用户名: 密码: 验证码:
极坐标激光直写若干控制关键技术理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
衍射光学元件是航天、航空、国防和通信等领域的关键器件之一,随着科学技术的进步,对衍射光学元件的功能和加工精度提出了越来越高的要求,特别是对具有微细结构衍射元件的需求日益迫切。激光直写技术由于无需掩模、加工精度高等优点成为目前衍射光学元件加工的关键技术之一,其中极坐标激光直写是加工圆对称衍射光学元件的主要手段,但该技术存在接头闭合质量低、线宽稳定性差以及加工线条中心的径向漂移等问题,制约了圆对称衍射光学元件加工精度的提高。
     课题“极坐标激光直写若干控制关键技术研究”的目的是在现有极坐标激光直写技术的基础上,探讨研究一种提高线条制作质量的控制技术,着重通过径向位置补偿消除径向漂移原理误差,通过增加对接区域有效过渡长度减小定位误差对接头质量的影响,通过弱化曝光量误差和曝光阈值误差对线条宽度的影响提高制作线条的稳定性。本课题的研究为解决目前极坐标激光直写过程中的线条对接质量和线宽稳定性提供了一种有效的技术途径,为提高衍射元件的性能、拓宽其应用领域提供技术储备。
     本文首先从极坐标激光直写的曝光原理出发,对极坐标激光直写曝光量分布进行了深入分析,研究了当扫描半径接近光斑尺寸时,加工线条的展宽和中心向极坐标中心移动的径向漂移,由此建立了线条展宽模型和径向漂移模型,并分析了线条展宽和径向漂移之间的耦合,进而分别建立了线条展宽光功率补偿模型和径向漂移补偿模型。
     为了提高接头闭合质量,提出基于S曲线光强控制的极坐标激光直写接头光滑闭合方法。在对接区域采用S曲线进行光强控制,利用S曲线斜率渐变的特性增加了对接区域曝光量变化的有效过渡长度,以减小曝光量的变化速率;在此基础上分析了S曲线控制参数变化对曝光量分布的影响,进而在以对接区域曝光量分布恰好存在一个极值点为最优的条件下,对控制参数进行优化,实现了接头的光滑闭合。
     线宽均匀稳定性是线条质量的重要指标,分析了影响离焦激光直写线宽稳定性的因素,并且提出一种提高离焦激光直写线宽稳定性的光功率控制方法,通过同时调节激光功率和离焦量,使曝光阈值处于线宽对曝光量的变化率较小的位置,从而弱化实际曝光量和曝光阈值等参数变化对线宽的影响,提高离焦直写制作衍射光学元件的线宽稳定性。
     本文最后对课题所研究的若干关键技术进行实验验证,主要包括:S曲线光强控制接头闭合效果验证,采用稳定线宽方法后的线宽模型验证以及对曝光量误差和曝光阈值误差线宽稳定性验证。
Diffraction optical elements are keys to aerospace, aviation, national defense and communications. The diffraction optical elements with high performance and high fabrication precision, especially with minuteness structure, are urgently demanded with the development of science and technology. Laser direct writing is one of the key techniques in diffraction optical elements fabrication due to its maskless and high precision, and polar laser direct writing is the mostly method to manufacture centrosymmetrical diffraction optical elements. However, the shortages of polar laser direct writing such as low joint quality, low linewidth stability and line center radial drift restrict the improvement of centrosymmetrical diffraction optical elements quality.
     The study of this dissertation is to get a control method to improve the line fabrication quality on the basis of polar laser direct writing technique at present. Concretely, radial drift is eliminated by radial position compensation, the joints quality is improved by increasing valid exposure dose transition length and the linewidth stability is improved by reducing the linewidth sensitivity to exposure dose error and exposure threshold error. The study provides an effective approach to resolve the problem of joints quality and linewidth stability, then to provide technical storage for improvement of diffractive optical elements performance and widen the application fields of diffractive optical elements.
     In order to reduce the fabrication error during polar laser direct writing process, the exposure dose distribution is profoundly analyzed correspond to exposure principle of polar laser direct writing. The linewidth broadening model and the line center radial drift model are established on the basis of studying the causes that linewidth broadening and radial drift appear. The coupling of linewidth broadening and radial drift is analyzed, and then the linewidth broadening power compensation model and radial drift compensation model are established.
     In order to improve the joint quality of closed line, an S-curve intensity control smooth close-up method is presented. The intensity of joint area is controlled by S-curve, and the valid transition length of exposure dose variation increases due to the characteristic of S-curve’s slope rate gradual change. Further, the parameters of S-curve is optimized considering it to be optimal when the exposure dose distribution got an extremum at one point, then smooth close-up is realized.
     Linewidth stability is an important index of line quality. A laser power control method is presented to improve linewidth stability for defocusing laser direct writing on the basis of analyzing the factors which affect the linewidth stability. The writing power and defocusing amount are synchronously adjusted to set photoresist threshold at position where the linewidth variation rate is small, thereby the linewidth sensitivity to variation of actual exposure dose and photoresist threshold is weakened, and then the linewidth stability during defocusing laser direct writing is guaranteed.
