用户名: 密码: 验证码:
基于量子级联激光器的气体光谱检测关键技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于量子级联激光器(Quantum Cascade Laser:QCL)具有发射功率高、线宽窄、能在室温下工作等特点,基于量子级联激光器的气体光谱检测技术与装备已成为近年来的研究热点。
     论文针对气体检测技术中存在的分辨率、灵敏度等问题,开展基于量子级联激光器的气体光谱检测系统关键技术研究。重点研究了基于量子级联激光器的气体光谱检测系统的光谱扫描理论与方法,并对不同温度下的脉冲内光谱扫描进行了模拟分析;研究了气体光谱检测系统的差分吸收光谱技术和基于F-P标准具的频率标定技术的相关理论与实现方法,设计并搭建了基于量子级联激光器的气体光谱检测系统,完成了该系统的性能测试与分析;以甲烷和甲醛为具体检测对象,基于HITRAN的JavaHAWKs和PGOPHER软件进行了相应吸收光谱的计算与模拟,完成了甲烷和甲醛红外吸收光谱的定性与定量检测,测试验证了基于量子级联激光器的气体光谱检测系统的主要性能;基于该系统,进行了甲醛的吸收强度、压力展宽效应、压力频移效应和光谱非线性效应的实验研究,获得了较满意的实验结果。
     本论文主要研究工作是:
     ①论文分析了气体检测技术的研究现状、存在的科学与技术问题,提出了基于中红外量子级联激光器的气体检测系统结构与实现方法,确定了基于量子级联激光器的气体光谱检测系统方案;
     ②研究了量子级联激光器的气体光谱检测系统的光谱检测理论与方法,分析研究了基于脉冲电流调谐的量子级联激光器的光谱扫描理论与具体实现方法;
     ③基于气体分子的红外吸收光谱特性,研究了基于量子级联激光器的气体光谱检测的相关理论与方法;采用差分吸收光谱检测技术,解决了气体检测中存在的部分干扰等问题,提高了系统检测灵敏度与检测精度;基于F-P标准具的频率标定技术,解决了中红外波段气体检测系统中时域与频域标定的技术问题;
     ④提出了基于分布反馈式脉冲量子级联激光器的气体光谱检测系统的总体结构设计方案,搭建了系统实验平台,完成了系统波长范围、分辨率、重复性、稳定性和检测灵敏度等性能的测试分析;
     ⑤基于本论文搭建的气体检测系统,完成了甲烷和甲醛气体吸收光谱的采集;基于HITRAN的JavaHAWKs和PGOPHER软件对甲烷和甲醛气体吸收光谱进行了模拟,比较模拟光谱与实验光谱的吸收峰数目、位置以及相对吸收强度,完成了吸收光谱的定性分析;完成了甲烷和甲醛气体吸收光谱的采集和处理,基于Beer-Lambert定律的光谱积分面积的计算方法,获得了混合气体中甲烷和甲醛的浓度值,完成了两种气体的定量测试;
     ⑥基于本实验平台,对甲醛气体吸收光谱的“Rapid Passage”非线性效应、吸收强度、压力展宽和压力频移效应进行了相应参数分析,获得了比较满意的实验结果;
     ⑦进行论文研究工作的总结,提出了存在的问题与下一步工作思路。
Due to the characteristics of high output power, narrow line-width, roomtemperature operation and so on, Quantum Cascade Lasers (QCLs) have become theresearch focus in the fields of trace gas detection technology and instrumentalintegration system.
     This thesis aimed at the issues existed in the gas detection technology andinstrument system researching, key technologies in gas spectroscopy detectiontechnology based on Quantum Cascade Laser were carried out. And also importantlyfocused on the fundamental theory of quantum cascade laser based spectrum scanningmethod by applying a pulse current to the QCL, and also different spectral ranges wereobtained by tuning the QCL operation temperatures; Research work of theory andrealization methods were also carried out by analysing differential optical absorptionspectroscopy and technology based on F-P etalon, then design and set-up the gasdetection experimental system based on quantum cascade laser, and measured thesystem stability and other characteristics; Take methane (CH4) and formaldehyde(H2CO) as the detection gases, firstly simulated their spectrum using HITRAN andPGOPHER, then calculated the relative parameters and results. Testing measurementsresults showed that the quantum cascade laser based gas spectroscopy detection systemhas a relatively high detection sensitivity and resolution. Absorption line intensity,pressure broadening and pressure induced frequency shift parameters of formaldehyde(H2CO) were measured using the system and good results were obtained.
