用户名: 密码: 验证码:
新型萘酰亚胺金属离子荧光探针的设计、合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文由两部分内容组成:新型萘酰亚胺金属离子荧光探针的设计、合成及性能研究和丁二酰亚胺光解的研究。
     研究了刚性的1,8-萘酰亚胺化合物在不同溶剂中及不同pH下的紫外和荧光光谱性质。发现这类荧光分子具有很强的溶剂敏感性,是潜在的极性微环境荧光探针的前体。在此基础上我们设计、合成了简单PET金属离子探针N-[4-二(2-羟乙基)氨基苯基]-4-(1-哌啶基)-1,8-萘酰亚胺。光谱滴定表明它是一个良好的铁(Ⅲ)离子选择性荧光分子探针。
     以4-氨基-1,8-萘酰亚胺作为荧光探针的荧光信号发射基团,按照“杂原子-烷基-氨基荧光团”的模型,设计、合成了一系列新的不同识别基团的萘酰亚胺金属离子荧光探针。识别基团部分分别引入氧、氮、硫原子作为金属离子配位点,以研究不同配体对金属离子的选择性。同时,考虑到金属离子不同的配位数和空间因素,设计了“单臂”和“双臂”识别基团。通过金属离子滴定试验,发现双臂探针对金属离子比单臂探针有更明显的发射蓝移信号。
     在识别单元中引入硫原子提高了对金属离子的选择性。含有硫原子识别单元的荧光探针对汞(Ⅱ)离子有选择性荧光淬灭作用,对铜(Ⅱ)或铁(Ⅲ)离子有选择性荧光增强作用。提出了不同的识别机理,对铜(Ⅱ)、铁(Ⅲ)离子的荧光增强作用主要是由于阻断了PET效应;对汞(Ⅱ)离子的荧光淬灭作用产生于金属离子―π电子的相互作用。基于金属离子―π电子相互作用机理的汞(Ⅱ)离子的选择性荧光探针是本文首次报道的。
     设计、合成了四种新的双萘酰亚胺荧光分子探针,该类探针是具有较强ICT信号的荧光分子体系。
     研究了丁二酰亚胺及N-烷基取代丁二酰亚胺在醇溶液中的光化学性质。通过密度泛函理论(DFT)计算的方法研究了光反应过程中分子间的相互作用,从而进一步阐述了光反应的机理。
This dissertation consists of two parts: Study on the naphthlimide fluorescent probes for metal ions and investigation on the photolysis mechanism of succinimides.
     The UV-visible and fluorescent properties of rigid 1,8-naphthalimide derivatives in various solution or under various pH were investigated. It was found that these rigid molecules are precursors of fluorescent probes sensitive to solvent polarity. N-[4-di(2-hydroxyethyl)aminophenyl]-4-(1-piperidyl)-1,8-naphthalimide was designed based on the above studies. The titration experiments indicated that it is highly selective to Fe3+.
     A series of novel fluorescent probes with different receptors were designed and synthesized based on the 4-amino-1,8-naphthalimide. O, N and S atoms were introduced into the receptors respectively as ligands of metal ions. At the same time, the receptors with one arm and double were introduced and it was found that the latter shows a larger blue-shift of the maximum emission than the former.
     Two novel fluorescent probes (D4 and D5) with a receptor containing a pair of ethanthiolyl or N,N-diethyl-dithiocarbamyl groups were designed and synthesized for recognition of transition and heavy metal ions. It was found that D4 and D5 show a pronounced fluorescence enhancement response to Cu2+ and Fe3+, respectively. They both show a strong fluorescence quenching upon addition of Hg2+. Different mechanisms of recognition for transition and heavy metal ions were proposed. The response to Cu2+ or Fe3+ is a typical PET-suppressed process. The fluorescence quenching of Hg2+ may be related to the cation-πinteraction, which was firstly reported in this paper.
     Four novel fluorescent probes with double naphthalimide fluorophores were designed and synthesized and found that they are characteristic ICT systems.
     The photochemical behavior of succimide in alcohol was investigated and the photolysis mechanism was proposed with the aid of DFT (density functional theory) calculations.