     Finally, experiment are done to validate the methods presented in this dissertation, including validation of close-up effect when use S-curve to control the intensity of joint area, validation of linewidth model and linewidth stability when linewidth stabilizing method is adopted.
引文
1 Levinson H J. Overview of Lithography: Challenges and Metrologies. AIP Conference Proceedings. 2003, 683(1): 365~370
    2 Ccoectti T. EUV Lithography Development in Europe: Present Status and Perspectives. SPIE. 2004, 5196: 57~70
    3杨国光,沈亦兵,侯西云.微光学技术及其发展.红外与激光工程. 2001,30(4):235~240
    4 B. C. Kress. The Continuous Reinvention of Diffractive Optics. SPIE. 2004, 5249:386~391
    5 M. E. Motamedi. Micro-opto-electro-mechanical systems. Opt. Eng. 1994, 33(11): 3505~3517
    6 M. .B Fleming and M. C. Hutley. Blazed Diffractive Optics. Appl. Opt. 1997, 36(20): 4635~4643
    7 J. A. Cox. Overview of Diffractive Optics at Honeywell. SPIE. 1988, 884: 1127~31
    8金国藩,严瑛白,邬敏贤.二元光学.北京:国防工业出版社, 1998: 1~13
    9 N. C. Gallagher. Binary Optics in the 90's. SPIE. 1990, 1396: 722~733
    10 H. O. Sankur and M. E. Motamedi. Micro-optics Development in the Past Decade. SPIE. 2000, 4179: 30~55
    11高福华.衍射光学在ICF激光驱动系统中的应用研究.四川大学博士论文. 2003: 5~8
    12 Y. A. Carts. Micro Electronic Methods Push Binary Optics Frontiers. Laser Focus World. 1992, 28(2): 87~93
    13 T. J. Mchugh. An Overview of Binary Optics at Perkin-Elmer Corporation. SPIE.1988, 884: 100
    14 W. Goltsos and M. Holz. Binary Micro Optics: An Application to Beam Steering. SPIE. 1989, 1052: 131
    15 R. L. Morrison, S. L. Walker and T. J. Cloonan. Beam Array Generation and Holographic Interconnections in a Free-Space Optical Switching Network. Appl. Opt. 1993, 32: 2512~2518
    16 S. N. Khonina and V. V. Koltyar. Calculation of the Focusators into a Longitudinal Line-Segment and Study of aFocal Area. Journal of Modern Optics. 1993, 40: 761~769
    17 T. R. Werner, J. A. Cox and S. Swanson. Microlens Array for Staring Infrared Imager. SPIE. 1991, 1544: 46~57
    18 M. E. Motamedi, W. H. Southwel, R. J. Anderson, et al. High-Speed Binary Optic Microlens Array in Gaas. SPIE. 1991, 1544: 33~44
    19 A. A. Almazov, S. N. Khonina and V. V. Kotlyar. How the Tilt of a Phase Diffraction Optical Element Affects the Properties of Shaped Laser Beams Matched with a Basis of Angular Harmonics. Journal of Optical Technology. 2006, 73(9): 633~639
    20 H. Kim and B. Lee. Diffractive Optical Element with Apodized Aperture for Shaping Vortex-Free Diffraction Image. Japanese Journal of Applied Physics Part 2-Letters & Express Letters. 2004, 43(12A): 1530~1533
    21 J. Y. Lu, Z. C. Shen, Y. Z. Zhou, et al. A New Method of Coherent Summation of Laser Beams by Diffraction Optical Element. Optics and Lasers in Engineering. 2004, 41(2): 289~295
    22 M. Kulishov, S. Sarkisov, Y. Boiko, et al. Switchable Optical Element with Bragg Mode Diffraction. Opt. Lett. 2001, 26(11): 759~761
    23 A. V. Volkov, V. V. Kotlyar, O. V. Moiseev, et al. Binary Diffraction Optical Element Focusing a Gaussian Beam to a Longitudinal Segment. Optics and Spectroscopy. 2000, 89(2): 318~323
    24 Z. Poole, D. Xu, K. P. Chen, et al. Holographic Fabrication of Three-Dimensional Orthorhombic and Tetragonal Photonic Crystal Templates using a Diffractive Optical Element. Appl. Phys. Lett. 2007, 91(25):251101
    25 M. A. Golub, L. Shimshi, N. Davidson, et al. Mode-Matched Phase Diffractive Optical Element for Detecting Laser Modes with Spiral Phases. Appl. Opt. 2007, 46(32): 7823~7828
    26 D. Ambrosini and D. Paoletti. Heat Transfer Measurement by a Diffractive Optical Element Fringe Projection. Opt. Eng. 2007, 46(9): 093606
    27 K. Jarasiunas, R. Aleksiejunas, T. Malinauskas, et al. Implementation of Diffractive Optical Element in Four-Wave Mixing Scheme for Ex Situ Characterization of Hydride Vapor Phase Epitaxy-Grown Gan Layers. Review of Scientific Instruments. 2007, 78(3): 033901
    28 R. de Saint Denis, N. Passilly, M. Laroche, et al. Beam-Shaping Longitudinal Range of a Binary Diffractive Optical Element. Appl. Opt. 2006, 45(31): 8136~8141
    29 J. Lim, G. B. Jeong, S. M. Kim, et al. Design and Fabrication of a Diffractive Optical Element for the Objective Lens of a Small Form Factor Optical Data Storage Device. Journal of Micromechanics and Microengineering. 2006, 16(1): 77~82
    30 Q. F. Tan, Y. B. Yan and G. F. Jin. Diffractive Optical Element Used to Control Side Lobe to be Extremely Low in a Large Region. OPTIK. 2005, 116(10): 500~504.