     The mainly research works in this thesis were:
     ①Gas detection technology status, existing matters were compared and analysedin this thesis and them gas spectroscopy detection system and realization method wereproposed, the research scheme was confirmed as pulsed distribute feedback quantumcascade laser based gas detection system and technology.
     ②Spectrum scanning theory and methods were researched based on distributefeedback quantum cascade laser, and analysis works were carried out by using pulsecurrent tuning method.
     ③Based on the molecular absorption specificity, fundamental knowledge andmethod were researched based on quantum cascade laser system; by utilizing the gasdetection technology, noise from the environment and other absorptive gases absorption were deducted, and then the sensitivity would be improved. Frequency calibration wasdone by analysing the F-P etalon signal recorded from the experimental system.
     ④Design scheme was proposed as distribute feedback quantum cascade laserbased gas spectroscopy detection, then each functional modal was tested and set-up,then the whole experimental system was done. Spectral range, resolution, absorbancerepetition, stability and detection limit were measured based on this system;
     ⑤Take methane (CH4) and formaldehyde (H2CO) as the detection gases, theirspectra were recorded and analysed, then compared with the HITRAN and PGOPHERsimulation, and spectrum parameters were calculated.
     ⑥Specially, detection work of H2CO was done by measuring its absorption lineintensity, pressure broadening coefficient, pressure induced frequency shift and theRapid Passage effect, and the corresponding results were calculated and analysed.
     ⑦The thesis conclusion was done, and then bring forward the existent matters andconsiderations for the future work.
引文
[1] Wikipedia, the free encyclopedia [Z], Quantum cascade laser,2009.
    [2] Elsaesser, Intersuband Transitions in Quantum Structures [J], R. Paiella, Editor. McGrawHill,2006.
    [3] Harrison, P., Quantum Wells, Wires and Dots: Theoretical and Computational Physics ofSemiconductor Nanostructures [M].2nd ed.: Wiley-Interscience,2005.
    [4] Liu, Z., et al., IEEE Photon[J]. Techonol. Lett.,18: p.1347-1349.2006.
    [5] Yisa Rumala, The York Scholar [J], Fall, v.3.2006.
    [6] Mariano Trocoli, Laurent Diehl, David P. Bour, Journal Of Lightwave Technology [J], Vol.26,No.21, November1,2008.
    [7] Borislav Hinkov, Frank Fuchs, Wolfgang Bronner, Klaus K hler, and Joachim Wagner [J],IEEE Journal Of Quantum Electronics, Vol.44, No.11, Nonember,2008.
    [8] A. Tsekoun, A. Lyakh, R. Maulini, M. Lane, T. Macdonald, R. Go, and C. Kumar N. Patel,High power and efficiency quantum cascade laser systems for defense and securityapplications [J], Proc. SPIE, Vol.7325,73250L,2009.
    [9] M. Razeghi, High-power high-wall plug efficiency mid-infrared quantum cascade lasers basedon InP/GaInAs/InAlAs material system [J], Proc. SPIE, Vol.7230,723011,2009.
    [10] Y. Bai, B. Gokden, S. Slivken, S. R. Darvish, S. A. Pour, and M. Razeghi, Mid-infraredquantum cascade lasers with high wall plug efficiency [J], Proc. SPIE, Vol.72,2009.
    [11] F. K. Tittel, D. Richter, and A. Fried: Mid-Infrared Laser Applications in Spectroscopy [J], inSolid-State Mid-Infrared Laser Sources, I. T. Sorokina and K. L. Vodopyanov (Eds.)89,445-510, Springer-Verlag,2003.
    [12] R.F. Curl, F.K. Tittel, Ann. Rep. Prog. Chem [J]. C98,219,2002.
    [13] T. Yanagawa, H. Kanbara, O. Tadanaga, M. Asobe, H. Suzuki, J. Yu-moto, Appl. Phys. Lett [J].86,161106,2005.
    [14] D. Richter, P. Weibring, Appl. Phys. B [J],82,479,2006.
    [15] P. Weibring, D. Richter, A. Fried, J.G. Walega, C. Dyroff, Appl. Phys. B [J],85,207,2006.
    [16] S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho,Appl. Phys. B [J],85,223,2006.
