用户名: 密码: 验证码:
基于液晶/聚合物光栅的分布反馈式激光器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全息液晶/聚合物光栅是由富聚合物层和富液晶层交替排列形成的一种具有折射率周期性分布的结构。自从1993年被Sutherland首次报道出来后,它得到了极为广泛的关注。全息液晶/聚合物光栅是利用液晶/单体预聚物体系在双光束的干涉光场中曝光形成的,正是由于液晶这种具有光学各向异性和介电各向异性介质的加入,使得全息液晶/聚合物光栅很容易实现电调谐,因此它可以广泛应用于波长分束器、反射式全息显示、光传感系统、全息光学透镜、光学数据存储、光子晶体以及光学计算机等领域。
     而基于全息液晶/聚合物光栅的分布反馈式激光器是将全息液晶/聚合物光栅技术和分布反馈式染料激光器技术相结合所研制出来的一种新型激光器。这种新型的激光器具有许多优良的特性,例如激光输出线宽极窄、激光泵浦阈值很低。更为重要的是,在基于全息液晶/聚合物光栅的分布反馈式激光器中,由于存在着液晶这种介电各向异性材料,因此这种微型激光器很容易实现输出波长的电调谐或者热调谐。因此,基于全息液晶/聚合物光栅的分布反馈式激光器在光纤通讯、可调谐激光器等领域都将有着重大的潜在应用价值。
     然而目前所制备的基于全息液晶/聚合物光栅的分布反馈式激光器仍然具有很多的缺点,例如激光线宽都比较宽,泵浦能量阈值也都较高,更重要的是输出能量以及转化效率很低。这些因素都制约了基于全息液晶/聚合物光栅的应用。为了解决上述问题,本论文进行了如下研究:
     首先研究了研究了激光染料的能级结构和光谱特性,并对基于全息液晶/聚合物光栅的分布反馈式激光器的工作机理进行了探讨。在此基础上进行了基于全息液晶/聚合物光栅的分布反馈式激光器的研制。之后,通过温控仪控制样品的温度,对周期为610nm的染料掺杂全息液晶/聚合物光栅进行激光抽运,探测不同温度下的输出激光光谱,观察到随着温度由20℃升高到140℃,激光器的中心波长由625.8nm减小到613.2nm,产生了12.6nm的波长蓝移。
     对于基于液晶/聚合物光栅的分布反馈式激光器来说,影响激光性能的因素有主要有两方面,一方面是工作物质,即激光染料以及浓度;另一方面,作为基于液晶/聚合物光栅的分布反馈式激光器的核心部件,液晶/聚合物光栅的优劣极大的影响了激光器的性能。因此论文进一步从激光染料的浓度,光栅尺寸、单体材料以及制备温度等方面来探讨改善激光器性能的办法,从而减小激光器的线宽、降低激光器阈值并提高激光器的转化效率。使激光器线宽降低到0.2nm以下,阂值降低到原来的1/21,转化效率也提升了6倍,达到了1.2%。
     最后我们通过实验光路的设计用四光束干涉单次曝光的方法成功制备了全息二维光栅,并在三点实验假设的基础上,从理论上推导出了二维正弦型位相光栅衍射图样的相关公式,根据公式的模拟结果对所制得的光栅相貌和衍射图样进行分析和比较。并研制了基于全息二维液晶/聚合物光栅的光子晶体激光器,得到了低阂值、窄线宽的输出激光,阈值能量约为22.7μJ、激光线宽达到了0.4nm。
The holographic polymer dispersed liquid crystal grating consists of distinct polymer-rich and liquid crystal-rich lamellae that give rise to a periodic refractive index profile。Holographic polymer dispersed liquid crystal (HPDLC) grating have obtained widespread attention since they were first reported by R. L. Sutherland et al. in1993. Through holography, HPDLC gratings are formed by exposuring the mixture of photosensitive monomers and liquid crystals in the hologram forms from the interference of two laser beams. Because of the diffraction efficiency of optical and dielectric anisotropy of liquid crystal, holographic polymer dispersed liquid crystal grating has a distinct advantage that they can be easily tuned electrically or thermally. So holographic polymer dispersed liquid crystal grating can be widely applied in fields such as filter, reflected holographic display, optical sensor system, zoom lens, optical data storage, photon crystal, and optical computer.
