用户名: 密码: 验证码:
新型磁敏智能软材料(磁流变塑性体)的制备,表征及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变塑性体是一类将微米级软磁性颗粒均匀分散在塑性高聚物基体中制备而成的新型磁敏智能软材料。这种材料在无外加磁场条件下类似于橡皮泥,可以被改变成任意形状且当外力撤去后可以保持其形状不变。由于高聚物基体的塑性特征,磁流变塑性体克服了传统的磁流变液的颗粒沉降问题,同时继承了磁流变液中磁性颗粒可移动的特性。当施加外部磁场后,材料内部的磁性颗粒在磁场力作用下可以沿着磁场方向取向排列,直至形成稳定的具备链状(或柱状)微结构的各向异性材料,且这种链状或柱状颗粒微结构还会沿着新的磁场方向重新排列。当撤去外部磁场之后,链状(或柱状)颗粒微结构可以继续保持在基体中,这又类似于磁流变弹性体中颗粒链可以被固化在基体中的特性。
     磁流变塑性体的出现丰富了磁流变材料的种类,填补了磁流变液和磁流变弹性体之间的空白。磁流变塑性体内部灵活的磁致颗粒取向排列的过程可以极大地改变其磁流变性能,也使其成为研究磁流变机理的理想材料。对磁流变塑性体的磁流变性能和磁致阻抗性能的表征有助于深入地理解磁流变材料微结构演化和宏观物理性能之间的联系,也为这类材料的优化设计打下了基础。此外,在对磁流变塑性体进行系统的表征中还发现了许多独特的物理性能,如磁控阻尼性能,高磁敏性,灵活的颗粒自组织性和优异的自愈性等,这使得磁流变塑性体在缓冲器,阻尼器,传感器等领域具备很大的应用潜力。
     为了了解磁流变塑性体动态力学性能的微结构依赖性,在振荡剪切模式下对磁流变塑性体采用应变幅值扫描和频率扫描。扫描过程中发现了分别由应变幅值和振荡频率引起的非线性现象,并对不同的非线性机理进行了讨论。讨论结果认为,应变幅值引起的非线性是由于微结构被破坏引起的。有意思的是,虽然微结构的破坏会立即对动态力学性能产生影响,但却不会马上导致应变幅值引起的非线性的产生。当应变幅值超过0.1%时,储能模量随应变幅值增加而急剧减小,但当应变幅值超过1%时,明显的非线性才会产生。与角频率的平方成正比的惯性项会导致频率非线性的产生。这种非线性只有当振荡频率大于21.54Hz时从应力应变曲线中才能观察到。当确定了磁流变塑性体的线性粘弹性区间后,我们对其在振荡剪切模式下的磁流变性能进行了系统地表征。颗粒含量为80wt%的各向异性磁流变材料表现出优异的磁控动态力学性能:最高磁致模量达到6.54MPa;相对磁流变效应为532%;相比之前报道的磁流变弹性体,这种材料具备更高的磁流变性能。通过调节外部磁场损耗因子可以从1左右降低到0.03。此外我们还发现磁流变塑性体的动态力学性能受溶剂的影响很大,其在无磁场下物理状态也可以通过调节溶剂的含量实现从类固态向类液态转变。通过分析添加不同含量溶剂的磁流变塑性体之间磁流变性能的巨大差异和磁场作用下颗粒在不同基体中的运动情况对深入地理解颗粒和基体之间的力磁耦合机理并促进类固态磁流变胶的应用都非常有价值。研究磁流变塑性体在剪切模式下的蠕变回复行为可以深入分析其在常应力作用下的变形机理。实验结果说明磁场和温度对磁流变塑性体的时间相关力学性能有很大的影响。特别地,磁流变塑性体的蠕变应变在930mT磁场条件下随着温度的增加而降低,这种现象与无场条件下得出的结论相反。我们提出一个假设来解释磁流变塑性体这种有趣的温度效应。此外我们还发现不同的颗粒分布的磁流变塑性体的蠕变回复曲线也表现出很大的差别,这从另一个角度反映了磁流变塑性体的颗粒预结构化过程。
     之前的研究表明,挤压增强效应会极大地增加磁流变液的屈服应力,研究磁流变材料在挤压模式下的力学性能对于磁流变机理的研究和实际应用都具有很大的意义。然而目前尚未有关于磁流变胶在挤压模式下的力学性能研究的报道。基于此,我们对磁流变塑性体的挤压流动行为(包括准静态压缩拉伸行为和振荡挤压行为)进行了系统地实验研究。结果发现准静态压缩拉伸过程都可以被分成弹性变形,应力松弛和塑性流动三个区间。实验结果表明压缩屈服应力和拉伸屈服应力对磁场,颗粒分布和颗粒含量都十分敏感。由于高分子基体的存在,磁流变塑性体在挤压模式下的屈服应力要高于磁流变液。我们发现磁流变塑性体在振荡挤压模式下的滞回曲线是不对称的,这种不对称性来自于拉伸和压缩行为之间的差异。另外,磁流变塑性体振荡挤压行为也受磁场和颗粒含量的影响,但是颗粒分布对其滞回曲线的影响并不明显。
     电化学阻抗谱方法也是研究材料微结构演化的有效手段,于是我们还用阻抗谱方法研究了磁流变塑性体的磁致微结构机理。通过比较两种不同颗粒分布(各向同性和各向异性)的磁流变塑性体的阻抗谱,提出了一个平衡电路模型来分析不同的阻抗响应。我们发现各向异性的磁流变塑性体的阻抗谱对磁场十分敏感。在磁场作用下,电子扩散效应将被抑制。进一步地,磁流变塑性体在磁场作用下的导电行为为基体中弹性的存在提供了直接证据。另外,我们还研究了颗粒链方向对不同颗粒含量的各向异性磁流变塑性体的导电性的影响。以此为基础,我们发展了一种等效方法来定量地表征磁流变塑性体的各向异性程度。
Magnetorheological plastomer (MRP) is a kind of novel magneto-sensitive smart soft materials by evenly dispersing micrometer sized soft magnetic particles into plastic polymer matrix. MRP is similar to the plasticene in the absence of magnetic field, which can be changed to various shapes and the shapes can be retained after removing the external force. Due to the plasticity of polymer matrix, MRP overcomes the particle settling problem and inherits the moveable characteristics of magnetic particles in conventional MR fluids. When an external magnetic field is applied to MRP, the magnetic particles can move to form chain-like (or column-like) microstructures along with the magnetic field direction, which makes MRP change from isotropic to anisotropic. The particle chains (or columns) will rearrange driven by the magnetic force if the magnetic field direction is changed. After the magnetic field is removed, the chain-like (or column-like) microstructures can still retain in the matrix, which is analogous to the characteristics of MR elastomers that the particle chains can be solidified in the matrix. This flexible particle alignment process can greatly change the magnetorheological performance of MRP, which is very important to the investigation on the magnetorheological mechanism.
     The apearence of MRP enriches the varieties of MR materials, and fills in the gap between MR fluids and MR elastomers. The flexible rearrangement process of particles induced by magnetic field in MRP can ont only change the MR performance, but also make it an ideal material to investigate the MR mechanism. The characterizations on MR properties and magneto-induced impedance properties of MRP are helpful for further understanding the relashionship between microstructure evolution of MR materials and physical properties, in the meantime, laying the foundation of optimal design of MR materials. Furthermore, a lot of unique properties, such as magneto-controllable damping property, high magneto-sensitivity, flexible particle self-assembling property, and excellent self-healing capacity, and so on, have been found when systematically characterizing on MRP, which may enable MRP possesses great application protential in the areas of absorber, damper, and sensor.