引文
[1] Cram, D .J.; Cram, J .M. Host-Guest Chemistry, Science, 1974, 183, 803–809.
    [2]吴世康,超分子光化学前景,感光科学与光化学,1994, 4, 332–341.
    [3] Lehn, J. M. Supramolecular chemistry, Science, 1993, 260, 1762–1763.
    [4] Ozin, G. A.; Godber, J.; Baker, M. D. Watching Silver Clusters Grow in Zeolites: Direct Probe FT-FAR-IR Spectroscopy of the Red Form of Fully Silver Ion-Exchanged Zeolite A, J. Phys. Chem., 1985, 89, 2299–2304.
    [5] Achim, M.; Hans, R.; Stephan, D. Supramolecular Inorganic Chemistry: Small Guests in Small and Large Hosts, Angew. Chem. Int. Ed. Engl., 1995, 34, 2328–2361.
    [6] de Silva, A. P.; Gunatame, H. Q. N.; Gunnlauggson T. et al. Signaling recognition events with fluorescent sensors and switches [J], Chem. Rev., 1997, 97, 1515–1565.
    [7]陈国珍,黄贤智,许金钩等,荧光分析法[M],北京出版社,1989, 113–145
    [8] Balzani, V. Supermolecular photochemistry-Forword, New J. Chem., 1996, 20, 723–724
    [9] Ramamurthy, V.; Schanze, K. S. Optical Sensors and Switches, Molecular and Supermolecular Photochemistry, 7, New York, Marcel Dekker, Inc., 2001.
    [10] Trautwein, A. X. Bioorganic chemistry, Wiley-VCH, Weinheim, 1997
    [11] Merian, E. Metals and their compounds in the environment, Wiley-VCH, Weinheim, 1991
    [12] de Silva, A. P.; Fox, D. B.; Moody, T. S. et al. The development of molecular fluorescent switches, TRENDS in Biotechnology, 2001, 19, 29–34.
    [13] de Silva, A. P.; McClenaghan, N. D. Molecular-Scale Logic Gates, Chem. Eur. J. 2004, 10, 574–586.
    [14] de Silva, A. P. Fluorescent signaling crown ethers;‘switching on’of fluorescence by alkali metal ion recognition and binding in situ., J. Chem. Soc. Chem. Comm. 1986, 1709–1710.
    [15] Qian, X.; Zhu, Z.; Chen, K. The synthesis, application and prediction of stocks shift in fluorescent dyes derived from 1,8-naphthalic anhydride., Dyes and Pigm. 1989, 11, 13–20.
    [16] de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T. et al. Molecular photoionic switches with an internal reference channel for fluorcsent pH sensing applications, New J. Chem. 1996, 20, 871–880.
    [17] Daffy, L. M.; de Silva, A. P.; Gunaratne, H. Q. N. et al. Arenedicarboximide Building Blocks for Fluorescent Photoinduced Electron Transfer pH Sensors Applicable with Different Media and Communication Wavelengths, Chem. Eur. J. 1998, 4, 1810–1815.
    [18] de Silva, A. P.; Rice, T. E. A small supramolecular system which emulates the unidirectional, path-selective photoinduced electron transfer (PET) of the bacterial photosynthetic reaction centre (PRC), J. Chem. Soc., Chem. Commun. 1999, 163–164.
    [19] de Silva, A. P.; Gunaratne, H. Q. N. Fluorescent PET Sensors Selective for Submicromolar Calcium with Quantitatively Predictable Spectral and Ion-binding Properties, Chem. Commun. 1990, 186–187.
    [20] de Silva, A. P.; Sandanayake, K. R. A. S. Fluorescent PET Sensors for Alkali Metal Ions with Improved Selectivity against Protons and with Predictable Binding Constants, Chem. Commun. 1989, 1183–1185.
    [21] de Silva, A. P.; Gunaratne, H. Q. N.; McCoy, C. P. Molecular photoionic AND logic gates with bright fluorescence and‘off-on’digital action, J. Am. Chem. Soc. 1997, 119, 7891–7892.