    31 K. Hedsten, J. Melin, J. Bengtsson, et al MEMS-Based VCSEL Beam Steering Using Replicated Polymer Diffractive Lens. Sensors and Actuators A-Physical. 2008, 142(1): 336~345
    32 I. W. Jung, Y. A. Peter, E. Carr, et al. Single-Crystal-Silicon Continuous Membrane Deformable Mirror Array for Adaptive Optics in Space-Based Telescopes. IEEE Journal of Selected Topics in Quantum Electronics. 2007, 13(2): 162~167
    33 C. C. Lee, C. M. Wang, S. K. Huang, et al. Fabrication and Tolerance Reduction of a Si-Based Pickup Module for Optical Storage. Optical Engineering. 2006, 45(7): 074501
    34 J. Y. Chang, C. M. Wang, C. C. Lee, et al. Realization of Free-Space Optical Pickup Head with Stacked Si-Based Phase Elements. IEEE Photonics Technology Letters. 2005, 17(1): 214~216
    35 A. Hakansson, H.T. Miyazaki. Inverse Design of Microelectromechanically Controlled Scattering Optical Elements. Japanese Journal of Applied Physics Part 2-Letters & Express Letters. 2007, 46(20-24): L580~L583
    36 M. Tormen, Y. A. Peter, P. Niedermann, et al. Deformable MEMS Grating for Wide Tunability and High Operating Speed. Journal of Optics A-Pure and Appl. Opt. 2006, 8(7): S337~S340
    37 Y. Chiu, C. H. Chen, J. C. Chiou, et al. MEMS-Based Miniature Optical Pickup. IEEE Transactions On Magnetics 2005, 41(2): 967~970
    38 J. S. Lin, C. F. Chen, H. F. Shih, et al. Optical Module for a Near-Field Hybrid Recording System Using the Diffractive Optical Element. International Journal of Nonlinear Sciences and Numerical Simulation. 2002,3(3-4): 627~630
    39 J. R. Wendt, T. W. Krygowski, G. A. Vawter, et al. Fabrication of Diffractive Optical Elements for an Integrated Compact Optical Microelectromechanical System Laser Scanner. Journal of Vacuum Science & Technology B. 2000, 18(6): 3608~3611
    40 G. S. John, R. I. Luis, S. Andrew, et al. Diffractive Optics for Moon Topography Mapping. SPIE. 2006, 6223: 622304
    41 A. Oksman, M. Juuti and K. E. Peiponen. Visibility Map for Print Quality Assessment by Means of a Diffractive Optical Element Based Glossmeter. Measurement Science and Technology. 2007, 18: 2185~2188
    42 T. J. Mchugh. An Overview of Binary Optics at Perkin-Elmer Corporation. SPIE. 1988, 884: 100
    43 J. A. Cox. Overview of Diffraction Optics at Honeywell. SPIE. 1988, 884: 127~132
    44 D. W. Ricks and H. W. Willhite. Hand-Held Imaging Laser Radar. SPIE. 1997, 3065:3041
    45 J. C. Marron and K. S. Schroeder. Holographic Laser Radar. Opt. Lett. 1993, 18(5): 385-387
    46刘泽乾,陶忠祥,于前洋.二元光学在光学观测轰炸瞄准中的应用研究.光学技术. 2005, 32(5): 754~758
    47孟剑奇.衍射光学及其在红外成像系统中的应用.航空兵器. 2006, 6: 38~41
    48杨智,戴一帆,张沛.折衍混合在长焦物镜中的应用研究.激光技术. 2007, 31(2): 206~208
    49陈四海,程志军,黄光等.亚波长消反射光栅.光学学报. 2003, 23(11): 1359~1361
    50 D. H. Raguin and G. M. Morris. Analysis of Antireflection-Structured Surfaces with Continuous One-Dimensional Surface Profiles. Appl. Opt. 1993, 32(14): 2582~2598
