用户名: 密码: 验证码:
用于双光子显微成像的宽带声光偏转器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经元网络的结构和功能研究对了解大脑的信息处理和整合机制具有非常重要的意义。双光子显微成像技术具有空间分辨率高、成像深度大以及光损伤小等优点,有望为神经元网络研究提供一种重要的研究手段。为了监测神经元网络毫秒级的快速功能信号,需要进一步提高双光子显微成像技术的时间分辨率。声光偏转器作为一种光束扫描器件,扫描过程中不引入机械惯性,具有快速光栅式扫描和随机点扫描等多样性的扫描模式,近年来成为发展快速双光子显微成像技术的一种非常受欢迎的器件。相比于常规的检流计镜扫描,声光偏转器可实现的扫描范围较小,导致双光子显微镜的扫描视场较小,因而限制了对更大神经元网络的研究。本文从增大声光偏转器自身带宽的角度来扩大系统的扫描范围,以获得大视场的双光子显微成像系统。因此,本文围绕发展用于光子显微镜的宽带声光偏转器,从声光偏转器的热效应分析、宽带声光偏转器的设计实现以及基于宽带声光偏转器构建大视场双光子显微成像系统三个部分展开研究。
     (1)分析了声光偏转器的热源,分别研究了超声吸收和换能器发热两部分热源发热功率的计算方法。基于有限元分析软件,建立了声光偏转器热效应的数值分析模型,获得了声光偏转器空间温度分布及随时间变化的温度曲线的仿真结果,并用实验测量结果对仿真结果进行验证,证实了仿真模型的有效性。利用此仿真模型,可以方便地模拟各种复杂的器件结构,评估不同散热措施对应的声光偏转器热效应,这对于指导大功率声光偏转器的热设计是十分有用的。
     (2)通过改进声光偏转器的设计参数,设计实现了波长为840 nm,适用于双光子显微成像的宽带声光偏转器。实验测试结果表明,新器件的3 dB带宽可以达到60MHz,衍射效率为40%-80%,扫描角度范围从原来的47 mrad提高到了74 mrad。为了降低声光晶体对超声的吸收,新器件的工作频率全部低于100 MHz,频带设计打破了商品化器件普遍遵循的一倍频程原则,实践证明这种设计方法是可行的。
     (3)基于以上定制的宽带声光偏转器,搭建了大视场的双光子显微成像系统。从色散补偿、系统光路、硬件和软件控制几部分进行研究,最后测试了系统所达到的成像性能。系统全场的空间分辨率为横向:0.58-2.12μm和纵向:2.17-3.07μm。在没有牺牲空间分辨率的前提下,系统总的扫描角度达到了93 mrad(即5.3°),满足了显微物镜5-6°的可接受入射角要求。40倍物镜下系统的视场可以达到418μm,是常规的基于声光偏转器的双光子显微镜视场的两倍以上,为神经元网络的结构和功能研究提供了一个新的研究平台。
The research on the structure and function of neuronal networks is extremely important for understanding brain's information processing and integration mechanism. Two-photon microscopy (TPM) has the potential to become an important tool for neuronal networks'research, due to its advantages of high spatial resolution, deep penetration, and low photodamage. In order to detect the fast functional signal of neuronal networks at millisecond scale, the temporal resolution of TPM needs to be increased. In recent years, acousto-optic deflector (AOD) has become a popular beam scanner in developing fast scanning TPM, because the acousto-optic scanning does not involve mechanical inertia and can provide versatile scanning modes, such as fast raster scanning and random-access point scanning. Compared with the conventional galvanometer scanner, the scanning range of AOD is smaller, which leads to a small field of view (FOV) of TPM and therefore limits its applications in large neuronal networks. In order to obtain a two-photon microscope with large FOV, the frequency bandwidth will be widened to enlarge the system's scanning range in this thesis. Therefore, this study focuses on the development of wide-band AOD for TPM, and mainly includes three parts:the establishment of the thermal analysis method for AOD, the design and realization of wide-band AOD, and the construction of large FOV TPM based on wide-band AOD.
     (1) The thermal sources of AOD is analyzed which includes acoustic absorption and transducer heating. The methods of calculating heating power of both thermal sources are studied. Based on the finite element analysis (FEA) software, a numerical analyzing model for the thermal effects analysis is built. The spatial temperature distributions in the crystal and the temperature changes over time are acquired. The simulation results are validated by experimental results. Using this model, the device with more complicated structure can be simulated conveniently. The AOD's thermal performance in different heat dissipation schemes can be evaluated, which would be helpful in guiding the thermal design of high-power AOD.