    [22] de Silva, A. P.; Gunaratne, H. Q. N.; McCoy, C. P. Nature, 1993, 364, 42
    [23] Magri, D. C.; Brown, G. J.; McClean, G. D. et al. Communicating Chemical Congregation: A Molecular AND Logic Gate with Three Chemical Inputs as a "Lab-on-a-Molecule" Prototype, J. Am. Chem. Soc., 2006; 128(15), 4950–4951.
    [24] Cosnard, F.; Wintgens, V. A new fluoroionophore derived from 4-amino-N-methyl-1,8-naphthalimide, Tetrahedron Lett., 1998, 39, 2751–2754.
    [25] Rurack, K.; Danel, A.; Rotkiewicz, K. et al. 1,3-Diphenyl-1H-pyrazolo[3,4-b]quinoline: A Versatile Fluorophore for the Design of Brightly Emissive Molecular Sensors, Org. Lett. 2002, 4, 4647–4650.
    [26] Kolimannsberger, M.; Rurack, K.; Resch-Genger, U. et al. Ultrafast charge transfer in amino- substituted boron dipyrromethene dyes and its inhibition by cation complexation: a new design concept for highly sensitive fluorescent probes, J. Phys. Chem. A, 1998, 102, 10211–10220.
    [27] Grabowski, Z. R.; Dobkowski, J. Twisted intramolecular charge transfer (TICT) excited states: energy and molecular structure, Pure Appl. Chem. 1983, 55(2), 245–252.
    [28] Rettig, W. Charge seperation in excited states of decoupled system-TICT compounds and implications regarding the development of new laser dyes and the primary processes of vision and photosynthesis. Angew. Chem. Int. Ed. Engl. 1986, 25, 971–988
    [29] Létard, J. F.; Delmond, S.; Lapoyyade, S. P. et al. New IntrinsicFluoroionophores with Dual Fluorescence: DMABN-Crown-4 and DMABN-Crown-5. Rec. Trav. Chim. Pays-Bas. 1995, 114, 517–521.
    [30] Collins, G. E.; Choi, L.–S.; Callahan, J. H. Effect of Solvent Polarity, pH, and Metal Complexation on the Triple Fluorescence of 4-(N-1, 4, 8, 11-tetraazacyclotetradecyl) benzonitrile, J. Am. Chem. Soc., 1998, 120, 1474–1475.
    [31] Kubo, K.; Kato, N.; Sakurai, T. Synthesis and Complexation Behavior of Diaza-18-crown-6 Carrying Two Pyrenylmethyl Groups. Bull. Chem. Soc. Jpn. 1997, 70, 3041–3046.
    [32] Kawakami, J.; Komai, Y.; Ito, S. Fluorescence Spectrophotometric Determination of Ca2+ and Ba2+ Based on 1,n-Bis(1-naphthylcarboxy)oxaalkanes. Chem. Lett. 1996, 617–618.
    [33] Valeur, B.; Bourson, J.; Pouget, J. et al. Turning of photoinduced energy transfer in a bichromophoric coumarin supermolecule by cation binding, J. Phys. Chem., 1992, 96, 6545–6549.
    [34] Spesier, S. Photophysics and Mechanisms of Intramolecular Electronic Energy Transfer in Bichromophoric Molecular Systems: Solution and Supersonic Jet Studies, Chem. Rev., 1996, 96, 1953–1976
    [35] Krauss, R.; Weinig, H.-G.; Seydack, M. et al. Molecular Signal Transduction through Conformational Transmission of a Perhydroanthracene Transducer, Angew. Chem. Int. Ed., 2000, 39, 1835–1837.
    [36] Hirano, T.; Kikuchi, K.; Urano, Y. et al. Novel zinc fluorescent probes excitable with visible light for biological applications, Angew. Chem. Int. Ed. 2000, 39, 1052–1054.
    [37] Walkup, G. K.; Burdette, S. C.; Lippard, S. J. et al. A new cell-permeable fluorescent probe for Zn2+, J. Am. Chem. Soc., 2000, 122, 5644–5645.
    [38] Amaresh, M. Cyanines during the 1990s: A review, Chem. Rev. 2000, 100, 1998–2011.