     The distributed feedback dye laser based on holographic polymer dispersed liquid crystal grating is a new laser that integrate the technology of holographic polymer dispersed liquid crystal grating and the distributed feedback dye laser.Because of the distinct advantage of the low threshold, narrow linewidth and the wavelength can easily tuned electrically or thermally, the distributed feedback dye laser based on holographic polymer dispersed liquid crystal grating have attracted more and more attention for a wide range of potential application from fiber-optic communication to the tunable laser.
     But, the distributed feedback dye laser based on holographic polymer dispersed liquid crystal grating also has many disadvantages, such as high threshold, broad linewidth and low output energy, which restrict its applications. In order to resolve the problems above, this paper has done the following research:
     Fistly, the energy level structure and the spectral characteristics of the laser dye is studied. And the working mechanism of the distributed feedback dye laser based on holographic polymer dispersed liquid crystal grating is also studied. And the distributed feedback dye laser based on holographic polymer dispersed liquid crystal grating is successfully prepared.Then, we adjust the temperature of the temple and measured the lasing spectra from the DCM-doped holographic polymer dispersed liquid crystal grating with the grating period of610nm。There is an obvious12.6nm-blueshift from625.8nm to613.2nm for the lasing wavelength with the temperature increased from20℃to140℃。
     For the distributed feedback dye laser based on holographic polymer dispersed liquid crystal grating, there are two factors mainly influence the properties of the laser. One is the dye and the concentration of dye, the other is the appearance of the grating. So this paper studys the influence of the concentration of dye, the size of the grating, the prepared temperature to improve the properties of the laser. Then, the linewidth is reduced to0.2nm, and the threshold is also reduced to1/21. The onversion efficiency is increased to1.2%,6times as before.
     In addition, a two-dimensional (2D) electrically-tunable diffraction grating is prepared through single-step exposure experimental setup. Then, a2D diffraction model of phase only grating is constructed and the diffraction equations are obtained based on three hypotheses. At last, the morphologies and electro-optical performance of the2D grating formed by single-step exposure are discussed combined with our theoretical results. All results gotten from2D diffraction model have a good agreement with the experimental data. And we prepares a kind of two-dimensional photonic crystal laser based on holographic polymer dispersed liquid crystals with a threshold energy of about22.7P J, and the full width at half maximum (FWHM) is only0.4nm, which is evidently lower than previously reported.
引文
[1]苏显渝,李继陶.信息光学[M].北京:科学出版社,2003.111-112
    [2]韩昌元.信息光学基础理论及其应用[M].长春:长春出版社,1989.110-123
    [3]U.Schnars, W.Jupter. Digital Holography [M]. Springer,2005.1-34
    [4]A.M. Weber, W.K. Smothers, T.J. Trout, et al. Hologram recording in du Pont's new photopolymer materials, SPIE Proc.[J].1990,1212:30-39
    [5]T. Mizuno, T. Goto, M. Goto, et al. High-efficient multicolor holograms recorded in methylene-blue-sensitized dichromated gelatin, SPIE Proc.[J].1990,1212:40-45.
    [6]S. Chandrasekhar. Liquid Crystals [M]. John Wiley Press,2005.1-11
    [7]T.J. Bunning, L.V.Natarajan, V.P.Tondiglia, et al. Holographic polymer-dispersed liquid crystals, Annu. Rev. Mater. Sci.[J].2000,30:83-115
    [8]R.T.Pogue, R.L.Sutherland, M.G.Schnitt, et al. Electrically switchable Bragg gratings from liquid crystal/polymer composites, Appl. Spectro.[J].2000,54: 12A-28A
    [9]R.J.Collier著,盛尔镇译.全息光学[M].机械工业出版社,1983:77
    [10]梁柱.高级光学教程[M].长春光机所内部讲义,2005:67
    [11]刘思敏,许京军,郭儒.相干光学原理及应用[M].南开大学出版社,2001:106.