     To fully understand the microstructure dependent dynamic mechanical properties of MRP, the strain amplitude sweep and oscillatory frequency sweep were applied to MRP under oscillatory shear rheometry. Nonlinear phenomena induced by strain amplitude and oscillatory frequency were found and the mechanisms for different nonlinearity were discussed, respectively. It is believed that the strain-dependent nonlinearity is attributed to the destruction of microstructure. Interestingly, the destruction of microstructure will not cause strain-dependent nonlinearity immediately, though the dynamic properties are very sensitive to the microstructure alteration of MRP. When the strain amplitude exceeds to0.1%, the storage modulus shows a sharply decreasing trend with the increasing of strain amplitude. However, the nonlinearity appears after the strain amplitude is increased to1%. The inertia item which is proportional to the square of angular frequency will result in frequency-dependent nonlinearity and this nonlinearity can only be found from the strain-stress hysteresis loops when the oscillatory frequency is larger than21.54Hz. After the linear viscoelastic (LVE) range is determined, the magnetorheological properties of MRP under oscillatory shear rheometry were systematically characterized. The anisotropic MRP with80%particle weight fraction shows excellent magneto-controllable dynamic mechanical performance:the maximum magneto-induced storage modulus is6.54MPa, the relative MR effect reaches as high as532%, and the loss factor can be changed from1to0.03by adjusting external magnetic field. We also found that the dynamic mechanical properties of MRP are greatly influenced by the solvent that added in the PU matrix, the physical state of MRP in the absence of magnetic field can also be easily switched from solid-like to liquid-like by adjusting the solvent content. By analyzing the huge differences in magnetorheological performance of MRP with different solvent content and the movements of iron particles in different polymer matrixes under the external magnetic field are valuable for thoroughly understanding the mechanical-magnetic coupling mechanism between magnetic particles and polymer matrix and promoting the application of MR gels. The deformation mechanism under constant shear stress can be further understood by studying the creep and recovery behaviors of MRP. The experimental results suggested that the time-dependent mechanical properties of MRP are highly influenced by the magnetic field and temperature. Especially, the creep strain of MRP trends to decrease with increasing temperature under a930mT magnetic field and this phenomenon is opposite to the results obtained in the absence of magnetic field. Finally, a hypothesis was proposed to explain the interesting temperature effect on the creep behaviors of MRP. In addition, it is found that great discrepancies were presented in creep curves for isotropic and anisotropic MRP, which must be ascribed to the different particle distributions.
     Previous researches indicated squeeze-strengthen effect will greatly enhance the yield stress of MR fluids. The investigation on the mechanical properties of MR materials under squeeze mode is valuable for the study of MR mechanism and practical applications. However, there is no report about the mechanical behaviors of solid-like MR gels under squeeze mode have been found. Therefore, the squeeze flow behaviors (including compressive, tensile, and oscillatory squeezing behaviors) of MRP are systematically investigated. Both compression and tension processes can be classified as elastic deformation region, stress relaxation region, and plastic flow region. The experimental results demonstrate that both yield compressive stress and yield tensile stress are sensitive to magnetic field, particle distribution, and particle concentration. The yield stress of MRP under squeeze mode is higher than that of MR fluids due to the existence of polymer matrix. Asymmetry of hysteresis loop is found under oscillatory squeeze mode and this asymmetry originates from the differences between compressive and tensile behaviors. The oscillatory squeeze behaviors of MRP are also influenced by magnetic field and particle concentration but the influence of particle distribution is not so obvious.
     Electrochemical impedance spectroscopy (EIS) is an effective method to investigate the microstructure evolution of materials, so an impedance spectroscopy (IS) method was employed to investigate the magneto-induced microstructure mechanism of MRP. The IS of MRP with two typical particle distributions (isotropic and anisotropic) were compared and an equivalent circuit model is proposed to analyze to different impedance responses. It was found that the IS of anisotropic MRP is quite sensitive to the magnetic field and the electron diffusion effect will be restricted in the presence of magnetic field. Furthermore, the conduction behavior of MRP in the presence of magnetic field reveals the existence of elasticity in the polymer matrix. The influence of particle chain direction on the conductivity of anisotropic MRP with different particle contents was also investigated. Based on the experimental results, an equivalent method is developed to quantitatively characterize the anisotropy of MRP.
引文
[1]姜德生,RICHARD O C.智能材料器件结构与应用[M].武汉:武汉工业大学出版社,2000.
    [2]杜善义,冷劲松,王殿富.智能材料系统和结构[M].北京:科学出版社,2001.
    [3]姚康德,成国祥.智能材料[M].北京:化学工业出版社,2002.
    [4]CARLSON J D, JOLLY M R. MR fluid, foam and elastomer devices [J]. Mechatronics,2000, 10(4-5):555-569.
    [5]DE VICENTE J, KLINGENBERG D J, HIDALGO-ALVAREZ R. Magnetorheological fluids: a review [J]. Soft Matter,2011,7(8):3701-3710.
    [6]LLOYD J R, HAYESMICHEL M O, RADCLIFFE C J. Internal organizational measurement for control of magnetorheological fluid properties [J]. Journal of Fluids Engineering-Transactions of the ASME,2007,129(4):423-428.
    [7]PHULE PP. Synthesis of level magnetorheological fluids [J]. MRS Bull,1998,23(8):23-25.
    [8]PHULE P P, MIHALCIN M P, GENC S. The role of the dispersed-phase remnant magnetization on the redispersibility of magnetorheological fluids [J]. Journal of Materials Research,1999,14(7):3037-3041.
    [9]LEE C H, JANG M G. Virtual surface characteristics of a tactile display using magneto-rheological fluids [J]. Sensors,2011,11(3):2845-2856.
    [10]HOLM C, WEIS J J. The structure of ferrofluids:a status report [J]. Current Opinion in Colloid and Interface Science,2005,10(3-4):133-140.
    [11]RINALDIC, CHAVES A, ELBORAI S, et al. Magnetic fluid rheology and flows [J]. Current Opinion in Colloid & Interface Science,2005,10(3-4):141-157.
    [12]GOLLWITZER C, KREKHOVA M, LATTERMANN G, et al. Surface instabilities and magnetic soft matter [J]. Soft Matter,2009,5(10):2093-2100.
    [13]LOPEZ-LOPEZ M T, VERTELOV G, BOSSIS G, et al. New magnetorheological fluids based on magnetic fibers [J]. Journal of Materials Chemistry,2007,17(36):3839-3844.
    [14]BELL R C, KARLIJ O, VAVRECK A N, et al. Magnetorheology of submicron diameter iron microwires dispersed in silicone oil [J]. Smart Materials and Structures,2008,17(1):015028.
    [15]PARK B J, FANG F F, CHOI H J. Magnetorheology:materials and application [J]. Soft Matter,2010,6(21):5246-5253.
    [16]SEDLACIK M, PAVLINEK V, SAHA P, et al. Rheological properties of magnetorheological suspensions based on core-shell structured polyaniline-coated carbonyl iron particles [J]. Smart Materials and Structures,2010,19(11):115008.
    [17]CHO M S, LIM S T, JANG I B, et al. Encapsulation of spherical iron-particle with PMMA and its magnetorheological particles [J]. IEEE Transactions on Magnetics,2004,40(4): 3036-3038.
    [18]JANG I B, KIM H B, LEE J Y, et al. Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids [J]. Journal of Applied Physics,2005,97(10):10Q912.
    [19]CHOI J S, PARK B J, CHO M S, et al. Preparation and magnetorheological characteristics of polymer coated carbonyl iron suspensions [J]. Journal of Magnetism and Magnetic Materials, 2006,304(1):E374-E376.
    [20]CHOI H J, PARK B J, CHO M S, et al. Core-shell structured poly(methyl methacrylate) coated carbonyl iron particles and their magnetorheological characteristics [J]. Journal of Magnetism and Magnetic Materials,2007,310(2):2835-2837.
    [21]FANG F F, CHOI H J. Polymeric nanobead coated carbonyl iron particles and their magnetic property [J]. Physica Status Solidi A-Applications and Materials Science,2007,204(12): 4190-4193.
    [22]FANG F F, CHOI H J, SEO Y. Sequential coating of magnetic carbonyliron particles with polystyrene and multiwalled carbon nanotubes and its effect on their magnetorheology [J]. ACS-Applied Materials & Interfaces,2010,2(1):54-60.
    [23]CHIN B D, PARK J H, KWON M H, et al. Rheological properties and dispersion stability of magnetorheological (MR) suspensions [J]. Rheologica Acta,2001,40(3):211-219.
    [24]LIM S T, CHO M S, JANG I B, et al. Magnetorheology of carbonyl-iron suspensions with submicron-sized filler [J]. IEEE Transactions on Magnetics,2004,40(4):3033-3035.
    [25]LIM S T, CHOI H J, JHON M S. Magnetorheological characterization of carbonyl iron-organoclay suspensions [J]. IEEE Transactions on Magnetics,2005,41(10):3745-3747.
    [26]TRENDLER A M, BOSE H. Influence of particle size on the rheological properties of magnetorheological suspensions [J]. Electrorheological Fluids and Magnetorheological Suspensions (ERMR 2004), Proceedings,2005,433-439.
    [27]WERELEY N M, CHAUDHURI A, YOO J H, et al. Bidisperse magnetorheological fluids using Fe particles at nanometer and micron scale [J]. Journal of Intelligent Material Systems and Structures,2006,17(5):393-401.