    [39] Treibs, A.; Kreuzer, F.-H. Difluorboryl-Komplexe von Di- und Tripyrrylmethen, Liebigs, Ann. Chem. 1968, 718, 208–223.
    [40] Kolimannsberger, M.; Rurack, K.; Resch-Genger, U. et al. Ultrafast charge transfer in amino-substituted boron dipyromethene dyes and its inhibition by cation complexation: a new design concept for highly sensitive fluorescent probes, J. Phys. Chem. A, 1998, 102, 10211–10220.
    [41] Chang, S.-C.; Utecht, R. E.; Lewis, D. E. Synthesis and bromination of 4-alkylamino-N-alkyl-1,8-naphthalimides, Dyes and Pigm. 1998, 43, 83–94.
    [42] Tao, Z.-F.; Qian, X. Naphthalimide hydroperoxides as photonucleases: substituent effects and structural basis, Dyes and Pigm. 1999, 43, 139–145.
    [43] Cao, Y.; He, X.; Gao, Z. et al. Fluorescence energy transfer between Acridine Orange and Safranine T and its application in the determination of DNA, Talanta, 1999, 49, 377–383.
    [44] V?gtle, F.; Gestermann, S.; Kauffmann, C. et al. Coordination of Co2+ Ions by poly(propylene amine)-dendrimers containing fluorescent dansyl units at the periphery, J. Am. Chem. Soc., 2000, 122, 10398–10404.
    [45] Lytton, S. D.; Mester, B.; Libman, J. et al. Monitoring of iron(III) removal from biological sources using a fluorescent siderophore, Anal. Bioche., 1992, 205, 326–333.
    [46] Jiwan, J.-L. H.; Branger, C.; Souumillion, J. P. et al. Ion-responsive fluorescent compounds V. Photophysical and complexing properties of coumarin 343 liked to monoaza-15-crown-5, J. Photochem. Photobio. A Chem., 1998, 116, 127–133.
    [47] Valeur, B. Molecular Fluorescence: Principles and Applications, Wiley-CVH Verlag GmbH, Weinheim, 2001.
    [48] Ramachandram, B.; Saroja, G.; Sankaran, N. B. et al. Unusally High Fluorescence Enhancement of Some 1,8-Naphthalimide Derivatives Induced by Transition Metal Salts, J. Phys. Chem. B, 2000, 104, 11824–11832.
    [49] Koshland, D. E. Application of a Theory of Enzyme Specificity to Protein Synthesis, Proc. Natl. Acad. Sc i., 1958, 44, 98–104.
    [50] Cram, D. J. Preorganization-From Solvents to Spherands, Angew. Chem. Int. Ed. Engl., 1986, 25, 1039–1057.
    [51] Yuan, A.; Zhu, M; Han, S. Supramolecular inclusion complex formation and application of beta-cyclodextrin with heteroanthracene ring cationic dyes, Anal. Chim. Acta., 1999, 389, 291–298.
    [52]吴成泰,冠醚化学,北京,科学出版社, 1992.
    [53] Yapar, G.; Erk, C. A study of the metal complexing of naphthalene-2,3-crown ethers using fluorescence spectroscopy: part III, Dyes and Pigm., 2001, 48, 173–177.
    [54] Youn, N. J.; Chang, S.-K. Dimethylcyclam based fluoroionophore having Hg2+- and Cd2+-selective signaling behaviors, Tetrahedron Lett., 2005, 46, 125–129.
    [55] Rurack, K.; Kollmannsberger, M.; Resch-Genger, U. et al. A selective and sensitive fluoroionophore for Hg2+, Ag+ and Cu2+ with virtually decoupled fluorophore and receptor units, J. Am. Chem. Soc., 2000, 122, 968–969.
    [56] Kolimannsberger, M.; Rurack, K.; Resch-Genger, U. et al. Ultrafast charge transfer in amino-substituted boron dipyromethene dyes and its inhibition by cation complexation: a new design concept for highly sensitive fluorescent probes, J. Phys. Chem. A, 1998, 102, 10211–10220.