    [12]J.L.Fergason. Polymer encapsulated nematic liquid crystals for display and light control applications, SID Int. Symp. Dig. Technol. [C].1985,16:68-70
    [13]J.W.Doane, N.A.Vaz, B.G.Wu., et al. Field controlled light scattering from nematic microdroplets, Appl. Phys. Lett. [J].1986,48:269-271
    [14]M.Mucha, E.Nastal. Complex study of reorientational dynamics of the liquid crystal in PDLC films, Liq. Cryst. [J].1997,23:749-758
    [15]E.Nastal, E.Zuraoska, M.Mucha. Effect of curing progress on the electrooptical and switching properties of PDLC system, J. Appl. Polym. Sci. [J].1999,71:455-463
    [16]M.Mucha. Response time measurements of liquid crystal dispersed in polyester resin film, J. Appl. Polym. Sci. [J].1991,43:175-182
    [17]R.L.Sutherland, V.P.Todiglia, L.V.Natarajan, et al. Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid crystal planes, Chem. Mater. [J].1993,5:1533-1538
    [18]G.W.Smith, N.A.Vaz, The relationship between formation kinetics and microdroplet size of epoxy-based polymer-dispersed liquid crystal, Liq. Cryst.,1988, 3:543-571
    [19]N.A.Vaz, Jr.G.P.Montgomery. Refractive indices of polymer-dispersed liquid crystal film materials:epoxy based systems, J. Appl. Phys. [J].1987,62:3161-3172
    [20]C.Shen, T.Kyu. Spinodals in a polymer dispersed liquid crystal, J. Chem. Phys. [J].1995,102:556-562
    [21]H.W.Chiu, T.Kyu. Equilibrium phase behavior of nematic mixture, J. Chem. Phys. [J].1995,103:7471-7481
    [22]T.Kyu, H.W.Chiu. Phase equilibria of a polymer-smectic-liquid-crystal mixture, Phys. Rev. E[J].1996,53:3618-3622
    [23]D.Nwabunma, K.J.Kim, Y.Lin, et al. Phase diagram and photopolymerization behavior of mixtures of UV-curable multifunctional monomer and low molar mass namatic liquid crystal, Macromolecules [J].1998,31:6806-6812
    [24]Z.Lin, H.Zhang, Y.Yang. Phase diagrams of mixtures of flexible polymers and nematic liquid crystals in a field, Phys. Rev. E [J].1998,58,5867-5872
    [25]S.Meng, T.Kyu, L.V.Natarajan, et al. Holographic photopolymerization induced phase separation in reference to the phase diagram of a mixture of photocurable monomer and nematic liquid crystal, Macromolecules [J].2005,38:4844-4854
    [26]W.R.Burghardt. Phase diagrams for binary polymer systems exhibiting both crystallization and limited liquid-liquid miscibility, Macromolecules [J].1989,22: 2482-2486
    [27]T.Kyu, J.H.Lee. Nucleation initiated spinodal decomposition in a polymerizing system, Phys. Rev. Lett. [J].1996,76:2746-3749
    [28]T.Kyu, D.Nwabunma, H.W.Chiu. Theoretical simulation of holographic polymer-dispersed liquid crystal films via pattern photopolymerization-induced phase separation, Phys. Rev. E[J].2001,63:061802-1-061802-8
    [29]C.C.Bowley, G.P.Crawford. Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials, Appl. Phys. Lett. [J].2000,76: 2235-2237
    [30]K.K.Vardanyan, J.Qi, J.N.Eakin, et al. Polymer scaffolding model for holographic polymer-dispersed liquid crystals, Appl. Phys. Lett. [J].2002,81: 4736-4738
    [31]J.Qi, L.Li, M.D.Sarkar, et al. Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystal, J. Appl. Phys. [J].2004,96:2443-2450
    [32]R.L Sutherland.. Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model, J. Opt. Soc. Am. B [J].2002,19:2995-3003
    [33]R.L.Sutherland, V.P.Tondiglia, L.V.Natarajan, et al. Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures, J. Appl. Phys. [J].2004,96:951-965
    [34]R.L Sutherland., V.P.Tondiglia, L.V.Natarajan, et al. Coherent diffraction and random scattering in thiol-ene-based holographic polymer-dispersed liquid crystal reflection gratings, J. Appl. Phys. [J].2006,99:123104-1-123104-12