    [28]LIM S T, CHO M S, JANG I B, et al. Magnetorheological characterization of carbonyl iron based suspension stabilized by fumed silica [J]. Journal of Magnetism and Magnetic Materials,2004,282:170-173.
    [29]IGLESIAS G R, LOPEZ-LOPEZ M T, DURAN J D G, et al. Dynamic characterization of extremely bidisperse magnetorheological fluids [J]. Journal of Colloid & Interface Science, 2012,377:153-159.
    [30]GUERRERO-SANCHEZ C, LARA-CENICEROS T, JIMENEZ-REGALADO E, et al. Magnetorheological fluids based on ionic liquids [J]. Advanced Materials,2007,19(13): 1740-1747.
    [31]CHEN L, GONG X L, LI W H. Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers [J]. Smart Materials and Structures,2007,16(6):2645-2650.
    [32]陈琳.磁流变弹性体的研制及其力学性能的表征[D].合肥:中国科学技术大学,2009.
    [33]BELLAN C, BOSSIS G. Field dependence of viscoelastic properties of MR elastomers [J]. International Journal of Modern Physics B,2002,16(17-18):2447-2453.
    [34]ZHOU G Y. Shear properties of a magnetorheological elastomer [J]. Smart Materials and Structures,2003,12(1):139-146.
    [35]STEPANOV G V, ABRAMCHUK S S, GRISHIN D A, et al. Effect of a homogeneous magnetic field on the viscoelastic behavior of magnetic elastomers [J]. Polymer,2007,48(2): 488-495.
    [36]LI J F, GONG X L, ZHU H, et al. Influence of particle coating on dynamic mechanical behaviors of magnetorheological elastomers [J]. Polymer Testing,2009,28(3):331-337.
    [37]ANDRE S, MATTHIAS M, GARETH J M, et al. Evaluation of highly compliant magneto-active elastomers with colossal magnetorheological response [J]. Journal of Applied Polymer Science,2013,131(2):39793(1-7).
    [38]GONG X L, ZHANG X Z, ZHANG P Q. Fabrication and characterization of isotropic magnetorheological elastomers [J]. Polymer Testing,2005,24(5):669-676.
    [39]CHERTOVICH A V, STEPANOV G V, KRAMARENKO E Y, et al. New composite elastomers with giant magnetic response [J]. Macromolecular Materials and Engineering, 2010,295(4):336-341.
    [40]SHEN Y, GOLNARAGHI M F, HEPPLER G R. Experimental research and modeling of magnetorheological elastomers [J]. Journal of Intelligent Material Systems and Structures, 2004,15(1):27-35.
    [41]GONG X L, CHEN L, LI J F. Study of utilizable magnetorheological elastomers [J]. International Journal of Modern Physics B,2007,21(28-29):4875-4882.
    [42]CHEN L, GONG X L, LI W H. Effect of carbon black on the mechanical performances of magnetorheological elastomers [J]. Polymer Testing,2008,27(3):340-345.
    [43]CHEN L, GONG X L, JIANG W Q, et al. Investigation on magnetorheological elastomers based on natural rubber [J]. Journal of Materials Science,2007,42(14):5483-5489.
    [44]FURUKAWA M, MITSUI Y, FUKUMARU T, et al. Microphase-separated structure and mechanical properties of novel polyurethane elastomers prepared with ether based diisocyanate [J]. Polymer,2005,46(24):10817-10822.
    [45]BOCZKOWSKA A, AWETJAN S F, WROBLEWSKI R. Microstructure-property relationships of urethane magnetorheological elastomers [J]. Smart Materials and Structures, 2007,16(5):1924-1930.
    [46]FUCHS A, ZHANG Q, ELKINS J, et al. Development and characterization of magnetorheological elastomers [J]. Journal of Applied Polymer Science,2007,105(5): 2497-2508.
    [47]BOCZKOWSKA A, AWIETJAN S F. Smart composites of urethane elastomers with carbonyl iron [J]. Journal of Materials Science,2009,44(15):4104-4111.
    [48]WEI B, GONG X L, JIANG W Q. Influence of polyurethane properties on mechanical performances of magnetorheological elastomers [J]. Journal of Applied Polymer Science, 2010,116(2):771-778.
    [49]WU J K, GONG X G, CHEN L, et al. Preparation and characterization of isotropic polyurethane magnetorheological elastomer through in situ polymerization [J]. Journal of Applied Polymer Science,2009,114(2):901-910.
    [50]WU J K, GONG X L, FAN Y C, et al. Anisotropic polyurethane magnetorheological elastomer prepared through in situ polycondensation under a magnetic field [J]. Smart Materials and Structures,2010,19(10):105007.
    [51]WU J K, GONG X L, FAN Y C, et al. Improving the magnetorheological properties of polyurethane magnetorheological elastomer through plasticization [J]. Journal of Applied Polymer Science,2012,123(4):2476-2484.
    [52]MITSUMATA T, OHORI S. Magnetic polyurethane elastomers with wide range modulation of elasticity [J]. Polymer Chemistry,2011,2(5):1063-1067.
    [53]SUN T L, GONG X L, JIANG W Q, et al. Study on the damping properties of magnetorheological elastomers based on cis-polybutadiene rubber [J]. Polymer Testing,2008, 27(4):520-526.
    [54]LOKANDER M, STENBERG B. Improving the magnetorheological effect in isotropic magnetorheological rubber materials [J]. Polymer Testing,2003,22(6):677-680.
    [55]LOKANDER M, STENBERG B. Performance of isotropic magnetorheological rubber materials [J]. Polymer Testing,2003,22(3):245-251.
    [56]ZAJAC P, KALETA J, LEWANDOWSKI D, et al. Isotropic magnetorheological elastomers with thermoplastic matrices:structure, damping properties and testing [J]. Smart Materials and Structures,2010,19(4):045014.
    [57]SHIGA T, OKADA A, KURAUCHI T. Magnetroviscoelastic behavior of composite gels [J]. Journal of Applied Polymer Science,1995,58(4):787-792.
    [58]TIRAFERRI A, CHEN K L, SETHI R, et al. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum [J]. Journal of Colloid and Interface Science,2008,324(1-2):71-79.
    [59]WILSON M J, FUCHS A, GORDANINEJAD F. Development and characterization of magnetorheological polymer gels [J]. Journal of Applied Polymer Science,2002,84(14): 2733-2742.
    [60]FUCHS A, XIN M, GORDANINEJAD F, et al. Development and characterization of hydrocarbon polyol polyurethane and silicone magnetorheological polymeric gels [J]. Journal of Applied Polymer Science,2004,92(2):1176-1182.
    [61]FUCHS A, HU B, GORDANINEJAD F, et al. Synthesis and characterization of magnetorheological polyimide gels [J]. Journal of Applied Polymer Science,2005,98(6): 2402-2413.
    [62]HU B, FUCHS A, HUSEYIN S, et al. Supramolecular magnetorheological polymer gels [J]. Journal of Applied Polymer Science,2006,100(3):2464-2479.
    [63]WEI B, GONG X L, JIANG W Q, et al. Study on the properties of magnetorheological gel based on polyurethane [J]. Journal of Applied Polymer Science,2010,118(5):2765-2771.
    [64]ZRINYI M. Intelligent polymer gels controlled by magnetic fields [J]. Colloid and Polymer Science,2000,278(2):98-103.
    [65]WU J K, GONG X L, FAN Y C, et al. Physically crosslinked poly(vinyl alcohol) hydrogels with magnetic field controlled modulus [J]. Soft Matter,2011,7(13):6205-6212.
    [66]MITSUMATA T, ABE N. Magnetic-field sensitive gels with wide modulation of dynamic modulus [J]. Chemistry Letters,2009,38(9):922-923.
    [67]MITSUMATA T, ABE N. Giant and reversible magnetorheology of carrageenan/iron oxide magnetic gels [J]. Smart Materials and Structures,2011,20(12):124003.
    [68]MITSUMATA T, HONDA A, KANAZAWA H, et al. Magnetically tunable elasticity for magnetic hydrogels consisting of carrageenan and carbonyl iron particles [J]. Journal of Physical Chemistry B,2012,116(40):12341-12348.
    [69]MITSUMATA T, WAKABAYASHI T, OKAZAKI T. Particle dispersibility and giant reduction in dynamic modulus of magnetic gels containing barium ferrite and iron oxide particles [J]. Journal of Physical Chemistry B,2008,112(45):14132-14139.
    [70]MITSUMATA T, KOSUGI Y, OUCHI S. Effect of particles alignment on giant reduction in dynamic modulus of hydrogels containing needle-shaped magnetic particles [J]. Progress on Colloid and Polymer Science,2009,136:163-170.