    51王军锋,李跃进,杨银堂.光互连的研究与新进展.激光与光电子学进展. 2005, 42(1): 15~21
    52 T. Yoshimura, M. Ojima, Y. Arai, et al. Three-Dimensional Self-Organized Microoptoelectronic Systems forBoard-Level Reconfigurable Optical Interconnects-Performance Modeling and Simulation .IEEE Quant. Electron. 2003, 9(2): 492~511
    53 H. Sasaki, K. Kotani, H. Wada, et al. Scalability Analysis of Diffractive Optical Element-Based Free-Space Photonic Circuits for Interoptoelectronic Chip Interconnections. Appl. Opt. 2001, 40(11): 1843~1855
    54陈劲松.达曼光栅的计算机辅助设计.信息技术. 2005, 11: 79~80
    55刘丽萍,王骐,李琦.折衍混合式相干激光雷达天线系统的设计.激光与红外. 2002, 32(1): 15~17
    56张中华,陈建新,王骐等.二元光学技术在激光成像雷达扫描器上的应用激光技术. 2001, 25(2): 126~129
    57于斌,李宏生,禹秉熙等.二元光学超光谱成像仪分光系统设计.光学技术. 2003, 29(1): 73~75
    58林敏,黄建军,李景镇.二元光学元件和新型超分辨光盘读写头的设计研究.光子学报. 2001, 30(3): 321~324
    59 S. R. Patterson. Development of Precision Turning Capabilities at Lawrence Livemore National Laboratory. Third Biennial International Machine Tool Technology Conference, Chicago, September, 1986
    60 S. R. Patterson. Inspection of the Large Optics Diamond Turning Machine. 66th Meeting of the IMOG Gaging Subgroup, November, 1987
    61 T. S. Theodore. Precision and Manufacturing at Lawrence Livermore National Laboratory. NASA's Fourth National Technology Transfer Conference and Exposition, Anahein, California, December, 1993
    62 http://web.mit.edu/rcmonte/www/images lite/LODTM/LODTM.jpg
    63 http://image.instrument.com.cn/show/pic/C16152.jpg
    64杨福兴,袁哲俊.大型光学零件金刚石车床.机械工程师. 2001, 3: 38~40
    65 T. H. PNEΜMO. Nanoform 250 Preliminary Engineering Specifications. Revision
    66 http://www.rpoptics.com/New%20Images/Nano200s.jpg
    67 C. G. Blough, M. Rossi, S. K. Mack, et al. Single-Point Diamond Turning and Replication of Visible and Near-Infrared Diffractive Optical Elements. Appl. Opt. 1997, 36(20): 4648~4654
    68 E. R. Mcclure. Manufacturers Turn Precision Optics with Diamond. LaserFocus World. 1991, 27(2): 95~105
    69 D. W. Sweeney, G. E. Sommargren. Harmonic Diffractive Lenses. Appl. Opt. 1995, 34(14): 2469—2475
    70任琳.基于多光束相干的激光干涉光刻技术研究.吉林大学硕士学位论文. 2007: 9~11
    71张锦.激光干涉光刻技术.四川大学博士学位论文. 2003:8~9, 17~21
    72冯伯儒,张锦,宗德蓉等.无掩模激光干涉光刻技术研究.微纳电子技术.2002, 3: 39~42
    73 J. P. Spallas, A. M. Hawryluk, D. R. Kania. Field Emitter Array Mask Patterning Using Laser Interference Lithography. Journal of Vacuum Science Technology. 1995, B13(5): 1973~1978
    74张锦,冯伯儒,郭永康等.用于大面积周期性图形制造的激光干涉光刻.光电工程. 2001, 28(6): 20~23
    75陈芬,冯伯儒,张锦等.全内反射全息光刻技术.微细加工技术. 1999, 2: 66~70
    76宋登元,王小平.激光全息光刻技术及其应用.半导体技术. 2000, 25(2): 14~16
    77 J. Nole. Holographic Lithography Needs No Mask. Laser Focus World. 1997, 33 (5): 209
    78刘娟,冯伯儒,张锦.成像干涉光刻技术及其频域分析.光电工程. 2004,31(10): 24~27
    79 X. L. Chen, S. R. Brueck. Imaging Interferometric Lithography: Approaching the Resolution Limits of Optics. Opt. Lett. 1999, 24(3): 124~126.