    [35]R.Caputo, L.D.Sio, A.Veltri. POLICRYPS switchable holographic grating:A promising grating electro-optical pixel for high resolution display application, J. Disp. Tech. [J].2006,2:38-51
    [36]A.Veltri, R.Caputo, C.Umeton, et al. Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials, Appl. Phys. Lett. [J].2004,84:3492-3494
    [37]G.Zhao, P.Mouroulis. Diffusion model of hologram formation in dry photopolymer m aterials, J. Mod. Opt. [J].1994,41:1929-1939
    [38]G.Zhao, P.Mouroulis. Extension of a diffusion model for holographic photopolymers, J. Mod. Opt. [J].1995,42:2571-2573
    [39]V.L.Colvin, R.GLarson, A.L.Harris. Quantitative model of volume hologram formation in photopolymers, J. Appl. Phys. [J].1997,81:5913-5923
    [40]S.Piazzolla, B.K.Jenkins. Holographic grating formation in photopolymers, Opt. Lett. [J].1996,21:1075-1077
    [41]S.Massenot, J.L.Kaiser, R.Chevallier, et al. Study of the dynamic formation of transmission gratings recorded in photopolymers and holographic polymer-dispersed liquid crystals, Appl. Opt. [J].2004,43:5489-5497
    [42]R.Bhargava, S.Q.Wang, J.L.Koenig. Studying polymer-dispersed liquid crystal formation by FTIR spectroscopy.1. Monitoring curing reactions, Macromolecules [J].1999,32:8982-8988
    [43]R.Bhargava, S.Q.Wang, J.L.Koenig. Studying polymer-dispersed liquid crystal formation by FTIR spectroscopy.2. Phase separation and ordering, Macromolecules [J].1999,32:8989-8995
    [44]R.Bhargava, S.Q.Wang, J.L.Koenig. FTIR imaging studies of a new two-step process to produce polymer dispersed liquid crystals, Macromolecules [J].1999,32: 2748-2760
    [45]T.J.Bunning, L.V.Natarajan, V.P.Tondiglia. et al. Effect of gel-point versus conversion on the real-time dynamics of holographic polymer-dispersed liquid crystal (HPDLC) formation, SPIE Proc. [C].2003,5213:123-129
    [46]T.J.White, L.V.Natarajan, V.P.Tondiglia. Polymerization kinetics and monomer functionality effects in thiol-ene polymer dispersed liquid crystals, Macromolecules [J].2007,40:1112-1120
    [47]T.J.White, L.V.Natarajan, V.P.Tondiglia. Polymerization kinetics and monomer functionality effects in thiol-ene holographic polymer dispersed liquid crystals, Macromolecules [J].2007,40:1121-1127
    [48]D.E.Lucchetta, L.Criante, F.Simoni. Optical characterization of polymer dispersed liquid crystals for holographic recording, J. Appl. Phys. [J].2003,93: 9669-9674
    [49]R.SJustice, D.W.Schaefer, R.A.Vaia. Interface morphology and phase separation in polymer-dispersed liquid crystal composites, Polymer [J].2005,46: 4465-4473
    [50]N.J.Crawford, M.D.Dadmun, T.J.Bunning, et al. Time-resolved light scattering of the phase separation in polymer-dispersed liquid crystals formed by photo-polymerization induced phase separation, Polymer [J].2006,47:6311-6321
    [51]S.Wacharawichanant, S.Thongyai, S.Tanodekaew, et al. Spinodal decomposition as a probe to measure the effects on molecular motion in poly(styrene-co-acrylonitrile) and poly(methyl methacrylate) blends after mixing with a low molar mass liquid crystal or commercial lubricant, Polymer [J].2004,45:2201-2209
    [52]A.Fontecchio,C.C.Bowley,G.P.Crawfor. Improvement in holographically-formed polymer dispersed liquid crystal performance through acrylated monomer functionality studies, SPIE Proc. [C].1999,3800:36-44
    [53]R.T.Pogue, L.V.Natarajan, S.A.Siwechi, et al. Monomer functionality effects in the anisotropic phase separation of liquid crystals, Polymer [J].2000,41:733-741
    [54]M.S.Park, B.K.Kim, J.C.Kim. Reflective mode of HPDLC with various structure of polyurethane acrylates, Polymer [J].2003,44:1595-1602