     (2) Wide-band AOD is custom designed by means of improving the device's technical parameters. The new AOD works at 840 nm wavelength which is suitable for TPM. The experimental test results indicate that the 3- dB bandwidth of the new device reaches 60 MHz, and the diffraction efficiency is between 40% and 80%. The scan range increases to 74 mrad from the previous 47 mrad. All the operating frequencies are designed to be lower than 100 MHz to decrease the acoustic absorption. Unlike the commercial products, the bandwidth design in this study does not obey the one-octave principle, which has been proved to be feasible in the practice.
     (3) A TPM system based on the two-dimensional wide-band AODs is built. The research consists of the dispersion compensation, the systematic optical path, the hardware control, and software control. The imaging performances of the system are measured. The spatial resolution across the whole FOV is 0.58-2.12μm laterally and 2.17-3.07μm axially. The total scan range of the system reaches 93 mrad (5.3°), which can basically meet the requirement of 5-6°for most objectives. The FOV is 418μm under 40 X objective, which is more than twice as much as that based on conventional AODs. The AOD-based large FOV two-photon microscope could provide a new platfonn for researches on the structure and function of neural circuits.
引文
[1]Gobel W., Helmchen F. In vivo calcium imaging of neural network function. Physiology,2007,22:358-365.
    [2]Bear M. F., Connors B. W., Paradiso M. A神经科学——探索脑.第二版.王建军(译).北京:高等教育出版社,2004.
    [3]Buzsaki G. Large-scale recording of neuronal ensembles. Nature Neuroscience,2004, 7(5):446-451.
    [4]Lutcke H., Helmchen F. Two-photon imaging and analysis of neural network dynamics. Reports Progress in Physics,2011,74(8):086602.
    [5]Dodt H. U., Leischner U., Schierloh A., et al. Ultramicroscopy:three-dimensional visualization of neuronal networks in the whole mouse brain. Nature Methods,2007, 4(4):331-336.
    [6]Stosiek C., Garaschuk O., Holthoff K., et al. In vivo two-photon calcium imaging of neuronal networks. Proceedings of the National Academy of Sciences of the United States of America,2003,100(12):7319-7324.
    [7]Ohki K., Chung S., Ch'ng Y., et al. Functional imaging with cellular resolution reveals precise microarchitecture in visual cortex. Nature,2005,433(7026):597-603.
    [8]Ikegaya Y., Aaron G., Cossart R., et al. Synfire chains and cortical songs:Temporal modules of cortical activity. Science,2004,304(5670):559-564.
    [9]Cossart R., Aronov D., Yuste R. Attractor dynamics of network UP states in the neocortex. Nature,2003,423(15):283-288.
    [10]Denk W., Strickler J. H., Webb W. W. Two-photon laser scanning fluorescence microscopy. Science,1990,248(4951):73-76.
    [11]Zipfel W. R., Williams R. M., Webb W. W. Nonlinear magic:multiphoton microscopy in the biosciences. Nature Biotechnology,2003,21(11):1369-1377.
    [12]Benninger R. K., Hao M., Piston D. W. Multi-photon excitation imaging of dynamic processes in living cells and tissues. Reviews of Physiology, Biochemistry and Pharmacology,2008,160:71-92.
    [13]Conchello J. A., Lichtman J. W. Optical sectioning microscopy. Nature Methods, 2005,2(12):920-931.
    [14]Xu C., Zipfel W., Shear J. B., et al. Multiphoton fluorescence excitation:New spectral windows for biological nonlinear microscopy. Proceedings of the National Academy of Sciences of the United States of America,1996,93(20):10763-10768.
    [15]Centonze V. E., White J. G. Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal Imaging. Biophysical Journal,1998, 75(4):2015-2024.
    [16]Helmchen F., Denk W. Deep tissue two-photon microscopy. Nature Methods,2005, 2(12):932-940.
    [17]Mainen Z. F., Maletic-Savatic M., Shi S. H., et al. Two-photon imaging in living brain slices. Methods,1999,18(2):231-239.
    [18]Helmchen F., Fee M. S., Tank D. W., et al. A miniature head-mounted two-photon microscope:High-resolution brain imaging in freely moving animals. Neuron,2001, 31(6):903-912.
    [19]Helmchen F., Waters J. Ca2+ imaging in the mammalian brain in vivo. European Journal of Pharmacology,2002,447(2-3):119-129.
    [20]Dombeck D. A., Khabbaz A. N., Collman F., et al. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron,2007,56(1):43-57.