    80 H. Dammann, K. Gortler. High-Efficiency in-Line Multiple Imaging by Means of Multiple Phase Holograms. Opt. Commun. 1971, 3(5): 312~315
    81 F. Margit, K. Berndt, P. Edgar. Blazed Fresnel Zone Lenses Approximated by Discrete Step Profiles: Effects of Fabrication Errors. SPIE. 1993, 1732: 89~99
    82 M. Hradil, M. Miler. Diffraction Efficiency of Surface-Relief Gratings with Various Profiles. SPIE. 2003, 5036: 668~673
    83 Zh. Cui, J. L. Du, Y. K. Guo. Overview of Gray-Scale Photolithography for Micro-Optical Elements Fabrication. SPIE. 2003, 4984: 111~117
    84 W. Daschner, P. Long, M. Larsson, et al. Fabrication of Diffractive Optical Elements Using a Single OpticalExposure with a Gray Level Mask. Journal of Vacuum Science and Technology B. 1995, 13 (6): 2729~2731
    85 W. Daschner, P. Long, Stein R, et al. Cost-Effective Mask Fabrication of Multilevel Diffractive Optical Elements by use of a Single Optical Exposure with a Gray-Scale Mask on High-Energy Beam Sensitive Glass. Appl. Opt. 1997, 36(20): 4675~4680
    86 R. W. Michael, H. Su. Laser Direct-Write Gray-Level Mask and One-Step Etching for Diffractive Microlens Fabrication. Appl. Opt. 1998, 37(10):7568~7576
    87 E. B. Kley, F. Thoma, U. D. ZEITNER, et al. Fabrication of Micro Optical Surface Profiles by Using Gray Scale Masks. SPIE. 1997, 3276:254~262
    88 H.P.赫尔齐克.微光学元件、系统和应用.周海宪等译.国防工业出版社. 2002: 107~145, 180~206
    89张羽,杨坤涛,杨长城.二元光学元件的制作技术与进展.光学仪器. 2005, 27(2): 80~85
    90 S. Aoyama, N. Horie and T. Yamashita. Micro Fresnel Lens Fabricated by Electron-Beam Lithography. SPIE. 1990, 12(11): 175~183
    91 I. I. Khandaker, D. Macintyre and S. Thoms. Fabrication of Microlens Arrays by Direct Electron Beam Exposure of Photoresist. Pure and Appllied Optics Journal of the European Optical Society Part A. 1997, 6(6): 637~641
    92 http://ims-ism.nrc-cnrc.gc.ca/images/JEOL-6000.jpg
    93 D. W. Wilson, P. D. Maker and R. E. Muller. Recent Advances in Blazed Grating Fabrication by Electron-Beam Lithography. SPIE. 2003, 5173: 115~126
    94 S. J. Henley and S. R. P. Silva. Laser Direct Write of Silver Nanoparticles from Solution onto Glass Substrates for Surface-Enhanced Raman Spectroscopy. Applied Physics Letters, 2007, 91(023107): 1~3
    95 K. K. Seet, V. Jarutis, S. Juodkazis, et al. Nanofabrication by Direct Laser Writing and Holography. SPIE. 2005, 6050(60500S): 1~9
    96 M. T. Gale, M. Rossi, J. Pedersen, et al. Fabrication of Continuous-Relief Micro-Optical Elements by Laser Beam Writing in Photoresists. Opt. Eng. 1994, 32(11): 3556~3566
    97 http://www.tdisie.nsc.ru/products/inf/gif/lgip.jpg
    98 http://www.ncu.edu.tw/~osc/3/3 2 _2/pic5.jpg
    99 T. Sandstr?m and J. K. Tison. Highly Accurate Pattern Generation Using Acousto-Optical Deflection. SPIE. 1991, 1463: 629~637
    100M. Ornelas-Rodriguez and S. Calixto. Direct Laser Writing of Mid-Infrared Microelements On Polyethylene Material. Opt. Eng. 2001, 40(6): 921~925
    101 T. Sandstrom, N. Eriksson. Resolution Extensions in the Sigma 7000 Imaging Pattern Generator. SPIE. 2002, 4889: 157~167
    102P. Bjornangen, M. Ekberg, et al. DOE Manufacture with the DUV SLM-Based Sigma 7300 Laser Pattern Generator. SPIE. 2004, 5377: 1866~1875
    103陈林森,解剑锋,沈雁.基于SLM的三维图像激光光刻系统的研制.激光与红外. 2003, 33(5): 367~370
    104L. Erdmann, A. Deparnay, F. Wirth, et al. MEMS Based Lithography for the Fabrication of Microoptical Components. SPIE. 2004, 5347: 79~84
    105M. R. Wang, H. Su. Laser Direct-Write Gray-Level Mask and one-Step Etching for Diffractive Microlens Fabrication. Appl. Opt. 1998, 37(32):7568~7576
    106 V. P. Korolkov, A. I. Malyshev, V. G. Nikitin, et al. Application of Gray-Scale LDW-Glass Masks for Fabrication of High-Efficiency DOEs. SPIE. 1999,3633:129~138