    [57] Chopping, P.; Jullien, L.; Valeur, B. Multichromophoric cyclodextrins asfluorescent sensors. Interaction of heptachromophoric-cyclodextrins with surfactants, J. Chem. Soc., Perkin Trans. 2, 1999, 249–256.
    [58]马会民,马泉莉.杯芳烃光学识别试剂.分析化学. 2002,9, 1137–1142.
    [59] Ji, H. F.; Dabistani, R.; Brown, G. M. A supramolecular fluorescent probe, activated by protons to detect cesium and potassium ions, mimics the function of a logic gate, J. Am. Chem. Soc., 2000, 122, 9306–9307.
    [60] Kovalevsky, A. Yu.; Shishkin, O. V.; Ponomarev, I. I. et al. Acta Cryst. C 55, 1999, 1911–1913
    [61] Cao, H.; Chang, V.; Hernandez, R. et al.. Matrix Screening of Substituted N-Aryl-1,8-naphthalimides Reveals New Dual Fluorescent Dyes and Unusually Bright Pyridine Derivatives. J. Org. Chem., 2005, 70(13), 4929–4934.
    [62] Lukas, A. S.; Miller, S. E.; Wasielewski, M. R. Femtosecond Optical Switching of Electron Transport Direction in Branched Donor-Acceptor Arrays, J. Phys. Chem. B., 2000; 104(5), 931–940
    [63] Saha, S. and Samanta, A. Influence of the Structure of the Amino Group and Polarity of the Medium on the Photophysical Behavior of 4-Amino-1,8-naphthalimide Derivatives, J. Phys. Chem. A 2002, 106, 4763–4771
    [64] (a) Kikuchi, K.; Komatsu, K.; Nagano, T. Curr. Opin. Chem. Biol. 2004, 8, 182; (b) Lim, N. C.; Freake, H. C.; Br?ckner, C. Chem. Eur. J. 2005, 11, 38, and some references therein; (c) Hanaoka, K.; Kikuchi, K.; Kojima, H. et al. J. Am. Chem. Soc. 2004, 126, 12470; (d) Nolan, E. M.; Jaworski, J.; Okamoto, K. I. et al. J. Am. Chem. Soc. 2005, 127, 16812; (e) Komatsu, K.; Kikuchi, K.; Kojima, H. et al. J. Am. Chem. Soc. 2005, 127, 10197; (f) Goldsmith, C. R.; Lippard, S. J. Inorg. Chem. 2006, 45, 555.
    [65] Fedorova, O. A.; Strokach, Y. P.; Gromov, S. P. et al. Effect of metal cations on the photochromic properties of spironaphthoxazines conjugated with aza-15(18)-crown-5(6) ethers, New J. Chem., 2002, 1137–1145.
    [66] Islam, M.; Khanin, M.; Sadik, O. A. Fluorescent Chelates for Monitoring Metal Binding with Macromolecules, Biomacromolecules, 2003, 4(1), 114–121.
    [67] Morozumi, T.; Anada, T.; Nakamura, H. New Fluorescent "Off-On" Behavior of 9-Anthryl Aromatic Amides through Controlling the Twisted Intramolecular Charge Transfer Relaxation Process by Complexation with Metal Ions, J. Phys. Chem. B., 2001, 105(15), 2923–2931.
    [68] de Silva, A. P.; Fox, D. B.; Huxley, A. J. M. et al. Combining luminescence, coordination and electron transfer for signalling purposes, Coordination Chemistry Reviews, 2000, 205(1), 41–57.
    [69] Qian, X.; Xiao Y. 4-Amino-1,8-dicyanonaphthalene derivatives as novel fluorophore and fluorescence switches: efficient synthesis and fluorescenceenhancement induced by transition metal ions and protons, Tetrahedron Lett., 2002, 43(16), 2991–2994
    [70] Ramachandram, B.; Samanta, A. Transition Metal Ion Induced Fluorescence Enhancement of 4-(N,N-Dimethylethylenediamino)-7-nitrobenz-2-oxa-1,3-diazole, J. Phys. Chem. A., 1998, 102(52): 10579–10587.
    [71] Substituted 4-hydroxyalkylamino-1, 8-naphthalic acid imides, US2415373.