    [21]Squirrell J. M., Wokosin D. L., White J. G., et al. Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nature Biotechnology,1999,17(8):763-767.
    [22]Ustione A., Piston D. W. A simple introduction to multiphoton microscopy. Journal of Microscopy,2011,243(3):221-226.
    [23]Denk W., Svoboda K. Photon upmanship:Why multiphoton imaging is more than a gimmick. Neuron,1997,18(3):351-357.
    [24]Majewska A., Yiu G., Yuste R. A custom-made two-photon microscope and deconvolution system. Pflugers Archiv-European Journal of Physiology,2000, 441(2-3):398-408.
    [25]Svoboda K., Yasuda R. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron,2006,50(6):823-839.
    [26]Theer P., Hasan M. T., Denk W. Two-photon imaging to a depth of 1000 μm in living brains by use of a Ti:Al2O3 regenerative amplifier. Optics Letters,2003,28(12): 1022-1024.
    [27]Ji N., C. M. J., Betzig E. High-speed, low-photodamage nonlinear imaging using passive pulse splliter. Nature Methods,2008,5(2):197-202.
    [28]Hosaka S., Seya E., Harada T., et al. High speed laser beam scanning using an acousto-optical deflector (AOD). Japanese Journal of Applied Physics,1987,26(7): 1026-1030.
    [29]Goldstein S. R., Hubin T., Rosenthal S., et al. A confocal video-rate laser-beam scanning reflected light microscope with no moving parts. Journal of Microscopy, 1990,157(1):29-38.
    [30]Kim K. H., Buehler C., So P. T. C. High-speed, two-photon scanning microscope. Applied Optics,1999,38(28):6004-6009.
    [31]Fan G. Y., Fujisaki H., Miyawaki A., et al. Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons. Biophysical Journal 1999,76(5):2412-2420.
    [32]Nguyen Q. T., Callamaras N., Hsieh C., et al. Construction of a two-photon microscope for video-rate Ca2+ imaging. Cell Calcium,2001,30(6):383-393.
    [33]Masters B. R., So P. T. C. Handbook of Biomedical Nonlinear Optical Microscopy. New York:Oxford University Press,2008.
    [34]Bewersdorf J., Pick R., Hell S. W. Multifocal multiphoton microscopy. Optics Letters, 1998,23(9):655-657.
    [35]Kurtz R., Fricke M., Kalb J., et al. Application of multiline two-photon microscopy to functional in vivo imaging. Journal of Neuroscience Methods,2006,151(2): 276-286.
    [36]Bahlmann K., So P. T. C., Kirber M., et al. Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz. Optics Express,2007,15(17):10991-10998.
    [37]Cheng A., Goncalves J. T., Golshani P., et al. Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing. Nature Methods,2011, 8(2):139-142.
    [38]Nikolenko V., Watson B. O., Araya R., et al. SLM microscopy:scanless two-photon imaging and photostimulation with spatial light modulators. Frontiers in Neural Circuits,2008,2(5):1-14.
    [39]Holekamp T. F., Turaga D., Holy T. E. Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy. Neuron,2008,57(5):661-672.
    [40]Oron D., Tal E., Silberberg Y. Scanningless depth-resolved microscopy. Optics Express,2005,13(5):1468-1476.
    [41]Brakenhoff G. J., Squier J., Norris T., et al. Real-time two-photon confocal microscopy using a femtosecond, amplified Ti.sapphire system. Journal of Microscopy,1996,181(3):253-259.
    [42]Ji N., Shroff H., Zhong H., et al. Advances in the speed and resolution of light microscopy. Current Opinion in Neurobiology,2008,18(6):605-616.
    [43]Katona G., Kaszas A., Turi G. F., et al. Roller coaster scanning reveals spontaneous triggering of dendritic spikes in CA1 interneurons. Proceedings of the National Academy of Sciences of the United States of America,2011,108(5):2148-2153.
    [44]Sadovsky A. J., Kruskal P. B., Kimmel J. M., et al. Heuristically optimal path scanning for high-speed multiphoton circuit imaging. Journal of Neurophysiology, 2011,106(3):1591-1598.
    [45]Lillis K. P., Eng A., White J. A., et al. Two-photon imaging of spatially extended neuronal network dynamics with high temporal resolution. Journal of Neuroscience Methods,2008,172(2):178-184.
    [46]Gobel W., Kampa B. M., Helmchen F. Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nature Methods,2007,4(1):73-79.