    107M. T. Gale, M. Rossi, J. Pedersen, et al. Fabrication of Continuous-Relief Micro-Optical Elements by Direct Laser Writing in Photoresists. Opt. Eng. 1994, 33(11): 3556~3566
    108C. Wang, Y. C. Chan and Y. L. Lam. Fabrication of Diffractive Optical Elements with Arbitrary Surface-Relief Profile by Direct Laser Writing. Opt. Eng. 2002, 41(6): 1240~1245
    109C. W. An, K. D. Ye and M. H. Hong. Laser Creating Precise Three-Dimensional Image of Object inside Glass. SPIE. 2002, 4915: 259~265
    110S. M. Shank, M. Skvaria, F. T. Chen, et al. Fabrication of Multi-Level Phase Grating Using Focused Ion Beam Milling and Electron Beam Lithography.OSA Technical Digest Series 11. 1994: 302~305
    111Y. Fu, N. K .A. Bryan and O. N. Shing. Investigation of Direct Milling of Micro-Optical Elements with Continuous Relief on a Substrate by Focused Ion Beam Technology. Optics Engineer. 2000, 39(11):3008~3013
    112G. P. Behrmann and M. T. Duignan. Excimer Laser Micromachining for Rapid Fabrication of Diffractive Optical Elements. Appl. Opt. 1997, 36(20): 4666~4674
    113E. C. Harvey and P. T. Rumsby. Micromachined Structure and Device Using Excimer Laser Projection. SPIE. 1996, 3223: 26~33
    114黄永攀,王锐,李道火.激光诱导化学气相沉积法制备纳米A-Si_3N_4粉体及粉体光谱特性的研究.应用激光. 2004, 24(6): 405~408
    115B. Kluepfel and F. Ross. Holography Market Place. Berkeley, CA: Ross Books
    116M. C. Hutley. Diffraction Gratings. London, Academic Press. 1982: 125~127
    117C. Teyssier and C. Tribastone. Plastic Optics: Challenging the High Volume Myth. Lasers & Optronics. 1990: 50~53
    118 A. Neyer, T. Knoche, L. Muller, et al. Low Cost Fabrication Techonology for Low Loss Passive Polymer Waveguides at 1300nm and 1550nm. ECOC. 1993: 337~340
    119M. T. Gale and K. Knop. The Fabrication of Fine Lens Arrays by Laser Beam Writing. SPIE. 1983, 398: 347~353
    120V. P. Koronkevich, V. P. Kiriyanov, F. I. Kokoulin, et al. Fabrication of Kinoform Optical Elements. Optik. 1984, 67(3): 257~266
    121 C. Rensch, S. Hell, M. V. Schickfus, et al. Laser Scanner for Direct Writing Lithography. Appl. Opt. 1989, 28(17): 3754~3758
    122 S. C. Baber. Application of High Resolution Laser Writers to Computer Generated Holograms and Binary Diffractive Optics. SPIE. 1989, 1052: 66~76
    123 W. Goltsos and S. Liu. Polar Coordinate Laser Writer for Binary Optics Fabrication. SPIE. 1990, 1211: 137~147
    124C. L. Vernold and T. D. Milster. Non-Photolithographic Fabrication of Large Computer-Generated Diffractive Optical Elements. SPIE. 1994, 2263:125~133
    125 H. Su and M. R.Wang. Laser Direct-Write Optical Grating Lenses and Lenslet Arrays on Glass for Optical Interconnect Applications. SPIE. 1996,2891: 82~87
    126M. R.Wang and H. Su. Multilevel Diffractive Microlens Fabrication by one-Step Laser-Assisted Chemical Etching upon High-Energy-Beam Sensitive Glass. Opt. Lett. 1998, 23(11): 876~878
    127 A. Y. Smuk and N. M. Lawandy. Direct Laser Writing of Diffractive Optics in Glass. Opt. Lett. 1997, 22(13): 1030~1032
    128 G. P. Behrmann and M. T. Duignan. Excimer Laser Micromachining for Rapid Fabrication of Diffractive Optical Elements. Appl. Opt. 1997, 36(20): 4666~4674
    129 J. P. Bowen, R. L. Michaels and C. G. Blough. Generation of Large-Diameter Dve Elements withiffracti Laser Pattern Generation. Appl. Opt. 1997, 36(34): 8970~8975
    130V. P. Koronkevich, V. P. Kiriyanov, V. P. Korol'kov, et al. Fabrication of Diffractive Optical Elements by Direct Laser Writing with Circular Scanning. SPIE. 1994,2363: 290~297
    131V. B. Svetovoy, I. I. Amirov and Y. E. Babanov. Laser Directing System for Fabrication of Smooth-Relief Micro-Optical Elements. SPIE. 1996, 2969:248~251