    [55]M.S.Park, B.K.Kim. Transmission holographic gratings produced using networked polyurethane acrylates with various functionalities, Nanotechnology [J].2006,17:2012-2017
    [56]刘永刚,马骥,宋静等.单体平均官能度对制备液晶/聚合物光栅的影响,液晶与显示[J].2005,20:210-214
    [57]马骥.液晶/聚合物光栅的制备研究,中科院长春光机所博士学位论文[D].2006,75-87
    [58]M.D.Schulte, S.J.Clarson, L.V.Natarajan, et al. The effect of fluorine-substituted acrylate monomers on the electro-optical and morphological properties of polymer dispersed liquid crystals, Liq. Cryst. [J].2000,27:467-475
    [59]M.D.Schulte, S.J.Clarson, L.V.Natarajan, et al. Polymer-dispersed liquid crystals:Effect of partial matrix fluorination on polymer bead-based morphology, Mol. Cryst. Liq. Cryst. [J].2002,373:155-180
    [60]M.D.Sarkar, J.Qi, GP.Crawford. Influence of partial matrix fluorination on morphology and performance of HPDLC transmission gratings, Polymer [J].2002, 43:7335-7344
    [61]J.Klosterman, L.V.Natarajan, V.P.Tondiglia, et al. The influence of surfactant in reflective HPDLC gratings, Polymer [J].2004,45:7213-7218
    [62]Y.J.Liu, X.W.Sun, H.T.Dai, et al. Effect of surfactant on the electro-optical properties of holographic polymer dispersed liquid crystal Bragg gratings, Opt. Mater. [J].2005,27:1451-1455
    [63]J.A.Jung, B.K Kim., J.C.Kim. Effect of ologomeric surface modifying agent on electro-optical properties of polymer dispersed liquid crystal, Euro. Polym. J. [J].2006,42:2667-2671
    [64]S.T.Wu, T.S.Mo, A.Y.Fuh, et al. Polymer-dispersed liquid crystal holographic gratings doped with a high-dielectric-anisotropy dopant, Jpn. J. Appl. Phys. [J].2001, 40:6441-6445
    [65]宋静,郑致刚,刘永刚等.含氟材料对全息聚合物分散液晶Bragg光栅电光特性的影响,液晶与显示[J].2006,21:443-446
    [66]T.J.White, W.B.Liechty, L.V.Natarajan, et al. The influence of N-vinyl-2-pyrrolidinone in polymerization of holographic polymer dispersed liquid crystals (HPDLCs), Polymer [J].2006,47:2289-2298
    [67]T.M.Roper, T.Kwee, T.Y.Lee, et al. Photopolymerization of pigmented thiol-ene systems, Polymer [J].2004,45:2921-2929
    [68]J.M.Wofford, L.V.Natarajan, V.P.Tondiglia, et al. Holographic polymer dispersed liquid crystal (HPDLC) transmission gratings formed by visible light initiated thiol-ene photopolymerization, SPIE Proc. [J].2006,6332:63320Q
    [69]A.F.Senyurt, G.Warren, J.B.Whitehead Jr. Matrix physical structure effect on the electro-optic characteristics of thiol-ene based H-PDLC films, Polymer [J].2006,47: 2741-2749
    [70]T.J.White, L.V.Natarajan, V.P.Tondiglia, et al. Holographic polymer dispersed liquid crystals (HPDLCs) containing triallyl isocyanurate monomer, Polymer [J].2007,48:5979-5987
    [71]Y.H.Cho, Y.Kawakami. High performance holographic polymer dispersed liquid crystal systems using multi-functional acrylates and siloxane-containing epoxides as matrix components, Appl. Phys. A:Mater. Sci. Proc. [J].2006,83:365-375
    [72]J.H.Ryu, S.G.Lee, J.B.Nam. Influence of SMA content on the electro-optical properties of polymer-dispersed liquid crystal prepared by monodisperse poly(MMA-co-SMA)/LC microcapsules, Euro. Polym. J. [J].2007,43:2127-2134
    [73]H.W.Ren, S.T.Wu. Tunable electronic lens using a gradient polymer network liquid crystal, Appl. Phys. Lett. [J].2003,82:22-24
    [74]V.V.Presnyakov, K.E.Asatryan, T.V.Galstian, et al. Polymer-stabilized liquid crystal for tunable microlens applications, Opt. Express [J].2002,10:865-870
    [75]J.H.Lee, S.J.Lee, J.B.Song, et al. Fabrication of bifocal holographic lenses using holographic polymer dispersed liquid crystal film, SPIE Proc. [C].2003,5216: 237-246