    [17] S.C. Herndon, M.S. Zahniser, D.D. Nelson, J. Shorter, J.B. McManus, R. Jimenez, C. Warneke,J.A. de Gouw, J. Geophys. Res. Atmosph [J].112,1003,2007.
    [18] G. Wysocki, Y. Bakhirkin, S. So, F.K. Tittel, R.Q. Yang, M.P. Fraser, Appl. Opt [J].46,8202,2007.
    [19] R. Maulini, A. Mohan, M. Giovannini, J. Faist, E. Gini, Appl. Phys. Lett [J].88,201113,2006.
    [20] R. Martini, F. Capasso, R. Paiella, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman,R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco,, A. Y. Cho, A. M.Sergent, H. C. Liu, and E. A. Whittaker, Quantum Electronics [J], IEEE Journal of38,511,2002.
    [21]吴玉锋,田彦文,韩元山等.气体传感器研究进展和发展方向[J].计算机测量与控制,2003,11(10):732-733.
    [22]马戎,周王民,陈明.气体传感器的研究及发展方向[J].航空计测技术,2004,(4):1-4.
    [23] J.W.Gardner,M.cole,F.udrea. CMOS Gas sensor and smart devices [J]. Proceedingsof IEEE Sensors,2002,1(1):721-726.
    [24]刘文清,崔志成,刘建国等.大气痕量气体测量的光谱学和化学技术[J].量子电子学报,2004,21(2):206-207.
    [25] F.A.Muhammad,W.Wei.A Reference System for Optical Fiber Sensors.Microwave and opticalTechnology Letters,1995,9(2):80-90.
    [26] Y.Shimose,T.Okamoto,A.Maruyama et al.Remote Sensing of Methane Gas by DifferentialAbsorption Measurement Using a Wavelength Tunable DFB LD [J]. IEEE PhotonicsTechnology Letters,1999,3(1):178-181.
    [27]张景超.光纤光学式甲烷气体传感器的设计与实验研究[D].燕山大学博士学位论文,2006.
    [28] Yoon-Taek Jang,Chang-Hoon Choi, Seung-I/Moon et al. A Novel Micro-GasSensor Using Laterally Grown Carbon Nanotubes[J]. The12th lntemalional Conference onSolid Slate Sensors, Aclualors and Microsyslems,2003,2(3):1363-1366.
    [29] J.Tapia,A.V.Khomenko,R.Cortes-Martinez.High Accurate Fiber with Two-LED Light Source[J]. Optics Communications,2000,177:219-223.
    [30]刘永平.红外技术在煤矿井下测温和测气中的应用[J].红外技术,2000,22(4):59-62.
    [31]安旒英,曾小东.光学传感与测量[M].北京电子工业出版社,2001:99-101.
    [32] G.Keeffe. Development of an LED based Phase Flurimetric Oxygensensor using Evanescent
    [33] Wave Excitation of a Sol-gel Immobilised Dye [J]. Proceedings2nd European Conference onOptical Chemical Sensors and Biosensors.Florence,Italy,1994:19-21.
    [34] B.D.Maccraith.LED based Fibre Optic Oxygen Sensor using Sol-gel Coating [J]. ElectronicsLetters,1994,30(11):888-889.
    [35]薛传薪,周宝虹.新型光离子化检测器[J].分析化学,1980,8(3):288-289.
    [36]撒继铭.光纤CO气体传感器的理论建模及设计实现.[D].武汉华中科技大学,2007:2-10.
    [37]朱明华.仪器分析[M].高等教育出版社(第三版),2002:286.
    [38]张叔良,吴天明.红外光谱分析与新技术[M].上海:中国医药科技出版社,1993.
    [39] Chan.K, H. Ito,H.Inaba. Optical Remote Monitoring of CH4Gas using Low-loss Optical FiberLink and InGaAsp Lighting-emitting Diode in1.33μm Region [J]. AppliedPhysics Letters,1983,43(7):634-63.
    [40] K.Chan,H.Ito,H.Inaba.10km-long Fiber-optic Remote Sensing of CH4Gas by Near InfraredAbsorption [J]. Applied Physics B,1984,38(2):11-15.
    [41] J.P.Dakin,C.A.Wade,D.Pinchbeck.A Novel Optical Fiber Methane Sensor [J]. Proc.SPIE,1987,734:187-190.
    [42]李庆波.利用LED进行甲烷监测的实验研究[D].吉林大学硕士学位论文,2003.5.