    [72] Sorrell, T. N.; O'Connor, C. J.; Anderson, O. P. et al. Synthesis and Characterization of Phenolate-Bridged Copper Dimers with a Cu-Cu Separation of >3.5 ?. Models for the Active Site of Oxidized Hemocyanin Derivatives, J. Am. Chem. SOC. 1985, 107, 4199–4206.
    [73]郭祥峰,朱宝存,刘媛媛等4-(氮杂-15-冠-5)-1,8-萘酰亚胺荧光探针的合成及性能研究,有机化学,2006,26 (4),504–507.
    [74] Yokoyama,S.; Nakahama, T.; Otomo, A. et al. Intermolecular Coupling Enhancement of the Molecular Hyperpolarizability in Multichromophoric Dipolar Dendrons, J. Am. Chem. Soc. 2000, 122, 3174–3181.
    [75] Saha, S.; Samanta, A. Influence of the Structure of the Amino Group and Polarity of the Medium on the Photophysical Behavior of 4-Amino-1,8-naphthalimide Derivatives, J. Phys. Chem. A.; 2002; 106(18), 4763–4771.
    [76] Springer, C. J. ; Dowell, R.; Burke, P. J. et al. Optimization of Alkylating Agent Prodrugs Derived from Phenol and Aniline Mustards: A New Clinical Candidate Prodrug (ZD2767) for Antibody-Directed Enzyme Prodrug Therapy (ADEPT), J. Med. Chem. 1995, 38, 5051–5065.
    [77] Tanaka, M.; Nakamura, M.; Ikeda,T. et al. Synthesis and Metal-Ion Binding Properties of Monoazathiacrown Ethers, J. Org. Chem. 2001, 66, 7008–7012.
    [78] Fages, F.; Desvergne, J.-P.; Bouas-Laurent, H. et al. Anthraceno-cryptands: a new class of cation-complexing macrobicyclic fluorophores, J. Am. Chem. Soc. 1989, 111 8672–8680.
    [79] Fabbrizzi, L.; Lichelli, M.; Pallavicini, P. A Zinc(II)-Driven Intramolecular Photoinduced Electron Transfer, Inorg. Chem. 1996, 35, 1733–1736.
    [80] Fabbrizzi, L.; Lichelli, M.; Pallavicini, et al. An Anthracene-Based Fluorescent Sensor for Transition Metal Ions , Angew. Chem. Int. Ed. Engl., 1994, 33, 1975–1977.
    [81] Narita, M.; Higuchi, Y.; Hamada, F. et al. Metal sensor of water soluble dansyl-modified thiacalix[4]arenas, Tetrahedron Lett. 1998, 39, 8687–8690.
    [82] Fery-Forgues, S.; Le Bris, M.-T.; Mialocq, J.-C. J. et al. Photophysical properties of styryl derivatives of aminobenzoxazinones, J. Phys. Chem. 1992, 96,701–710.
    [83] Ishikawa, J.; Sakamoto, H.; Nakao, S. et al. Silver Ion Selective Fluoroionophores Based on Anthracene-Linked Polythiazaalkane or Polythiaalkane Derivatives, J. Org. Chem., 1999, 64(6),1913–1921.
    [84] Fages, F.; Desvergne, J.-P.; Bouas-Laurent, H. et al. Anthraceno-cryptands: a new class of cation-complexing macrobicyclic fluorophores, J. Am. Chem. Soc. 1989, 111, 8672-8680.
    [85] Lu, E.; Peng, X.; Song, F. et al. A novel fluorescent sensor for triplex DNA, Bioorganic & Medicinal Chemistry Letters, 2005, 15, 255–257.
    [86] Nakamura, M.; Yokono, H.; Tomita, K. et al. Substitution Effect, Absorption, and Fluorescence Behaviors of 11,12-Benzo-1,7,10,13-tetraoxa-4-azacyclopentadec-11-ene(Benzoaza-15-crown-5) Derivatives upon Cation Complexation in Solvent Extraction, J. Org. Chem. 2002, 67, 3533–3536.