    [47]Bullen A., Patel S. S., Saggau P. High-speed, random-access fluorescence microscopy.1. High-resolution optical recording with voltage-sensitive dyes and ion indicators. Biophysical Journal,1997,73(1):477-491.
    [48]Iyer V., Hoogland T. M., Saggau P. Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy. Journal of Neurophysiology,2006, 95(1):535-545.
    [49]Salome R., Kremer Y., Dieudonne S., et al. Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors. Journal of Neuroscience Methods,2006,154(1-2):161-174.
    [50]Otsu Y., Bormuth V, Wong J., et al. Optical monitoring of neuronal activity at high frame rate with a digital random-access multiphoton (RAMP) microscope. Journal of Neuroscience Methods,2008,173(2):259-270.
    [51]Grewe B. F., Langer D., Kasper H., et al. High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nature Methods,2010, 7(5):399-405.
    [52]徐介平.声光器件的原理、设计和应用.北京:科学出版社,1982.
    [53]高希才,董孝义.声光学及其应用讲座:第四讲声光器件用材料.压电与声光,1989,4:65-76.
    [54]Yano T., Kawabuchi M., Fukumoto A., et al. TeO2 anisotropic Bragg light deflector without midband degeneracy. Applied Physics Letters,1975,26(12):689-691.
    [55]Lechleiter J. D., Lin D. T., Sieneart I. Multi-photon laser scanning microscopy using an acoustic optical deflector. Biophysical Journal,2002,83(4):2292-2299.
    [56]Iyer V., Losavio B. E., Saggau P. Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy. Journal of Biomedical Optics, 2003,8(3):460-471.
    [57]Roorda R. D., Hohl T. M., Toledo-Crow R., et al. Video-rate nonlinear microscopy of neuronal membrane dynamics with genetically encoded probes. Journal of Neurophysiology,2004,92(1):609-621.
    [58]Rozsa B., Katona G, Vizi E. S., et al. Random access three-dimensional two-photon microscopy. Applied Optics,2007,46(10):1860-1865.
    [59]Kremer Y, Leger J. F., Lapole R., et al. A spatio-temporally compensated acousto-optic scanner for two-photon microscopy providing large field of view. Optics Express,2008,16(14):10066-10076.
    [60]Li D. R., Zeng S. Q., Lv X. H., et al. Dispersion characteristics of acousto-optic deflector for scanning Gaussian laser beam of femtosecond pulses. Optics Express, 2007,15(8):4726-4734.
    [61]Zeng S. Q., Li D. R., Lv X. H., et al. Pulse broadening of the femtosecond pulses in a Gaussian beam passing an angular disperser. Optics Letters,2007,32(9):1180-1182.
    [62]Li D. R., Lv X. H., Zeng S. Q., et al. Beam spot size evolution of Gaussian femtosecond pulses after angular dispersion. Optics Letters,2008,33(2):128-130.
    [63]Li D. R., Lv X. H., Zeng S. Q., et al. A generalized analysis of femtosecond laser pulse broadening after angular dispersion. Optics Express,2008,16(1):237-247.
    [64]Bi K., Zeng S. Q., Xue S. C., et al. Position of the prism in a dispersion-compensated acousto-optic deflector for multiphoton imaging. Applied Optics,2006,45(33): 8560-8565.
    [65]Li D. R., Li X. H., Wu P., et al. Compensation of temporal dispersion for acousto-optical deflector scanning femtosecond laser. Acta Physica Sinica,2006, 55(9):4729-4733.
    [66]Zeng S. Q., Lv X., Zhan C., et al. Simultaneous compensation for spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism. Optics Letters,2006,31(8):1091-1093.
    [67]Zeng S. Q., Lv X. H., Bi K., et al. Analysis of the dispersion compensation of acousto-optic deflectors used for multiphoton imaging. Journal of Biomedical Optics, 2007,12(2):024015.
    [68]Chen X. W., Leischner U., Rochefort N. L., et al. Functional mapping of single spines in cortical neurons in vivo. Nature,2011,475(7357):501-U597.
    [69]Kaplan A. F. N., Davidson N. Acousto-optic lens with very fast focus scanning. Optics Letters,2001,26(14):1078-1080.
    [70]Vucinic D., Sejnowski T. J. A compact multiphoton 3D imaging system for recording fast neuronal activity. Plos One,2007,2(8):e699.
    [71]Losavio B. E., Iyer V., Saggau P. Two-photon microscope for multisite microphotolysis of caged neurotransmitters in acute brain slices. Journal of Biomedical Optics,2009,14(6):064033.