    [71]AN H N, PICKEN S J, MENDES E. Enhanced hardening of soft self-assembled copolymer gels under homogeneous magnetic fields [J]. Soft Matter,2010,6(18):4497-4503.
    [72]AN H N, PICKEN S J, MENDES E. Nonlinear rheological study of magneto responsive soft gels [J]. Polymer,2012,53(19):4164-4170.
    [73]AN H N, PICKEN S J, MENDES E. Direct observation of particle rearrangement during cyclic stress hardening of magnetorheological gels [J]. Soft Matter,2012,8(48): 11995-12001.
    [74]AN H N, SUN B, PICKEN S J, et al. Long time response of soft magnetorheological gels [J]. Journal of Physical Chemistry B,2012,116(15):4702-4711.
    [75]XUAN S H, ZHANG Y L, ZHOU Y F, et al. Magnetic Plasticine (TM):a versatile magnetorheological material [J]. Journal of Materials Chemistry,2012,22(26):13395-13400.
    [76]KALETA J, LEWANDOWSKI D. Inelastic properties of magnetorheological composites:I. fabrication, experimental tests, cyclic shear properties [J]. Smart Materials and Structures, 2007,16(5):1948-1953.
    [77]ZIELINSKI T G, RAK M. Acoustic absorption of foams coated with MR fluid under the influence of magnetic field [J]. Journal of Intelligent Material Systems and Structures,2010, 21(2):125-131.
    [78]MARANVILLE C W, GINDER J M. Small-strain dynamic mechanical behavior of magnetorheological fluids entrained in foams [J]. International Journal of Applied Electromagnetics and Mechanics,2005,22(1-2):25-38.
    [79]GONG Q C, WU J K, GONG X L, et al. Smart polyurethane foam with magnetic field controlled modulus and anisotropic compression property [J]. RSC Advances,2013,3(10): 3241-3248.
    [80]ZHANG W, GONG X L, XUAN S H, et al. High-performance hybrid magnetorheological materials:preparation and mechanical properties [J]. Industrial & Engineering Chemistry Research,2010,49(24):12471-12476.
    [81]CHOI H J, PARK B O, PARK B J, et al. Soft magnetic carbonyl iron microsphere dispersed in grease and its rheological characteristics under magnetic field [J]. Colloid and Polymer Science,2011,289(4):381-386.
    [82]SAHIN H, WANG X J, GORDANINEJAD F. Temperature dependence of magneto-rheological materials [J]. Journal of Intelligent Material Systems and Structures, 2009,20(18):2215-2222.
    [83]BYROM J, BISWAL S L. Magnetic field directed assembly of two-dimensional fractal colloidal aggregates [J]. Soft Matter,2013,9(38):9167-9173.
    [84]LIU T X, GONG X L, XU Y G, et al. Magneto-induced stress enhancing effect in colloidal suspension of paramagnetic and superparamagnetic particles dispersed in a ferrofluid medium [J]. Soft Matter,2014,10(6):813-818.
    [85]赵晓鹏,尹剑波.电场调控的智能软材料[M].北京:科学出版社,2011.
    [86]KUZHIR P, MAGNET C, BOSSIS G, et al. Rotational diffusion may govern the rheology of magnetic suspensions [J]. Journal of Rheology,2011,55(6):1297-1318.
    [87]LOPEZ-LOPEZ M T, GOMEZ-RAMIREZ A, RODRIGUEZ-ARCO L, et al. Colloids on the frontier of ferrofluids. rheological properties [J]. Langmuir,2012,28(15):6232-6245.
    [88]FANG F F, LIU Y D, CHOI H J, et al. Core-shell structured carbonyl iron microspheres prepared via dual-step functionality coatings and their magnetorheological response [J]. ACS-Applied Materials & Interfaces,2011,3(9):3487-3495.
    [89]FANG F F, KIM J H, CHOI H J. Synthesis of core-shell structured PS/Fe3O4 microbeads and their magnetorheology [J]. Polymer,2009,50(10):2290-2293.
    [90]LI W H, DU H, CHEN G, et al. Viscoelastic properties of MR fluids under oscillatory shear [J]. Smart Structures and Materials 2001:Damping and Isolation,2001,4331:333-342.
    [91]CLARACQ J, SARRAZIN J, MONTFORT J P. Viscoelastic properties of magnetorheological fluids [J]. RheologicaActa,2004,43(1):38-49.
    [92]RAO P V, MANIPRAKASH S, SRINIVASAN S M, et al. Functional behavior of isotropic magnetorheological gels [J]. Smart Materials and Structures,2010,19(8):085019.
    [93]LI W H, DU H, CHEN G, et al. Experimental investigation of creep and recovery behaviors of magnetorheological fluids [J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2002,333(1-2):368-376.
    [94]DE VICENTE J, LOPEZ-LOPEZ M T, GONZALEZ-CABALLERO F, et al. Rheological study of the stabilization of magnetizable colloidal suspensions by addition of silica nanoparticles [J]. Journal of Rheology,2003,47(5):1093-1109.
    [95]SEE H, CHEN R, KEENTOK M. The creep behaviour of a field-responsive fluid [J]. Colloid and Polymer Science,2004,282(5):423-428.
    [96]LI W H, ZHOU Y, TIAN T F, et al. Creep and recovery behaviors of magnetorheological elastomers [J]. Frontiers of Mechanical Engineering in China,2010,5(3):341-346.
    [97]COQUELLE E, BOSSIS G. Mullins effect in elastomers filled with particles aligned by a magnetic field [J]. International Journal of Solids and Structures,2006,43(25-26): 7659-7672.
    [98]VARGA Z, FILIPCSEI G, ZRINYI M. Magnetic field sensitive functional elastomers with tuneable elastic modulus [J]. Polymer,2006,47(1):227-233.
    [99]KALLIO M, LINDROOS T, AALTO S, et al. Dynamic compression testing of a tunable spring element consisting of a magnetorheological elastomer [J]. Smart Materials and Structures,2007,16(2):506-514.
    [100]KOO J H, KHAN F, JANG D D, et al. Dynamic characterization and modeling of magneto-rheological elastomers under compressive loadings [J]. Smart Materials and Structures,2010,19(11):117002.
    [101]MAZLAN S A, EKREEM N B, OLABI A G. An investigation of the behaviour of magnetorheological fluids in compression mode [J]. Journal of Materials Processing Technology,2008,201(1-3):780-785.
    [102]MAZLAN S A, ISSAL A, OLABI A G. Magnetorheological fluids behaviour in tension loading mode [J]. Advanced Materials Research,2008,47-50(Pts 1 and 2):242-245.
    [103]DE VICENTE J, ANTONIO RUIZ-LOPEZ J, ANDABLO-REYES E, et al. Squeeze flow magnetorheology [J]. Journal of Rheology,2011,55(4):753-779.
    [104]RUIZ-LOPEZ J A, HIDALGO-ALVAREZ R, DE VICENTE J. On the validity of continuous media theory for plastic materials in magnetorheological fluids under slow compression [J]. Rheologica Acta,2012,51(7):595-602.
    [105]GUO C Y, GONG X L, XUAN S H, et al. Squeeze behavior of magnetorheological fluids under constant volume and uniform magnetic field [J]. Smart Materials and Structures,2013, 22(4):045020.
    [106]WANG H Y, BI C, ZHANG Z H, et al. An investigation of tensile behavior of magnetorheological fluids under different magnetic fields [J]. Journal of Intelligent Material Systems and Structures,2013,24(5):541-547.
    [107]MIETTA J L, RUIZ M M, ANTONEL P S, et al. Anisotropic magnetoresistance and piezoresistivity in structured Fe3O4-silver particles in PDMS elastomers at room temperature [J]. Langmuir,2012,28(17):6985-6996.
    [108]JOLLY M R, CARLSON J D, MUNOZ B C, et al. The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix [J]. Journal of Intelligent Material Systems and Structures,1996,7(6):613-622.
    [109]GINDER J M, CLARK S M, SCHLOTTER W F, et al. Magnetostrictive phenomena in magnetorheological elastomers [J]. International Journal of Modern Physics B,2002, 16(17-18):2412-2418.
    [110]BEDNAREK S. The giant magnetostriction in ferromagnetic composites within an elastomer matrix [J]. Applied Physics A-Materials Science & Processing,1999,68(1):63-67.
    [111]GUAN X C, DONG X F, OU J P. Magnetostrictive effect of magnetorheological elastomer [J]. Journal of Magnetism and Magnetic Materials,2008,320(3-4):158-163.