    [43] Smith E.Non-dispersive Infrared Gas Analysis has Benefited from Technical Development inRecent Years[J].Laboratory Practice,1992,41(12):15~16.
    [44] C.R.Webster,R.T Menzies,and E.D.Hinkley,"Infrared Laser Absorption: TheoryandApplications"[J] in R.Measures,ed.,Laser Remote Chemical Analysis,7ohnWiley&Sons,Inc.,New York,1994,Vol.127.
    [45]冷逢春.氨气的激光检测[D].吉林大学硕士学位论文,2002.6.
    [46]付松年.光纤气体相关光谱检测的研究[D].厦门大学硕士学位论文,2001.6.
    [47] http://www.InfraTec.de IR Filter and windows [Z].
    [48]邓勃.原子吸收光谱分析的原理、技术和应用[M].北京:清华大学出版社,2004.
    [49] Jong Bin Kim, Young Gon Kim. H2S gas detection through absorption spectroscopy usingtunable diode laser [J]. Communications and Information Technology,2009. ISCIT2009.9thInternational Symposium on.10.1109/ISCIT.2009.5341052.
    [50] Steven Li, Haris Riris, Kenji Numata,etl. Tunable narrow linewidth laser source for a methanelidar [J]. Aerospace Conference,2012IEEE.10.1109/AERO.2012.6187178.
    [51]叶险峰,汤伟中. CH4气体光纤传感器的研究[J].半导体光电,2000,3:218-220.
    [52]阚瑞峰,刘文清,张玉钧等[J].中国激光.Vol.54. No.4.2005.
    [53]孙利群,陈克新,杨怀栋,何庆声[J].应用光学. VOL.33NO.1.2012.
    [54] A. Y. Cho, M. Panishi, I. Hayashi. Molecular beam epitaxy of GaAs, AlxGa1-xAs and GaP [J].Proc. Symp. GaAs and Related Compounds,1970,2:18.
    [55] J. Faist, F. Capasso, D.L. Sivco, C.Sirtori, A.L. Hutchinson and A.Y. Cho [J], Science265,53(1994).
    [56] F. Q. Liu, Y. Z. Zhang, Q. S. Zhanget al..High performance strain-compensated InGaas/InAlAsquantum cascade lasers[J].Semicon. Sci.Technol.,2000,15(12): L44~L46
    [57] J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho.Distributed feedback quantum cascade lasers [J]. Applied Physics Letters,70:2670,1997.
    [58] J. Faist, M. Beck, T. Aellen, and E. Gini. Quantum-cascade lasers based on a boundto-continuum transition [J]. Applied Physics Letters,78:147,2001.
    [59] K. Kennedy, A. B. Krysa, J. S. Roberts, K. M. Groom, R. A. Hogg, D. G. Revin, L. R. Wilson,and J. W. Cockburn. High performance InP-based quantum cascade distributed feedback laserswith deeply etched lateral gratings [J]. Applied Physics Letters,89,2006.
    [60] J. Faist, F. Capasso, C. Sirtoriet al..Vertical transition quantum cascade with Bragg confinedexcited state[J].Appl.Phys. Lett.,1995,66(5):538~540
    [61] A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl.Application of quantum cascade lasers to trace gas analysis [J]. Applied Physics B,90:165,2008.
    [62] A. Z. Li, H. Li, G. Y. Xuet al..Key issues associated with low threshold current density forInP-based quantum cascade lasers[J].J. Crystal Growth,2007,301-302:129~133.
    [63] L. Li, Y. Shao, J. Q. Liuet al..High-power operation of uncoated strain-compensated quantumcascade lasers at4.8μm [J].Chin. Phys. Lett.,2007,24(12):3428~3430.
    [64] A. Z. Li, G. Y. Xu, Y. G. Zhanget al..Low threshold distribution feedback quantum cascadelasers at7.6μm grown by gas source molecular beam epitaxy[J].J. Crystal Growth,2005,278:770~773.
    [65] Liu, Z., et al., IEEE Photon [J]. Techonol. Lett.,18: p.1347-1349.2006.
    [66] Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, and M. Razeghi. Roomtemperature continuous wave operation of quantum cascade lasers with wattlevel opticalpower [J]. Applied Physics Letters,92:101105,2008.
    [67] M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior.Continuous-wave operation of a mid-infrared semiconductor laser at room-temperature [J].Science,295:301,2002.