    [76]Y.J.Liu, X.W.Sun, P.Shum, et al. Tunable fly's-eye lens made of patterned polymer-dispersed liquid crystal, Opt. Express [J].2006,14:5634-5639
    [77]H.W.Ren, Y.H.Fan, Y.H.Lin, et al. Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets, Opt. Comm. [J].2005,247: 101-106
    [78]Y.H.Fan, H.W.Ren, S.T.Wu. Switchable Fresnel lens using polymer-stabilized liquid crystals, Opt. Express [J].2003,11:3080-3086
    [79]S.T.Wu, A.Y.Fuh. Electrical-frequency switchable multi-domain polymer dispersed liquid crystal Bragg mirror, Jpn. J. Appl. Phys. [J].2006,45:7011-7016
    [80]S.T.Wu, A.Y.Fuh. Two-dimensional diffraction grating based on polymer dispersed liquid crystals, Jpn. J. Appl. Phys. [J].2004,43:7077-7082
    [81]Z.Zheng, J.Song, Y.Liu, et al. Single-step exposure for two-dimensional electrically-tunable diffraction grating based on polymer dispersed liquid crystal, Liq. Cryst. [J].2008,35:489-499
    [82]马骥,刘永刚,于涛等.全息法制备二维电调谐聚合物/液晶光栅,液晶与显示[J].2005,20:115-118
    [83]Y.J.Liu, X.W.Sun. Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element, Appl. Phys. Lett. [J].2006,89: 171101-1-171101-3
    [84]S.P.Gorkhali, J.Qi, G.P.Crawford. Electrically switchable mesoscale Penrose quasicrystal structure, Appl. Phys. Lett. [J].2005,86:011110-1-011110-3
    [85]X.H.Sun, X.M.Tao, T.J.Ye, et al. Optics design and fabrication of 3D electrically switchable hexagonal photonic crystal, Appl. Phys. B:Lasers and Optics [J].2007, 87:65-69
    [86]X.H.Sun, X.M.Tao, T.J.Ye, et al.2D and 3D electrically switchable hexagonal photonic crystal in the ultraviolet range, Appl. Phys. B:Lasers and Optics [J].2007, 87:267-271
    [87]S.Shoji, S.Kawata. Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin, Appl. Phys. Lett. [J].2000,76:2668-2670
    [88]W.Y.Cao, A.Munoz, Palffy-Muhoray P., et al. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase Ⅱ, Nature materials [J].2002,1: 111-113
    [89]R.Jakubiak, T.J.Bunning, R.A.Vaia, et al. Electrically switchable one-dimensional polymetric resonators from holographic photopolymerization:A new approach for active photonic bandgap materials, Adv. Mater. [J].2003,15:241-244
    [90]D.E.Lucchetta, L.Criante, O.Francescangeli, et al. Light amplification by dye-doped holographic polymer dispersed liquid crystals, Appl. Phys. Lett. [J].2004, 84.4893-4895
    [91]Y.J.Liu, X.W.Sun, P.Shum. Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings, Appl. Phys. Lett. [J].2006,88:061107-1-061107-3
    [92]K.S.Hsiao Vincent, C.Lu, GS.He, et al. High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures, Opt. Express [J].2005,13:3787-3794
    [93]Z.Xin, J.Cai, G.Shen, et al. A dynamic gain equalizer based on holographic polymer dispersed liquid crystal gratings, Opt. Comm. [J].2006,268:79-83
    [94]J.Shi, K.S.Hsiao Vincent, T.R.Walker. Humidity sensing based on nanoporous polymeric photonic crystals, Sensor Actuat B:Chem. [J].2007,129:391-396
    [95]C.Sanchez, M.J.Escuti, C.Heesch, et al. An efficient illumination system for liquid crystal displays in incorporating an anisotropic hologram, Appl. Phys. Lett. [JJ.2005,87:094101-1-094101-3
    [96]M.Date, Y.Takeuchi, K.Kato. A memory-type holographic polymer dispersed liquid crystal (HPDLC) reflective display device, J. Phys. D:Appl. Phys. [J].1998, 31:2225-2230
    [97]C.V.Shank,J.E.Bjorkholm,H.Kogelnik[J]. Appl. Phys. Lett.,1971,18:395
    [98]H. Kogelnik, C.V.Shank, "Couple-wave theory of distributed feedback lasers[J]. Appl. Phys. Lett.,1972,43:2327
    [99]J.E.Bjorkholm, C.V.Shank.Appl. Phys. Lett. [J].1972.20,3065
    [100]J.E.Bjorkholm, C.V.Shank, IEEE J.Quantun Electronics,1972,QE-8,833
    [101]R.L.Fork,K.R.German,E.A.Chandross,Appl. Phys. Lett. [J].1972,20,139