    132V. V. Cherkashin, E. G. Churin, V. P. Korolkov, et al. Processing Parameters Optimization for Thermochemical Writing of DOEs on Chromium Films.SPIE. 1997, 3010: 168~179
    133 V. V. Cherkashin, A. A. Kharissov, V. P. Korol'kov, et al. Accuracy Potential of Circular Laser Writing of DOEs. SPIE. 1998,3348: 58~68
    134M. Haruna, M. Takahashi, K. Wakahayashi, et al. Laser Beam Lithographed Micro-Fresnel Lenses. Appl. Opt. 1990, 29(34): 5120~5126
    135M. Harurna and H. Nishara. Laser-Beam Writing for Integrated-Optics Device Inti: Linbo3. SPIE. 1994, 2045: 99~109
    136T. Nomura, K. Kamiya, H. Miyashiro, et al. An Instrument for Manufacturing Zone-Plates by Using a Lathe. Precision Engineering. 1994, 16(4): 290~295
    137M. T. Gale, G. K. Lang, J. M. Raynor, et al. Fabrication of Microoptical Components by Laser Beam Writing in Photoresist. SPIE. 1991, 1506: 65~70
    138T. Hessler, M. Rossi, R. E. Kunz, et al. Analysis and Optimization of Fabrication of Continuous-Relief Diffractive Optical Elements. Appl. Opt.1998, 37(19): 4069~4079
    139U. Krackhardt, J. Schwider, M. Schrader, et al. Synthetic Holograms Writtenby a Laser Pattern Generator. Opt. Eng. 1993, 32(4): 781~785
    140H. Kuck, M. Bollerott, W. Doleschal, et al. New System for Fast Submicron Laser Direct Writing. SPIE. 1995, 2440: 506~514
    141 P. Langlois, H. Jerominek, L. Leclerc, et al. Diffractive Optical Elements Fabricated by Laser Direct Writing and Other Techniques. SPIE. 1992, 1751:2~12
    142J. R. Salgueiro, J. F. Román and V. Moreno. System for Laser Writing to Lithograph Masks for Integrated Optics. Opt. Eng. 1998, 37(4): 1115~1123
    143 M. Ornelas-Rodriquez and S. Calixto. Direct Laser Writing of Mid-Infrared Microelements on Polyethylene Material. Optical Engineering. 2001, 40(6):921~925
    144T. Glaser, S. Schroter, S. Fehling, et al. Nanostructuring of Organic and Chalcogenide Resists by Direct DUV Laser Beam Writing. Electronics Letters. 2004, 40(3)
    145K. K. Seet, V. Mizeikis, S. Matsuo, et al. Three-Dimensional Spiral-Architecture Photonic Crystal Obtained by Direct Laser Writing. Advanced Materials. 2005, 17(5): 541~545
    146Y. C. Chan, Y. L. Lam, Y. Z. Xu, et al. Development and Applications of a Laser Writing Lithography System for Maskless Patterning. Opt. Eng. 1998,37(9): 2521~2530
    147W. X. Que, Y. Zhou, Y. C. Chan, et al. Fabrication of Composite Sol-Gel Optical Channel Waveguides by Laser Writing Lithography. SPIE. 1999,3740:290~293
    148C. Wang, Y. C. Chan, Y. L. Lam, et al. Fabrication of Diffractive Micro-Optical Lens for Integration with Optoelectronic Devices by Direct Laser Writing. SPIE. 2000, 4226: 69~76
    149C. Wang, Y. C. Chan and Y. L. Lam. Fabrication of Diffractive Optical Elements with Arbitrary Surface-Relief Profile by Direct Laser Writing. Opt.Eng. 2002, 41(6): 1240~1245
    150W. X. Yu, X. C. Yuan, N. Q. Ngo, et al. Single-Step Fabrication of Continuous Surface Relief Micro-Optical Elements in Hybrid Sol-Gel Glass by Laser Direct Writing. Opt. Exp. 2002, 10(10): 443~448
    151 T. K. Ong, Y. C. Chan and B. S. Ooi. Fabrication of Multiple-WavelengthLasers in Ingaas-Ingaasp Structures Using Direct Laser Writing. IEEE Photonics Technology Letters. 2001, 13(11): 1161~1163
    152M. He, X. C. Yuan, N. Q. Ngo, et al. Single-Step Fabrication of a Microlens Array in Sol-Gel Material by Direct Laser Writing and Its Application in Optical Coupling. Journal of Optics A: Pure and Applied Optics. 2004, 6:94~97
    153H. Schenk, A. Wolter, U. Dauderstaedt, et al. Micro-Opto-Electro-Mechanical Systems Technology and its Impact on Photonic Applications. SPIE. 2005, 041501:1~11