    [68] Mikhail A. Belkin, Federico Capasso, Feng Xie, Alexey Belyanin, Milan Fischer, AndreasWittmann, and Jerome Faist. Room temperature terahertz quantum cascade laser source basedon intracavity difference-frequency generation [J]. Applied Physics Letters,92:201101,2008a.
    [69] Mikhail A. Belkin, Jonathan A. Fan, Sahand Hormoz, Federico Capasso, S. P. Khanna, M.Lachab, A. G. Davies, and E. H. Linfield. Terahertz quantum cascade lasers with coppermetal-metal waveguides operating up to178k [J]. Optics Express,16:3242,2008b.
    [70] F. Capasso, C. Gmachl, D.L. Sivco, and A.Y. Cho. Quantum cascade lasers [J]. Physics Today,55:34,2002.
    [71] L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Loncar, M. Troccoli, and F. Capasso.High-power quantum cascade lasers grown by low-pressure metalorganic vapor-phase epitaxyoperating in continuous wave above400k [J]. Applied Physics Letters,88:201115,2006a.
    [72] L. Diehl, Benjamin G. Lee, P. Behroozi, M. Loncar, Mikhail A. Belkin, Federico Capasso, T.Aellen, D. Hofstetter, M. Beck, and J. Faist. Microfluidic tuning of distributed feedbackquantum cascade lasers [J]. Optics Express,14:11660,2006b.
    [73] Faist, J.; Capasso, F.; Sirtori, C.; Sivco, D. L.; Hutchinson, A. L.; Cho, A. Y.,Continuous WaveOperation of a Vertical Transition Quantum Cascade Laser above T=80k [J]. Applied PhysicsLetters1995,67,(21),3057-3059.
    [74] Faist, J.; Capasso, F.; Sirtori, C.; Sivco, D. L.; Hutchinson, A. L.; Cho, A. Y.,RoomTemperature Mid-Infrared Quantum Cascade Lasers [J]. Electronics Letters1996,32,(6),560-661.
    [75] Schrenk, W.; Finger, N.; Gianordoli, S.; Hvozdara, L.; Strasser, G.; Gornik, E., etl,Surface-Emitting Distributed Feedback Quantum-Cascade Lasers [J]. Applied Physics Letters2000,77,(14),2086-2088.
    [76] Erwan Normand, Iain Howieson, Michael McCulloch, Paul Black[J], Proc. of SPIE Vol.640264020G1-12.2006.
    [77] J. Barry McManus, Joanne H. Shorter, David, D. Nelson, and Mark S. Zahniser. CompactQuantum Cascade Laser Instrument for Rapid, High Sensitivity Measurements of Trace Gasesin Air [J]. IEEE SENSORS2007Conference.1341-1344,2007.
    [78] A. Kosterev, G. Wysocki, Y. Bakhikin, etc [J]. Appl. Phys. B90,165-176,2008.
    [79] Eve (Wen) Wang, Stephen So, Gerard Wysocki,etl, Optical Sociaty of America [J],OSA/CLEO2011.
    [80] Stefan Welzel, Frank Hempel, Marko Hübner, Norbert Lang, Paul B. Davies and JürgenR pcke, Quantum Cascade Laser Absorption Spectroscopy as a Plasma Diagnostic Tool: AnOverview [J], Sensors2010,10,6861-6900; doi:10.3390/s100706861,2010.
    [81] C.H.Lin, R.Q.Yang, D.Zhang, S.J.Murry, S.S.Pei, A.A.Allerman, and S.R.Krutz,“Type-IIinterband quantum caseade laser at3.8μm,”[J]Electron Lett.33,598-599,(1997).
    [82] Q.K.Yang and A.Z.Li,“Theoretieal estinates for optimal parameters of quantum cascadelasers,”[J] physica E4,239(2999).
    [83] LIU Jun-Qi, CHEN Jian-yan, LIU Feng-qi, WANG Zhan-guo,et al. Terahertz QuantumCascade Laser Operating at2.94THz [J]. CHIN. PHYS. LETT. Vol.27. No.10.107-109.2010.
    [84]王敏,张玉钧,刘建国,阚瑞峰,夏慧,刘文清[J].大气环境与光学学报. Vol.3No.2.Mar.2008.
    [85]汤媛媛,刘文清,张玉钧,刘建国等.基于室温脉冲量子级联激光器的NO气体检测中的光谱处理方法研究[J].物理学报,2010,59(4),2364-2368.