    [112]GONG X L, LIAO G J, XUAN S H. Full-field deformation of magnetorheological elastomer under uniform magnetic field [J]. Applied Physics Letters,2012,100(21):211909.
    [113]BOSSIS G, ABBO C, CUTILLAS S, et al. Electroactive and electrostructured elastomers [J]. International Journal of Modern Physics B,2001,15(6-7):564-573.
    [114]TIAN T F, LI W H, DENG Y M. Sensing capabilities of graphite based MR elastomers [J]. Smart Materials and Structures,2011,20(2):025022.
    [115]BICA I. Electroconductive magnetorheological suspensions:production and physical processes [J]. Journal of Industrial and Engineering Chemistry,2009,15(2):233-237.
    [116]LENG J S, LAN X, LIU Y J, et al. Electrical conductivity of thermoresponsive shape-memory polymer with embedded micron sized Ni powder chains [J]. Applied Physics Letters,2008,92(1):014104.
    [117]KONO A, SHIMIZU K, NAKANO H, et al. Positive-temperature-coefficient effect of electrical resistivity below melting point of poly(vinylidene fluoride) (PVDF) in Ni particle-dispersed PVDF composites [J]. Polymer,2012,53(8):1760-1764.
    [118]KCHIT N, LANCON P, BOSSIS G. Thermoresistance and giant magnetoresistance of magnetorheological elastomers [J]. Journal of Physics D-Applied Physics,2009,42(10): 105506.
    [119]WANG X J, GORDANINEJAD F, CALGAR M, et al. Sensing behavior of magnetorheological elastomers [J]. Journal of Mechanical Design,2009,131(9): 091004(1-6).
    [120]ULICNY J C, BALOGH M P, POTTER N M, et al. Magnetorheological fluid durability test-iron analysis [J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2007,443(1-2):16-24.
    [121]ZHANG W, GONG X L, JIANG W Q, et al. Investigation of the durability of anisotropic magnetorheological elastomers based on mixed rubber [J]. Smart Materials and Structures, 2010,19(8):085008.
    [122]ROSENSWEIG RE. Ferrohydrodynamics [M]. New York:Dover publications,1997.
    [123]KLINGENBERG D J, ULICNY J C, GOLDEN M A. Mason numbers for magnetorheology [J]. Journal of Rheology,2007,51(5):883-893.
    [124]BOSSIS G, LEMAIRE E, VOLKOVA O, et al. Yield stress in magnetorheological and electrorheological fluids:a comparison between microscopic and macroscopic structural models [J]. Journal of Rheology,1997,41(3):687-704.
    [125]GINDER J M, DAVIS L C, ELIE L D. Rheology of magnetorheological fluids:models and measurements [J]. International Journal of Modern Physics B,1996,10(23-24):3293-3303.
    [126]BOSSIS G, VOLKOVA O, LACIS S, et al. Magnetorheology:fluids, structures and rheology, ferrofluids [J]. Lecture Notes in Physics,2002,594:202-230.
    [127]JOLLY M R, CARLSON J D, MUNOZ B C. A model of the behaviour of magnetorheological materials [J]. Smart Materials and Structures,1996,5(5):607-614.
    [128]DAVIS L C. Model of magnetorheological elastomers [J]. Journal of Applied Physics,1999, 85(6):3348-3351.
    [129]CHEN L, JERRAMS S. A Theological model of the dynamic behavior of magnetorheological elastomers [J]. Journal of Applied Physics,2011,110(1):013513.
    [130]YIN H M, SUN L Z, CHEN J S. Magneto-elastic modeling of composites containing chain-structured magnetostrictive particles [J]. Journal of the Mechanics and Physics of Solids,2006,54(5):975-1003.
    [131]BUSTAMANTE R, DORFMANN A, OGDEN R W. On variational formulations in nonlinear magnetoelastostatics [J]. Mathematics and Mechanics of Solids,2008,13(8): 725-745.
    [132]CASTANEDA P P, GALIPEAU E. Homogenization-based constitutive models for magnetorheological elastomers at finite strain [J]. Journal of the Mechanics and Physics of Solids,2011,59(2):194-215.
    [133]DANAS K, KANKANALA S V, TRIANTAFYLLIDIS N. Experiments and modeling of iron-particle-filled magnetorheological elastomers [J]. Journal of the Mechanics and Physics of Solids,2012,60(1):120-138.
    [134]GALIPEAU E, CASTANEDA P P. A finite-strain constitutive model for magnetorheological elastomers:magnetic torques and fiber rotations [J]. Journal of the Mechanics and Physics of Solids,2013,61(4):1065-1090.
    [135]RUDYKH S, BERTOLDI K. Stability of anisotropic magnetorheological elastomers in finite deformations:a micromechanical approach [J]. Journal of the Mechanics and Physics of Solids,2013,61(4):949-967.
    [136]HONG W, HAN Y, FAIDLEY L. Coupled magnetic field and viscoelasticity of ferrogel [J]. International Journal of Applied Mechanics,2011,3(2):259-278.
    [137]ZUBAREV A Y. On the theory of the magnetic deformation of ferrogels [J]. Soft Matter, 2012,8(11):3174-3179.
    [138]LIU TX,XUYG, GONG X L, et al. Magneto-induced normal stress of magnetorheological plastomer [J]. AIP Advances,2013,3(8):082122.
    [139]LIU T X, GONG X L, XU Y G, et al. Simulation of magneto-induced rearrangeable microstructures of magnetorheological plastomers [J]. Soft Matter,2013,9(42): 10069-10080.
    [140]OLABI A G, GRUNWALD A. Design and application of magneto-rheological fluid [J]. Materials & Design,2007,28(10):2658-2664.
    [141]KLINGENBERG D J. Magnetorheology:applications and challenges [J]. Aiche Journal, 2001,47(2):246-249.
    [142]HEINE M C, DE VICENTE J, KLINGENBERG D J. Thermal transport in sheared electro-and magnetorheological fluids [J]. Physics of Fluids,2006,18(2):023301.
    [143]DONADO F, CARRILLO J L, MENDOZA M E. Sound propagation in magneto-rheological suspensions [J]. Journal of Physics-Condensed Matter,2002,14(9):2153-2157.
    [144]KORDONSKI W, GOLINI D. Multiple application of magnetorheological effect in high precision finishing [J]. Journal of Intelligent Material Systems and Structures,2002,13(7-8): 401-404.
    [145]LIU J, FLORES G A, SHENG R S. In-vitro investigation of blood embolization in cancer treatment using magnetorheological fluids [J]. Journal of Magnetism and Magnetic Materials, 2001,225(1-2):209-217.
    [146]JOLLY M R, BENDER J W, CARLSON J D. Properties and applications of commercial magnetorheological fluids [J]. Journal of Intelligent Material Systems and Structures,1999, 10(1):5-13.
    [147]GINDER J M, SCHLOTTER W F, NICHOLS M E. Magnetorheological elastomers in tunable vibration absorbers [J]. Smart Structures and Materials 2001:Damping and Isolation, 2001,4331:103-110.
    [148]DENG H X, GONG X L, WANG L H. Development of an adaptive tuned vibration absorber with magnetorheological elastomer [J]. Smart Materials and Structures,2006,15(5): N111-N116.
    [149]LIAO G J, GONG X L, KANG C J, et al. The design of an active-adaptive tuned vibration absorber based on magnetorheological elastomer and its vibration attenuation performance [J]. Smart Materials and Structures,2011,20(7):075015.
    [150]GINDER J M, NICHOLS M E, ELIE L D, et al. Proceedings of SPIE, Smart Structures and Materials 2000:Smart Structures and Integrated Systems, Newport Beach, CA, March 06, 2000 [C]. Bellingham WA, SPIE,2000.
    [151]FARSHAD M, LE ROUX M. A new active noise abatement barrier system [J]. Polymer Testing,2004,23(7):855-860.
    [152]YORK D, WANG X, GORDANINEJAD F. A new MR fluid-elastomer vibration isolator [J]. Journal of Intelligent Material Systems and Structures,2007,18(12):1221-1225.
    [153]BLOM P, KARI L. Smart audio frequency energy flow control by magneto-sensitive rubber isolators [J]. Smart Materials and Structures,2008,17(1):015043.
    [154]BICA I. Magnetoresistor sensor with magnetorheological elastomers [J]. Journal of Industrial and Engineering Chemistry,2011,17(1):83-89.
    [155]STEPANOV G V, SEMERENKO D A, BAKHTIIAROV A V, et al. Magnetoresistive effect in magnetoactive elastomers [J]. Journal of Superconductivity and Novel Magnetism,2013, 26(4):1055-1059.