    154Ostrom, A. Beyerl, H. Sj?berg, et al. Second Level Exposure for Advanced Phase Shift Mask Applications Using the SLM-Based Sigma 7300 DUV Mask Writer. Proc.SPIE. 2005, 5835: 155~166
    155Hans Martinsson, Tor Sandstrom. Rasterizing for SLM-Based Mask-Making and Maskless Lithography. Proc.SPIE. 2004, 5567: 557~564
    156H. Martinsson and T. Sandstrom. Current Status of Optical Maskless Lithography. SPIE. 2005, 011003:1~15
    157杜春雷,林大键,冯伯儒等.激光直接光刻制作微透镜阵列的方法研究.光学学报. 1996, 16(8): 1194~1196
    158侯德胜,杜春雷,邱传凯等. ISI-2802激光直写系统及其应用.光电工程. 1997, 24(S1): 27~30
    159邱传凯,杜春雷,侯德胜.激光直写光刻工艺技术研究.光电工程. 1997, 24(S1): 36~45
    160邱传凯,杜春雷,白临波.激光直写系统中的对准技应用研究.光电工程. 1997, 24(S1): 97~102
    161白临波,孙国良.激光直写系统图形编辑软件.光电工程. 1997, 24(S1): 31~35
    162高福华,杜惊雷,姚军等.激光直写中光刻胶对激光能量的吸收模型. 1999, 4: 19~23
    163 J. L. Du, F. H. Gao, Y. K.Guo, et al. Precompensation Approach for Improving the Quality of Laser Direct Writing Patterns by a Modified Proximity Function. Opt. Eng. 2000, 39(3): 771~775
    164杜惊雷,黄奇忠,姚军等.激光直写邻近效应的校正.光学学报. 1999,19(7): 953~957
    165杜惊雷,郭永康,黄奇忠等.校正激光直写邻近效应的快速方法.光电工程. 1998, 25(6): 51~54
    166杜惊雷,石瑞英,崔铮等.掩模制作中的邻近效应.微纳电子技术. 2002, 11: 36~40
    167杜春雷,周礼书,邱传凯等.衍射微透镜列阵的研究与应用.光学技术. 1998, 3: 17~22
    168李学民,卢国纬,周礼书.折射型微透镜列阵制作的一种新途径.电子科技大学学报. 2000, 29(3): 294~296
    169周光亚,侯西云,许乔等.极坐标激光直接写人系统研究.仪器仪表学报. 1996, 17(1): 327~329
    170 G. G. Yang and Y. B. Sheng. Research on Laser Direct Writing System and Its Lithography Properties. Proc.SPIE. 1998, 3550:409~418
    171沈亦兵,周光亚,侯西云等.用于二元光学掩模制作的激光直接写入系统研究.科技通报. 1998, 14(3): 170~173
    172沈亦兵,杨国光,侯西云.激光光刻中的超分辨现象研究.光学学报. 1999, 19(11): 1512~1517
    173沈亦兵,周光亚,刘玉玲.激光直接写人系统中的光功率稳定控制.仪器仪表学报. 1999, 20(2): 145~159
    174沈亦兵,李培勇.声光调制器在激光直写系统光功率控制技术中的应用.浙江大学学报. 2000,34(3): 282~286
    175吴剑,刘玉玲,沈亦兵等.消除激光直写系统中声光调制器迟滞现象的方法.光电工程. 2000, 27(6): 69~72
    176刘玉玲.声光调制器模型辨识及光功率控制系统设计.光电工程. 2002, 29(5): 12~14
    177梁宜勇.基准离焦偏差控制技术.光电工程. 2004, 31(1): 43~45
    178梁宜勇,杨国光.基于二象限探测器的离焦探测.光学仪器. 2004, 26(6): 7~11
    179梁宜勇,杨国光,孙戎.激光直写调焦系统特性及离焦应用研究.浙江大学学报. 2005, 39(2): 269~272
    180梁宜勇.离焦写入线宽的动态高斯模型.光学学报. 2006, 26(5): 726~729
    181张景和,廖江红,刘伟等.二元光学元件激光直接写入设备的研制.仪器仪表学报. 2001, 22(2): 154~157
    182李凤有,卢振武,张殿文等.激光直接写入工艺的研究.光电子·激光.2001, 12(9): 949~952
    183李凤有,卢振武,谢永军等.离焦激光直写光刻工艺研究.中国激光. 2002, 29(9): 850~854
    184王多书,罗崇泰,马勉军等.激光直写制作二元光学元件掩模研究.应用激光. 2004, 24(4): 213~216
    185王多书,罗崇泰,刘宏开等.连续型平面衍射聚光透镜掩模的制作.应用激光. 2005, 26(6): 77~80
    186陈林森,解剑锋,沈雁等.采用空间光调制器的光变图像光刻系统.光电子·激光. 2004, 15(5): 561~564
    187魏国军,邵洁,周小红等.用于二元光学器件制作的激光直写系统.光电子·激光. 2006, 17(10): 1212~1215
    188魏国军,周小红,周雷等.低空频模板实现微光变图像的激光直写方法.应用光学. 2007, 28(6): 742~745
    189 http://china.nikkeibp.co.jp/china/news/sino/sino200801220113.html
    190梁铨廷.物理光学.浙江:机械工业出版社. 1986: 176~179
    191金玉明,薛兴恒,顾新身等.实用积分表.合肥:中国科技大学出版社.2006: 45
    192李凤有.激光直写光刻技术研究.长春:中国科学院长春光学精密机械与物理研究所, 2002: 18, 49~50, 70~77
    193谢永军.曲面激光直接写入技术.长春:中国科学院长春光学精密机械与物理研究所, 2003: 26~27, 32~35, 57
    194Y. J. Xie, Z. W. Lu and F. Y. Li. Method for Correcting the Joint Error of a LaserWriter. Optics Express. 2003, 11(9): 975~979
    195W. H. Hamaker, G. Burns and P. Buch. Optimizing the Use of Multipass Printing to Minimize Printing Errors in Advanced Laser Reticle-Writing Systems. SPIE. 1995, 2621: 319~328
    196O. Hajime. Line Width Control on Laser Beam Writing (Second Report): Line Width Control by Defocusing. Journal of the Japan Society of Precision Engineering, 1999,65(8): 1158~1162
    197梁宜勇.可变线宽的无掩膜光刻理论与技术研究.杭州:浙江大学, 2005:30, 97~98
    198梁宜勇,顾智企,章哲明.稳定线宽的过曝光控制.浙江大学学报. 2006, 40(1): 49~52
    199 B. Niemann, T. Wilhein, T. Schliebe, et al. A Special Method to Create Gratings of Varialble Line Density by Low Electron Beam Lithography. Microeleconics Engineering. 1996, 30: 49~56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700