    [86] Bélopolsky, A.,"On an Apparatus for the Laboratory Demonstration of the Doppler-FizeauPrinciple"[J](1901) Astrophysical Journal, vol.13, p.15.
    [87] Press release from NASA's Swift space telescope that is researching gamma-ray bursts:"Measurements of the gamma-ray spectra obtained during the main outburst of the GRB havefound little value as redshift indicators, due to the lack of well-defined features. However,optical observations of GRB afterglows have produced spectra with identifiable lines, leadingto precise redshift measurements."[J],25May2004
    [88] Boston Electronics Corporation,91Boylston Street, Brookline, Massachusetts02445USA[J],Alpes QCL series.
    [89] Faist J, GmachlC, CapassoF,etal. Distributed feedback quantum cascade lasers[J].Appl PhysLett,1997,70(20):2670.
    [90] S. K. Kim, G. Stewart, W. Johnstone, et al. Mode-hop-free single-longitudinal-modeerbium-doped fiber laser frequency scanned with a fiber ring resonator [J].APPLIED OPTICS,1999,38(24):5154-5157.
    [91] Aples QCLlit Boston Electronics Corporation, Single Mode-devices between4.2and11.8μm[Z].
    [92] Faist, Jérome; Claire Gmachl, Frederico Capasso, Carlo Sirtori, Deborah L. Silvco, James N.Baillargeon, and Alfred Y. Cho (May1997)."Distributed feedback quantum cascade lasers"[J].Applied Physics Letters70(20):2670. Bibcode1997ApPhL..70.2670F.
    [93] H.Kogelnik and C.V.Shank,“Coulled-wave theory of distributed feedback lasers”[J],J.APPI.Phys.43,2327-2335(1972).
    [94] J.Faist,F.CaPasso,C.Sirtori,D.L.Siveo,A.L.HutChinson,andA.Y.Cho,“Vertical transitionquantum caseade laser with Bragg confined exeited state,”[J] Appl.Phys.Lett.66(5),538-841,1995.
    [95] Li A-Z, Xu G-Y, Zhang Y-G,et al. Zhnag Low threshold distributed feedback quantumcascade lasers at7.6um grown by gas source molecular beam epitaxy[J].J CrystG row th,2005,278:770-774.
    [96] W.Streifer, RD.Burnham, andD.R.Seifres,“RadiationlossesindistributedfeedbaeklasersandLongitudinalmodeselectio”[J] IEEEJ.Quantum Eleetron. QE-12,737-739(1976).
    [97] W.Streifer, D.R.Seifres, and R.D.Burnham,“TM-mode coupling coeffieients in guided-wavedistributed feedbaek lasers,”[J] IEEEJ.Quantum EleCtron. QE-12,74-78(1976).
    [98] W.Streifer, D.R.Seifres, and R.D.BBurnham,“Analysis of grating-coupled radiation inGaAs:GaAlAs lasers and waveguides,”[J] IEEEJ.Quantum Electron. QE-12,422-428(1976).
    [99] W.Streifer, D.R.Seifres, R.D.Burnham,“Analysis of grating-coupled radiation inGaAlAs lasers and waveguides II,”[J] IEEE J.Quantum Electron. QE-12,494-499(1976).
    [100] W.Streifer, D.R.Seifres, and R.D.BBurnham,“Coupled wave analysis of DFB and DBRlasers,”[J] IEEE J.Quantum Electron.QE-13,134-141(1977).
    [101] Y. Yamamoto, T. Kamiya, and H. Yanai,“Improved coupled mode analysis of corrugatedwaveguides and laser II: TM mode,”[J]IEEE J. Quantum Electron. QE-14,620-624(1978).
    [102] Y. Yamamoto, T. Kamiya, and H. Yanai,“Improved coupled mode analysis of corrugatedwaveguides and lasers,”[J] IEEE J. Quantum Electron. QE-14,245-258(1978).
    [103]祝绍箕,邹海兴,包学诚,郭厚林.衍射光栅[M].机械工业出版社, p316,186.
    [104] J.A.Kong, Electromagnetic Wave Theory[M],2ded., Wiley, NewYork(1990).
    [105]朱明华.仪器分析(第三版)[M].高等教育出版社.2002.
    [106] Jeremy Vanderover, A Mid-Infrared Laser Absorption Sensor for Carbon Monoxide andTemperature Measurements [D]. Thesis submitted to Rensselaer Polytechnic Institute,2010.