    [156]XU Z B, GONG X L, LIAO G J, et al. An Active-damping-compensated magnetorheological elastomer adaptive tuned vibration absorber [J]. Journal of Intelligent Material Systems and Structures,2010,21(10):1039-1047.
    [157]NGUYEN V Q, AHMED A S, RAMANUJAN R V. Morphing soft magnetic composites [J]. Advanced Materials,2012,24(30):4041-4054.
    [158]LI Y H, HUANG G Y, ZHANG X H, et al. Magnetic hydrogels and their potential biomedical applications [J]. Advanced Functional Materials,2013,23(6):660-672.
    [159]FUHRER R, ATHANASSIOU E K, LUECHINGER N A, et al. Crosslinking metal nanoparticles into the polymer backbone of hydrogels enables preparation of soft, magnetic field-driven actuators with muscle-like flexibility [J]. Small,2009,5(3):383-388.
    [160]LIU T Y, HU S H, LIU T Y, et al. Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug [J]. Langmuir,2006,22(14):5974-5978.
    [161]FILIPCSEIG, CSETNEKI I, SZILAGYI A, et al. Magnetic field-responsive smart polymer composites [J]. Advances in Polymer Science,2007,206:137-189.
    [162]RAO P V, MANIPRAKASH S, SRINIVASAN S M, et al. Functional behavior of isotropic magnetorheological gels [J]. Smart Materials and Structures,2010,19(8):085019.
    [163]PAN Y, GAO Y, SHI J F, et al. A versatile supramolecular hydrogel of nitrilotriacetic acid (NTA) for binding metal ions and magnetorheological response [J]. Journal of Materials Chemistry,2011,21(19):6804-6806.
    [164]KIM J E, CHOI H J. Magnetic carbonyl iron particle dispersed in viscoelastic fluid and its magnetorheological property [J]. IEEE Transactions on Magnetics,2011,47(10):3173-3176.
    [165]AN H N, PICKEN S J, MENDES E. Nonlinear Theological study of magneto responsive soft gels [J]. Polymer,2012,53(19):4164-4170.
    [166]SCHMIDT A M, MESSING R. Perspectives for the mechanical manipulation of hybrid hydrogels [J]. Polymer Chemistry,2011,2(1):18-32.
    [167]VIOTA J L, DE VICENTE J, DURAN J D G, et al. Stabilization of magnetorheological suspensions by polyacrylic acid polymers [J]. Journal of Colloid and Interface Science,2005, 284(2):527-541.
    [168]HU B, FUCHS A, HUSEYIN S, et al. Atom transfer radical polymerized MR fluids [J]. Polymer,2006,47(22):7653-7663.
    [169]BRIGLEY M, CHOI Y T, WERELEY N M, et al. Magnetorheological isolators using multiple fluid modes [J]. Journal of Intelligent Material Systems and Structures,2007,18(12): 1143-1148.
    [170]LI W H, DU H. Design and experimental evaluation of a magnetorheological brake [J]. International Journal of Advanced Manufacturing Technology,2003,21(7):508-515.
    [171]CHOI S B, HONG S R, SUNG K G, et al. Optimal control of structural vibrations using a mixed-mode magnetorheological fluid mount [J]. International Journal of Mechanical Sciences,2008,50(3):559-568.
    [172]PETROVIC Z S. Polyurethanes from vegetable oils [J]. Polymer Reviews,2008,48(1): 109-155.
    [173]徐培林,张淑琴.聚氨酯材料手册(第二版)[M].北京:化学工业出版社,2011.
    [174]伍金奎.新型聚合物基磁流变材料的制备及其性能研究[D].成都:四川大学,2011.
    [175]MA D Z, WANG M Z, ZHAO M C, et al. Crystallization and melting behavior of the soft and hard segments in poly(ester-ether)s. I. Ethylene oxide-ethylene terephthalate segmented copolymers [J]. Journal of Polymer Science Part B-Polymer Physics,1999,37(21): 2918-2927.
    [176]PETROVIC Z S, JAVNI I, GUO A, et al. Thermal stability of polyurethanes based on vegetable oils [J]. Journal of Applied Polymer Science,2000,77(8):1723-1734.
    [177]WU J K, GONG X L, FAN Y C, et al. Anisotropic polyurethane magnetorheological elastomer prepared through in situ polycondensation under a magnetic field [J]. Smart Materials and Structures,2010,19(10):105007.
    [178]PARK J H, CHIN B D, PARK O O. Rheological properties and stabilization of magnetorheological fluids in a water-in-oil emulsion [J]. Journal of Colloid and Interface Science,2001,240(1):349-354.
    [179]ZHANG W L, CHOI H J. Graphene oxide added carbonyl iron microsphere system and its magnetorheology under applied magnetic fields [J]. Journal of Applied Physics,2012,111(7): 07E724.
    [180]CHHABRA R P. Bubbles, drops, and particles in non-newtonian fluids (2nd edn), chapter 4 [M]. London:Taylor and Francis,2006.
    [181]RANKIN P J, HORVATH A T, KLINGENBERG D J. Magnetorheology in viscoplastic media [J]. RheologicaActa,1999,38(5):471-477.
    [182]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.
    [183]MCKINLEY G H, EWOLDT R H, HOSOIA E. New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear [J]. Journal of Rheology,2008,52(6): 1427-1458.
    [184]AHN K H, CHO K S, HYUN K, et al. A geometrical interpretation of large amplitude oscillatory shear response [J]. Journal of Rheology,2005,49(3):747-758.
    [185]PETEKEDIS G, CARRIER V. Nonlinear rheology of colloidal glasses of soft thermosensitive microgel particles [J]. Journal of Rheology,2009,53(2):245-273.
    [186]WANG S Q, LI X, WANG X R. Nonlinearity in large amplitude oscillatory shear (LAOS) of different viscoelastic materials [J]. Journal of Rheology,2009,53(5):1255-1274.
    [187]HOUGH L A, ISLAM M F, JANMEY P A, et al. Viscoelasticity of single wall carbon nanotube suspensions [J]. Physical Review Letters,2004,93(16):168102(1-4).
    [188]KOBELEV V, SCHWEIZER K S. Nonlinear elasticity and yielding of depletion gels [J]. Journal of Chemical Physics,2005,123(16):164902.
    [189]TONG Z, SUN W X, YANG Y R, et al. Large amplitude oscillatory shear rheology for nonlinear viscoelasticity in hectorite suspensions containing poly(ethylene glycol) [J]. Polymer,2011,52(6):1402-1409.
    [190]NG T S K, MCKINLEY G H, EWOLDT R H. Large amplitude oscillatory shear flow of gluten dough:a model power-law gel [J]. Journal of Rheology,2011,55(3):627-654.
    [191]PETEKIDIS G, RENOU F, STELLBRINK J. Yielding processes in a colloidal glass of soft star-like micelles under large amplitude oscillatory shear (LAOS) [J]. Journal of Rheology, 2010,54(6):1219-1242.
    [192]IHLEMANN J, BESDO D. A phenomenological constitutive model for rubberlike materials and its numerical applications [J]. International Journal of Plasticity,2003,19(7):1019-1036.
    [193]LI W H, ZHOU Y, TIAN T F. Viscoelastic properties of MR elastomers under harmonic loading [J]. RheologicaActa,2010,49(7):733-740.
    [194]LUBARDA V A, BENSON D J, MEYERS M A. Strain-rate effects in rheological models of inelastic response [J]. International Journal of Plasticity,2003,19(8):1097-1118.
    [195]MCKINLEY G H, NG T S K. Power law gels at finite strains:the nonlinear rheology of gluten gels [J]. Journal of Rheology,2008,52(2):417-449.
    [196]BOSSIS G, LEMAIRE E. Yield stresses in magnetic suspensions [J]. Journal of Rheology, 1991,35(7):1345-1354.
    [197]LEMAIRE E, MEUNIER A, BOSSIS G. Influence of the particle-size on the rheology of magnetorheological fluids [J]. Journal of Rheology,1995,39(5):1011-1020.
    [198]GINDER J M, NICHOLS M E, ELIE L D, et al. Magnetorheological elastomers:properties and applications [J]. Smart Structures and Materials 1999:Smart Materials Technologies, 1999,3675:131-138.
    [199]HU Y, WANG Y L, GONG X L, et al. New magnetorheological elastomers based on polyurethane/Si-rubber hybrid [J]. Polymer Testing,2005,24(3):324-329.
    [200]LI W H, CHEN G, YEO S H. Viscoelastic properties of MR fluids [J]. Smart Materials and Structures,1999,8(4):460-468.
