Zhang M D, Zhang Y F, Li D H, et al. The high stability of merocyanine andsignificant slow fading speed of naphthopyran in layer-by-layer assembled filmsvia hydrogen bonding [J]. New J Chem,2013,37:1385-1390.
    [30] Zhang M D, Li D H, Wang G, et al. Highly efficient light-induced reversiblemicellization of amphiphilic polymer based on photochromism of naphthopyran inaqueous solution [J]. Dyes and Pigments.2014,100:232-237.
    [31] Saremi F, Tieke B. Photoinduced Switching in Self-Assembled Multilayers ofan Azobenzene Bolaamphiphile and Polyelectrolytes [J]. Adv Mater,1998,10:388-391.
    [32] Zhao Y J, Zhai Y Q, Su Z G. Methoxy poly (ethylene glycol) thiosulfonate:newactivated polymer derivatives for thiol-specific modification [J]. Polym AdvTechnol,2010,21:867-873.
    [33] Wang Y, Han P, Xu H. Photocontrolled Self-Assembly and Disassembly of BlockIonomer Complex Vesicles: A Facile Approach toward Supramolecular PolymerNanocontainers [J]. Langmuir,2010,26:709-715.
    [34] Niemiec W, Zapotoczny S, Szczubiazka K. Nanoheterogeneous Multilayer Filmswith Perfluorinated Domains Fabricated Using the Layer-by-Layer Method [J].Langmuir,2010,26:11915-11920.
    [35] Guo K, Chen Y. A strategy for the design of photochromic naphthopyrans withlarge optical density at photosteady state and fast fading speed at ambienttemperature in the dark [J]. J Mater Chem,2010,20:4193-4197.
    [36] Han S, Chen Y. Modification of a photochromic3-aryl-3-(a-naphthalene)-3H-naphtho[2,1-b]pyran system with a fast fading speed in solution and in a rigidpolymer matrix [J]. J Mater Chem,2011,21:4961-4965.
    [37] Malic N, Campbell J A, Evans R A. Superior Photochromic Performance ofNaphthopyrans in a Rigid Host Matrix Using Polymer Conjugation: Fast, Dark, andTunable[J]. Macromolecules,2008,41:1206-1214.
    [38] Ercole F, Malic N, Davis T P, et al. Optimizing the photochromic performanceof naphthopyrans in a rigid host matrix using poly(dimethylsiloxane) conjugation[J]. J Mater Chem,2009,19:5612-5623.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700