    [107] C. PauL, E. AusTin Theoretical analysis of methane gas detection system, using thecomplementary source modulation method of correlation spectroscopy [J]. MeasurementScience and Technology,2004(8):1629-1636.
    [108] R. A. Meyers. Air monitoring, optical spectroscopic methods [J]. Encyclopedia ofenvironmental analysis and remediation,1998:83.
    [109] U. Platt. Differential optical absorption spectroscopy (DOAS)[J]. Edited by Markus W.Sigrist,Chemical Analysis Series,1994,127:27.
    [110] Bodhaine, Barry A., Wood, Norman B., Dutton, Ellsworth G., Slusser, James R., On RayleighOptical Depth Calculations[J], Journal of Atmospheric and Oceanic Technology,1999,16(11):1854-1861.
    [111] Selamet, Ahmet; Arpaci, Vedat S., Rayleigh limit-Penndorf extension[J], International Journalof Heat and Mass Transfer (ISSN0017-9310),1989,32(10):1809-1820.
    [112] A.T. Young, On the Rayleigh-Scattering Optical Depth of the Atmosphere[J], Journal ofApplied eteorology:198020(3):328–330.
    [113]王振亚,李海洋,周士康.激光光谱技术在环境监测中的应用专题系列(II):差分吸收光谱技术在大气污染监测中的应用[R].物理.2001.30(11).699~703.
    [114] Christy Charlton, Quantum Cascade Lasers for Mid-Infrared Chemical Sensing [D], Thesisfrom Georgia Institute of Technology,12.2005.
    [115] Richter, D., Erdelyi, M., Curl, R. F., Tittel, F. K., et al. Field measurements of volcanic gasesusing tunable diode laser based mid-infrared and Fourier transform infrared spectrometers[J].Optics and Lasers in Engineering,37,2-3,171-186,(2002).
    [116] goucher R, Villeneuve B, Breton Moalibrated Fabry-Perot etalon as an absolute frequencyreference for OFDM communications[J]. IEEE Photon Technology. Le1t1992,4(7):801.804.
    [117] L.S. Rothman, I.E.Gordon, A.Barbe, D.ChrisBenner, et al. The HITRAN2008molecularspectroscopic database[S]. Journal of Quantitative Spectroscopy&Radiative Transfer110(2009)533–572.
    [118] Rothman L.S, et al. The HITRAN2004Molecular Spectroscopic Database[J]. Journal ofQuantutative Spectroscopy and Radiative Transfer,2005,96(1):139-204.
    [119] PGOPHER, a Program for Simulating Rotational Structure, C. M. Western[Z], University ofBristol, http://pgopher.chm.bris.ac.uk.
    [120] J. K. G. Watson. J. Chem[J]. Phys.,48(1):181,185,1968.
    [121] J. K. G. Watson. Molec. Phys.[J],15:479,490,1968.
    [122] J. K. G. Watson. J. Chem. Phys.[J],46(5):1935,1949,1967.
    [123] J. K. G. Watson. J. Chem. Phys.[J],48(10):4517,4524,1968.
    [124] J. K. G. Watson. J. Molec. Spectrosc.[J],65:123,133,1977.
    [125] M. McCulloch, G. Duxbury, N. Langford, Mol. Phys.[J]104,2767(2006).
    [126] G. Duxbury, N. Langford, M.T. McCulloch, S. Wright, Mol. Phys.[J]105,741(2007).
    [127] Geoffrey Duxbury, Nigel Langford and Kenneth Hay, Journal of Modern Optics [J], Vol.55,Nos.19–20,10–20November,3293–3303(2008).
    [128] G. Duxbury, N. Langford, M. T. McCulloch, S. Wright, Chem. Soc. Rev[J],34,1,2005.
    [129]董磊,马维光,尹王保,李昌勇,贾锁堂.甲烷气体2v3带R9支吸收强度的精确测量[J].光学学报,第24卷,第5期,2004.
    [130] M. E. Webber,Diode laser measurements of NH3and CO2for combustion and bioreactorapplication[D]. PhD thesis,2001.
    [131] Wolfgang Demtr der, Laser Spectroscopy[M],Volume2,Fourth Edition,2007, p145-157.
    [132] Wolfgang Demtr der, Laser Spectroscopy[M],Volume2,Fourth Edition,2007, p420-430.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700