    [201]LI W H, DU H J, CHEN G, et al. Nonlinear viscoelastic properties of MR fluids under large-amplitude-oscillatory-shear [J]. Rheologica Acta,2003,42(3):280-286.
    [202]KALETA J, LEWANDOWSKI D, ZIETEK G. Inelastic properties of magnetorheological composites:II. Model, identification of parameters [J]. Smart Materials and Structures,2007, 16(5):1954-1960.
    [203]LAKES R. Viscoelastic materials [M], New York:Cambridge University Press,2009.
    [204]过梅丽.高聚物与复合材料的动态力学热分析[M].北京:化学工业出版社,2002.
    [205]杨挺青,罗文,波徐平,等.黏弹性理论与应用[M].北京:科学出版社,2004.
    [206]WILHELM M, REINHEIMER P, ORTSEEPER M. High sensitivity Fourier-transform rheology [J]. Rheologica Acta,1999,38(4):349-356.
    [207]BOYER T H. The force on a magnetic dipole [J]. American Journal of Physics,1988,56(8): 688-692.
    [208]H. Bose, R. Roder, Magnetorheological elastomers with high variability of their mechanical properties [J]. Journal of Physics:Conference Series,2009,149(1):012090.
    [209]LERNER A A, CUNEFARE K A. Performance of MRE-based vibration absorbers [J]. Journal of Intelligent Material Systems and Structures,2008,19(5):551-563.
    [210]SUN H L, ZHANG P Q, GONG X L, et al. A novel kind of active resonator absorber and the simulation on its control effort [J]. Journal of Sound and Vibration,2007,300(1-2):117-125.
    [211]HOANG N, ZHANG N, DU H. A dynamic absorber with a soft magnetorheological elastomer for powertrain vibration suppression [J]. Smart Materials and Structures,2009, 18(7):074009.
    [212]CHANDRA R, SINGH S P, GUPTA K. Damping studies in fiber-reinforced composites-a review [J]. Composite Structures,1999,46(1):41-51.
    [213]CHEN L, GONG X L, LI W H. Damping of magnetorheological elastomers [J]. Chinese Journal of Chemical Physics,2008,21(6):581-585.
    [214]CASSAGNAU P. Payne effect and shear elasticity of silica-filled polymers in concentrated solutions and in molten state [J]. Polymer,2003,44(8):2455-2462.
    [215]ULICNY J C, GOLDEN M A, NAMUDURI C S, et al. Transient response of magnetorheological fluids:shear flow between concentric cylinders [J]. Journal of Rheology, 2005,49(1):87-104.
    [216]LOPEZ-LOPEZ M T, ZUGALDIA A, GONZALEZ-CABALLERO F, et al. Sedimentation and redispersion phenomena in iron-based magnetorheological fluids [J]. Journal of Rheology, 2006,50(4):543-560.
    [217]LOPEZ-LOPEZ M T, KUZHIR. P, BOSSIS G. Magnetorheology of fiber suspensions. I. experimental [J]. Journal of Rheology,2009,53(1):115-126.
    [218]WU W P, ZHAO B Y, WU Q, et al. The strengthening effect of guar gum on the yield stress of magnetorheological fluid [J]. Smart Materials and Structures,2006,15(4):N94-N98.
    [219]WATANABE H, INOUE T, MATSUMIYA Y. Transient conformational change of bead-spring ring chain during creep process [J]. Macromolecules,2006,39(16):5419-5426.
    [220]BARAI P, WENG G J. Mechanics of creep resistance in nanocrystalline solids [J]. Acta Mechanica,2008,195(1-4):327-348.
    [221]JOSHI Y M. Modeling dependence of creep recovery behavior on relaxation time distribution of aging colloidal suspensions [J]. Industrial & Engineering Chemistry Research, 2009,48(17):8232-8236.
    [222]KRAFT M, MEISSNER J, KASCHTA J. Linear viscoelastic characterization of polymer melts with long relaxation times [J]. Macromolecules,1999,32(3):751-757.
    [223]MAJSZTRIK P W, BOCARSLY A B, BENZIGER J B. Viscoelastic response of nafion. effects of temperature and hydration on tensile creep [J]. Macromolecules,2008,41(24): 9849-9862.
    [224]MUENSTEDT H, KATSIKIS N, KASCHTA J. Rheological properties of poly(methyl methacrylate)/nanoclay composites as investigated by creep recovery in shear [J]. Macromolecules,2008,41(24):9777-9783.
    [225]WU X, SALLACH R E, CAVES J M, et al. Deformation responses of a physically cross-linked high molecular weight elastin-like protein polymer [J]. Biomacromolecules, 2008,9(7):1787-1794.
    [226]OH K, JEMMETT M, DEO M. Yield behavior of gelled waxy oil:effect of stress application in creep ranges [J]. Industrial & Engineering Chemistry Research,2009,48(19): 8950-8953.
    [227]JIA Y, PENG K, GONG X L, et al. Creep and recovery of polypropylene/carbon nanotube composites [J]. International Journal of Plasticity,2011,27(8):1239-1251.
    [228]RIGGLEMAN R A, SCHWEIZER K S, DE PABLO J J. Nonlinear creep in a polymer glass [J]. Macromolecules,2008,41(13):4969-4977.
    [229]AWASTHI V, JOSHI Y M. Effect of temperature on aging and time-temperature superposition in nonergodic laponite suspensions [J]. Soft Matter,2009,5(24):4991-4996.
    [230]BALDEWA B, JOSHI Y M. Delayed yielding in creep, time-stress superposition and effective time theory for a soft glass [J]. Soft Matter,2012,8(3):789-796.
    [231]HILLES H, MONROY F. Dilational creep compliance in Langmuir polymer films [J]. Soft Matter,2011,7(17):7790-7796.
    [232]WHORLOW R W. Rheological techniques [M]. Ellis Horwood,1992.
    [233]FINDLEY W N, LAI J S, ONARAN K. Creep and relaxation of nonlinear viscoelastic materials:with an introduction to linear viscoelasticity [M]. New York:Courier Dover Publications,1989.
    [234]FANCEY K S. A mechanical model for creep, recovery and stress relaxation in polymeric materials [J]. Journal of Materials Science,2005,40(18):4827-4831.
    [235]GOBEAUX F, BELAMIE E, MOSSER G, et al. Power law rheology and strain-induced yielding in acidic solutions of type I-collagen [J]. Soft Matter,2010,6(16):3769-3777.
    [236]GORDANINEJAD F, BREESE D G. Heating of magnetorheological fluid dampers [J]. Journal of Intelligent Material Systems and Structures,1999,10(8):634-645.
    [237]ZSCHUNKE F, RIVAS R, BRUNN P O. Temperature behavior of magnetorheological fluids [J]. Applied Rheology,2005,15(2):116-121.
    [238]ZHANG W, GONG X L, XUAN S H, et al. Temperature-dependent mechanical properties and model of magnetorheological elastomers [J]. Industrial & Engineering Chemistry Research,2011,50(11):6704-6712.
    [239]YANG F Q. Tension and compression of electrorheological fluid [J]. Journal of Colloid and Interface Science,1997,192(1):162-165.
    [240]SEE H, FIELD J S, PFISTER B. The response of electrorheological fluid under oscillatory squeeze flow [J]. Journal of Non-Newtonian Fluid Mechanics,1999,84(2-3):149-158.
    [241]CHU S H, LEE S J, AHN K H. An experimental study on the squeezing flow of electrorheological suspensions [J]. Journal of Rheology,2000,44(1):105-120.
    [242]TIAN Y, ZOU Q. Normalized method for comparing tensile behaviors of electrorheological fluids [J]. Applied Physics Letters,2003,82(26):4836-4838.
    [243]CHOI S B, CHOI H J, CHOI Y T, et al. Preparation and mechanical characteristics of poly(methylaniline) based electrorheological fluid [J]. Journal of Applied Polymer Science, 2005,96(5):1924-1929.
    [244]TANG X, ZHANG X, TAO R, et al. Structure-enhanced yield stress of magnetorheological fluids [J]. Journal of Applied Physics,2000,87(5):2634-2638.
    [245]ZHANG X Z, GONG X L, ZHANG P Q, et al. Study on the mechanism of the squeeze-strengthen effect in magnetorheological fluids [J]. Journal of Applied Physics,2004, 96(4):2359-2364.
    [246]MAZLAN S A, EKREEM N B, OLABI A G. The performance of magnetorheological fluid in squeeze mode [J]. Smart Materials and Structures,2007,16(5):1678-1682.
    [247]MCINTYRE E C, FILISKO F E. Squeeze flow of electrorheological fluids under constant volume [J]. Journal of Intelligent Material Systems and Structures,2007,18(12):1217-1220.