    [72]Lv X. H., Zhan C., Zeng S. Q., et al. Construction of multiphoton laser scanning microscope based on dual-axis acousto-optic deflector. Review of Scientific Instruments,2006,77(4):046101.
    [73]Liu X. L., Lv X. H., Zeng S. Q., et al. Noncontact and nondestructive identification of neural circuits with a femtosecond laser. Applied Physics Letters,2009,94(6): 061113.
    [74]Reddy G D., Saggau P. Fast three-dimensional laser scanning scheme using acousto-optic deflectors. Journal of Biomedical Optics,2005,10(6):064038.
    [75]Reddy G. D., Kelleher K., Fink R., et al. Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nature Neuroscience,2008,11(6):713-720.
    [76]Kirkby P. A., Srinivas Nadella K. M., Silver R. A. A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy. Optics Express,2010,18(13): 13721-13745.
    [77]Pawley J. B. Handbook of Biological Confocal Microscopy. New York:Springer, 2006.
    [78]Eschler H. Performance limits of acoustooptic light deflectors due to thermal effects. Applied Physics,1976,9:289-306.
    [79]Vilenskii A. V, Lysoi B. G, Cherednichenko O. B. Compensation for the temperature drift of the wavelength adjustment in an acoustooptic spectrophotometer. Quantum Electron,2002,32(3):232-234.
    [80]Goutzoulis A. P., Pape D. R., Kulakov S. V. Design and fabrication of acousto-optic devices. New York:Marcel Dekker Inc.,1994.
    [81]Fox A. J. Thermal design for germanium acoustooptic modulators. Applied Optics, 1987,26(5):872-884.
    [82]Maak P., Takacs T., Barocsi A., et al. Refractive index nonuniformities in acousto-optic devices due to heat production by ultrasound. Optics Communications, 2006,266(2):419-425.
    [83]Maak P., Takacs T., Barocsi A., et al. Thermal behavior of acousto-optic devices: Effects of ultrasound absorption and transducer losses. Ultrasonics,2011,51(4): 441-451.
    [84]Uchida N. Acoustic attenuation in TeO2.Journal of Applied Physics,1972,43(6): 2915-2917.
    [85]陈刚,廖理几.晶体物理学基础.北京:科学出版社,1992.
    [86]Voloshinov V. B., Polikarpova N. V. Acousto-optic investigation of propagation and reflection of acoustic waves in paratellurite crystal. Applied Optics,2009,48(7): C55-C66.
    [87]张朝晖ANSYS热分析教程与实例解析.北京:中国铁道工业出版社,2007.
    [88]White G. K., Collocott S. J., Collins J. G. Thermal properties of paratellurite (TeO2) at low temperatures. Journal of Physics:Condensed Matter,1990,2(37):7715-7718.
    [89]Silvestrova I. M., Pisarevskii Y. V, Foldvari I., et al. Refinement of some optical and acoustic parameters of paratellurite. Physica Status Solidi A,1981,66(1):k55-k58.
    [90]Products datasheet from AA OPTO-ELECTRONIC. http://opto.braggcell.com/uploads/files/DTSX.pdf.
    [91]Gazalet M. G, Carlier S., Picault J. P., et al. Multifrequency paratellurite acoustooptic modulators. Applied Optics,1985,24(24):4435-4438.
    [92]俞宽新,丁晓红,庞兆广.声光原理与声光器件.北京:科学出版社,2011.
    [93]Pal Maak L. J., Attila Barocsi, Peter Richter. Improved design method for acousto-optic light deflectors. Optics Communications,1999,172(1-6):297-324.
    [94]Warner A. W., White D. L., Bonner W. A. Acousto-optic light deflectors using optical activity in paratellurite. Journal of Applied Physics,1972,43(11):4489-4495.
    [95]Nakazawa M., Nakashima T, Kubota H., et al. Efficient optical pulse compression using a pair of Brewster-angled TeO2 crystal prisms. Journal of the Optical Society of America B,1988,5(2):215-221.
    [96]郁道银,谈恒英.工程光学.北京:机械工业出版社,1999.
    [97]大恒光电产品样本http://www.cdhcorp.com.cn/info/201169/20116992835.shtml.
    [98]吕晓华.随机扫描双光子荧光显微成像系统研究:[博士学位论文].华中科技大学;2006.
    [99]Nagayama S., Zeng S. Q., Xiong W. H., et al. In vivo simultaneous tracing and Ca2+ imaging of local neuronal circuits. Neuron,2007,53(6):789-803.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700