    [87] Johnson J. L.; Werbel, L. M. Synthesis and Antileishmanial Activity of 6-Methoxy-4-methyl-N-[6-(substituted-1-piperazinyl)hexyl]-8-quinolinamines and Related Compounds, J. Med. Chem. 1983, 26, 185–194.
    [88] de Wet-Roos, D.; Dixon, J. T. Homogeneous Tandem Catalysis of Bis(2-decylthioethyl)amine-Chromium Trimerization Catalyst in Combination with Metallocene Catalysts, Macromolecules 2004, 37, 9314–9320.
    [89] Smith, V. K.; Ndou, T. T.; Muňoz et Poňa A. et al. Spectral Characterization ofβ-cyclodextrin: Triton X-100 Complexes. J. Inclusion Phenomena,1991, 10, 471~481.
    [90] Maafi, M.; Laassis, B.; Aaron, J. J. et al. Photochemically Induced Fluorescence Investigation of aβ-cyclodextrin: Azure A Inclusion Complex and Determination of Analytical Parameters. J. Inclusion Phenomena and Molecular Recognition in Chemistry, 1995, 22, 235~247.
    [91] Hargreaves, M. K.; Pritchard, J. G.; Dave, H. R. Cyclic carboxylic monoimides, Chem. Rev., 1970, 70(4), 439–469.
    [92] Kan, R. O.; Flurey, R. L. Photochemical generation and decomposition of dibenzoylaniline, Tetrahedron Lett., 1966, 7(23), 2573–2578.
    [93] Katsuhara, Y.; Maruyama, H.; Shigemitsu, Y. et al., Photochemistry of amides and imides I photo-fries rearrangement of N-aryl imides, Tetrahedron Lett., 1973, 14(16), 1323–1326.
    [94] Choudhary, G. A.; Cameron M.; Back, R. A. Photolysis and pyrolysis of succinimide vapor, J. Phys. Chem., 1968, 72(7), 2289–2292.
    [95] Kanaoka, Y.; Koyama, K. Photochemistry of the phthalimide system: reduction, addition, and cyclization, Tetrahedron Lett., 1972, 13(44), 4517–4520.
    [96] Lee, C. M.; Kumler, W. D. The Dipole Moment and Structure of the Imide Group. II. Semicyclic Imides: N-Acetyl Lactams, Effect of Ring Size on Dipole Moment; N-Benzoyl Lactams, Ring Size, Dipole Moment and Ultraviolet Spectrum, J. Am. Chem. Soc., 1962, 84(4), 565–571.
    [97] Kanaoka, Y.; Hatanaka, Y. Synthetic photochemistry with the imide system. Norrish type II cyclization of alicyclic imides, J. Org. Chem., 1976, 41(2), 400–401.
    [98] Maruyama, K.; Kubo, Machida, Y. M. et al., Photochemical cyclization of N-2-alkenyl- and N-3-alkenylphthalimides, J. Org. Chem., 1978, 43(11), 2303–2304.
    [99] Mazzocchi, P. H.; Fritz, G. Photolysis of N-(2-Methyl-2-propenyl)phthalimide in Methanol. Evidence Supporting Radical-Radical Coupling of a Photochemically Generated Radical Ion Pair, J. Am. Chem. Soc., 1986, 108(17), 5362–5364.
    [100] Maruyama, K.; Kubo, Y. Solvent-incorporated medium to macrocyclic compounds by the photochemical cyclization of N-alkenylphthalimides, J. Am. Chem. Soc., 1978, 100(24), 7772–7773.
    [101]马国春,环状酰亚胺光化学性质研究及消毒剂溴氯甘脲的制备:[硕士学位论文],天津,天津大学,2005.
    [102] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; GAUSSIAN 03, Revision B.05, Gaussian, Inc., Pittsburgh, PA, 2003.
    [103] Mason, R. The crystal and molecular structure of succinimide, C4H5O2N, Acta Cryst. 1956, 9, 405–410
    [104] Jorgensen, W. L.; Severance, D. L. Chemical chameleons: hydrogen bondingwith imides and lactams in chloroform, J. Am. Chem. Soc. 1991, 113, 209–216

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700