    [248]MAZLAN S A, ISMAIL I, ZAMZURI H, et al. Compressive and tensile stresses of magnetorheological fluids in squeeze mode [J]. International Journal of Applied Electromagnetics and Mechanics,2011,36(4):327-337.
    [249]WANG H Y, BI C, KAN J W, et al. The mechanical property of magnetorheological fluid under compression, elongation, and shearing [J]. Journal of Intelligent Material Systems and Structures,2011,22(8):811-816.
    [250]KULKARNI P, CIOCANEL C, VIEIRA S L, et al. Study of the behavior of MR fluids in squeeze, torsional and valve modes [J]. Journal of Intelligent Material Systems and Structures, 2003,14(2):99-104.
    [251]AHN Y K, HA J Y, YANG B S. A new type controllable squeeze film damper using an electromagnet [J]. Journal of Vibration and Acoustics-Transactions of the ASME,2004, 126(3):380-383.
    [252]WANG J, MENG G, FENG N, et al. Dynamic performance and control of squeeze mode MR fluid damper-rotor system [J]. Smart Materials and Structures,2005,14(4):529-539.
    [253]CARMIGNANI C, FORTE P, RUSTIGHI E. Design of a novel magneto-rheological squeeze-film damper [J]. Smart Materials and Structures,2006,15(1):164-170.
    [254]FARJOUD A, CRAFT M, BURKE W, et al. Experimental investigation of MR squeeze mounts [J]. Journal of Intelligent Material Systems and Structures,2011,22(15):1645-1652.
    [255]GOMEZ-RAMIREZ A, KUZHIR P, LOPEZ-LOPEZ M T, et al. Steady shear flow of magnetic fiber suspensions:theory and comparison with experiments [J]. Journal of Rheology,2011,55(1):43-67.
    [256]LIU X H, CHEN Q Q, LU H. Reaserch on the mechanical property of magnetorheological fluids micro-structure under compression working mode [J]. Optoelectronics and Advanced Materials:Rapid Communications,2013,7,231-239.
    [257]MCINTYRE E C, FILISKO F E. Filtration in electrorheological suspensions related to the Peclet number [J]. Journal of Rheology,2010,54(3):591-603.
    [258]TIAN Y, WEN S Z, MENG Y G. Compressions of electrorheological fluids under different initial gap distances [J]. Physical Review E,2003,67(5):051501.
    [259]CHEN Z Y, TANG X, ZHANG G C, et al. A novel approach of preparing ultrafine magnetic metallic particles and the magnetorheology measurements for suspensions containing these particles." In:Proceedings of the 6th International Conference on ER fluids, MR suspensions and their applications, Yonezawa, July 22-25, ed. by M.Nakano, K.Koyama (World Scientific, Singapore 1998) 1997,486-493.
    [260]PHULE P P, GINDER J M. Synthesis and properties of novel magnetorheological fluids having improved stability and redispersibility [J]. International Journal of Modern Physics B, 1999,13(14-16):2019-2027.
    [261]JIANG F Q, WANG Z W, WU J Y, et al. Magnetorheological materials and their application in shock absorbers." In:Proceedings of the 6th International Conference on ER fluids, MR suspensions and their applications, Yonezawa, July 22-25, ed. by M.Nakano, K.Koyama (World Scientific, Singapore 1998) 1997,494-501.
    [262]FARJOUD A, CAVEY R, AHMADIAN M, et al. Magneto-rheological fluid behavior in squeeze mode [J]. Smart Materials and Structures,2009,18(9):095001.
    [263]STANKOVICH S, DIKIN D A, DOMMETT G H B, et al. Graphene-based composite materials [J]. Nature,2006,442(7100):282-286.
    [264]BICA I. Magnetorheological elastomer-based quadrupolar element of electric circuits [J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials,2010, 166(1):94-98.
    [265]KIMURA T, AGO H, TOBITA M, et al. Polymer composites of carbon nanotubes aligned by a magnetic field [J]. Advanced Materials,2002,14(19):1380-1383.
    [266]ZHU X L, MENG Y G, TIAN Y. Nonlinear pressure-dependent conductivity of magnetorheological elastomers [J]. Smart Materials and Structures,2010,19(11):117001.
    [267]MCLACHLAN D S, BLASZKIEWICZ M, NEWNHAM R E. Electrical-resistivity of composites [J]. Journal of the American Ceramic Society,1990,73(8):2187-2203.
    [268]LENG J S, HUANG W M, LAN X, et al. Significantly reducing electrical resistivity by forming conductive Ni chains in a polyurethane shape-memory polymer/carbon-black composite [J]. Applied Physics Letters,2008,92(20):204101.
    [269]KCHIT N, BOSSIS G. Electrical resistivity mechanism in magnetorheological elastomer [J]. Journal of Physics D-Applied Physics,2009,42(10):105505.
    [270]WOO L Y, WANSOM S, HIXSON A D, et al. A universal equivalent circuit model for the impedance response of composites [J]. Journal of Materials Science,2003,38(10): 2265-2270.
    [271]ZHANG W, DEHGHANI-SANIJ A A, BLACKBURN R S. Carbon based conductive polymer composites [J]. Journal of Materials Science,2007,42(10):3408-3418.
    [272]MCLACHLAN D S. Analytical functions for the dc and ac conductivity of conductor-insulator composites [J]. Journal of Electroceramics,2000,5(2):93-110.
    [273]KCHIT N, BOSSIS G. Piezoresistivity of magnetorheological elastomers [J]. Journal of Physics-Condensed Matter,2008,20(20):204136.
    [274]SEDLACIK M, PAVLINEK V, LEHOCKY M, et al. Plasma-treated carbonyl iron particles as a dispersed phase in magnetorheological fluids [J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2011,387(1-3):99-103.
    [275]SEDLACIK M, MOUCKA R, KOZAKOVA Z, et al. Correlation of structural and magnetic properties of Fe3O4 nanoparticles with their calorimetric and magnetorheological performance [J]. Journal of Magnetism and Magnetic Materials,2013,326:7-13.
    [276]IRVINE J T S, SINCLAIR D C, WEST A R. Electroceramics:characterization by impedance spectroscopy [J]. Advanced Materials,1990,2(3):132-138.
    [277]KATZ E, WILLNER I. Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy:routes to impedimetric immunosensors, DNA-Sensors, and enzyme biosensors [J]. Electroanalysis,2003,15(11):913-947.
    [278]AMIN R, LIN C T, PENG J B, et al. Silicon-doped LiFePO4 single crystals:growth, conductivity behavior, and diffusivity [J]. Advanced Functional Materials,2009,19(11): 1697-1704.
    [279]MUNAR A, SANDSTROM A, TANG S, et al. Shedding light on the operation of polymer light-emitting electrochemical cells using impedance spectroscopy [J]. Advanced Functional Materials,2012,22(7):1511-1517.
    [280]DEREK C S. Characterization of electro-materials using ac impedance spectroscopy [J]. Boletin de la Sociedad Espanola de Ceramicay Vidrio,1995,34:55-65.
    [281]BARSOUKOV E, MACDONALD J R. Impedance spectroscopy theory, experiment, and applications (2nd edn) [M]. New Jersey:John Wiley & Sons,2005.
    [282]MACDONALD J R. Impedance spectroscopy [J]. Annals of Biomedical Engineering,1992, 20:289-305.
    [283]LIAO G J, GONG X L, XUAN S H, et al. Magnetic-field-induced normal force of magnetorheological elastomer under compression status [J]. Industrial & Engineering Chemistry Research,2012,51(8):3322-3328.
    [284]BICA I. Influence of the magnetic field on the electric conductivity of magnetorheological elastomers [J]. Journal of Industrial and Engineering Chemistry,2010,16(3):359-363.
    [285]WAN C H, ZHANG X Z, GAO X L, et al. Geometrical enhancement of low-field magnetoresistance in silicon [J]. Nature,2011,477(7364):304-307.
    [286]GUO Z H, PARK S, HAHN H T, et al. Giant magnetoresistance behavior of an iron/carbonized polyurethane nanocomposite [J]. Applied Physics Letters,2007,90(5): 053111.
    [287]BICA I. The influence of hydrostatic pressure and transverse magnetic field on the electric conductivity of the magnetorheological elastomers [J]. Journal of Industrial and Engineering Chemistry,2012,18(1):483-486.
    [288]BOCZKOWSKA A, AWIETJAN S F, PIETRZKO S, et al. Mechanical properties of magnetorheological elastomers under shear deformation [J]. Composites Part B-Engineering, 2012,43(2):636-640.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700