    [102]Y.Aoyagi,T.Aoyagi,K.Toyoda,S.Namba,Appl. Phys. Lett. [J].1975,27,687
    [103]Z.Bor, A.Muller Pico-second distributed feedback dye laser[J]. IEEE Journal of Quantum Electronics,1986,22(8):1524-1533
    [104]Z.Bor, A.Muller, B.Racz.UV and blue picosecond pulse generation by a nitrogenr-laser-pumped distributed feedback dye laser [J]. Opt. Commun., 1982,40(4):294-296
    [105]Z.Bor.Intrapulse thermally induced wavelength shift in a distributed feedback dye laser[J]. Appl Phys,1979,19:39-41
    [106]J.Jasny,Rev.Sci.Instrum,1986,57,1303
    [107]A.Yariv, IEEE J.Quantun Electronics,1973,QE-9,919
    [108]S.R.Chinn,Opt.Commun.,976,19,208
    [109]F.K.Kneubuhl,E.Affolter,J.Optics,1980,11,449
    [110]E.Affolter, F.K.Kneubuhl, IEEE J.Quantun Electronics,1981,QE-17,1115
    [111]G. S. He, T. C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, T. J. Bunning. Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element[J].Applied Physics Letters,2003,83:2733-2735
    [112]R.Jakubiak, T. J.Bunning, R. A.Vaia, L. V.Natarajan, V.P.Tondiglia. Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization:a new approach for active photonic bandgap materials[J]. Adv. Mater.,2003,15:241
    [113]R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, R. A. Vaia. Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals[J].Appl. Phys. Lett.,2004,85(25): 6095-6097
    [114]D. E. Lucchetta, L. Criante, O. Francescangeli, F. Simoni.Wavelength flipping in laser emission driven by a switchable holographic grating[J]. Applied Physics Letters,2004,84:837-839
    [115]D. E. Lucchetta, L. Criante, O. Francescangeli, F. Simoni. Light amplification by dye-doped holographic polymer dispersed liquid crystals[J]. Applied Physics Letters 2004,84:4893-4895
    [116]D. E. Lucchetta, L. Criante, F. Simoni. Optical characterization of polymer disperseliquid crystals for holographic recording[J]. Journal of Applied Physics, 2003,93:9669-9674
    [117]S.T. Wu. A. Y.-G. Fuh. Lasing in photonic crystals based on dye-doped holographic polymer-dispersed liquid crystal reflection gratings[J]. Jpn. J. Appl. Phys., 2005,44(2); 977-980
    [118]Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, X. H. Zhang. Low-threshold and narrow-Iinewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings[J]. Appl. Phys. Lett., 2006,88(6):061107
    [119]Y. J. Liu, X. W. Sun, H. I. Elm, W. Ji. Gain narrowing and random lasing from dye-doped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets[J].Appl. Phys. Lett.,2006,89:01111
    [120]V. K. Hsiao, C. G. Lu, G S. He, M. Pan, A. N. Cartwright, P. N. Prasad, R. Jakubiak, R. A. Vaia, T. J. Bunning. High contrast switching of distributed-feedback lasing in dye-doped HPDLC transmission grating structures[J]. Optics Express 2005,13:3787-3794
    [121]R.Jakubiak, D.P.Brown, L.V. Natarajan,et al. Influence of morphology on the lasing behavior of Pyrromethene 597 in a holographic polymer dispersed liquid crystal reflection grating[J]. SPIE,2006,6322:63220A
    [122]张国威.可调谐激光技术[M].北京:国防工作出版社,2002.21-56
    [123]J.Li, S.Gauza,S.T.Wu. Temperature effect on liquid crystal refractive indices[J]. Journal of Applied Physics.2004,96(1):19-24
    [124]R.Jakubiak, V.P.Tondiglia, L.V.Natarajan, et.al. Dynamic Lasing from All-Organic Two-Dimensional Photonic Crystal[J]. Advanced Materials.2005,17: 2807-2811
    [125]D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, et.al. Two-directional lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals[J]. Applied Physics Letters.2009,95:151115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700