用户名: 密码: 验证码:
偏心球及双球粒子与任意入射高斯波束的相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粒子与有形波束间的相互作用一直以来都是许多理论工作及实际应用领域中相当活跃的研究内容之一,对生物医学、物理学、化学等许多领域的开发和进一步研究应用具有重要的指导作用和实际意义。粒子对波束的电磁散射、波束对粒子的捕获与操纵成为该研究内容中无可争论的焦点。关于均匀、分层粒子与波束的相互作用的研究已有许多报道,对于自然界中更为普遍存在的偏心粒子和多粒子来说,仍然还有大量的工作值得我们作进一步的研究。
     本文围绕偏心球及双球粒子与任意入射单高斯波束、双高斯波束的相互作用开展研究,其中包括粒子对波束的散射和波束对粒子的光捕获与光结合。主要工作成果如下:
     1.根据离轴入射波束的球矢量波函数展开式,考虑波束极化方向的影响,利用矢量场的叠加原理获得了极化波束离轴入射时的波束因子;基于斜入射波束的球矢量波函数展开式,结合直角坐标系中的坐标旋转矩阵,导出了极化波束离轴斜入射时在实验室坐标系中的任意入射波束因子表达式,对入射场给出了较为普遍的描述;计算了归一化球矢量波函数对应的任意入射波束因子;重新推导了正、负时间因子对应的离轴入射波束因子之间的关系,并对所得关系式进行了数值验证,修正了已有关系式。
     2.基于广义米理论,分别利用球矢量波函数在r≥|d|和r≤|d|时的平移加法定理,结合偏心球粒子、双球粒子系统在各个边界处的边界条件,推导了两种粒子系统在波束任意入射时的散射方程;数值模拟并讨论了粒子大小、球心间距离、入射方向、极化方向等参数对介质偏心球粒子、双介质球粒子的散射特性的影响;对导体内核偏心球、双导体球以及一个导体球一个介质球时的散射方程及散射特性进行了比较分析。
     3.研究了高斯波束任意入射偏心球粒子时的辐射力及辐射力矩。基于偏心球粒子对任意入射高斯波束的散射理论研究,利用麦克斯韦张量与广义米理论相结合,推导了波束任意入射时的辐射力、辐射力矩的级数表达式;在与已有文献结果对比的基础上数值计算了不同束腰中心位置、入射方向、极化方向、粒子的大小、内核的相对大小及位置时的辐射力及辐射力矩,讨论了这些参数的变化对辐射力以及辐射力矩的影响。
     4.基于单高斯波束任意入射时的矢量波函数展开式,利用矢量场的叠加原理,导出了双高斯波束任意入射时的波束因子表达式;结合偏心球粒子在单波束入射时的散射方程,数值计算并分析了偏心球粒子对任意入射双高斯波束的散射场随入射方向、极化方向、相位差等物理量的变化关系;研究了双高斯光束对偏心球粒子的辐射力及辐射力矩,讨论了粒子参数、双波束的入射方向、相位差等对粒子的辐射力及力矩的影响。
     5.基于广义米理论,将双波束任意入射时的矢量波函数展开应用于双介质球粒子的散射研究中,结合双球粒子系统在单波束任意入射时的散射方程,数值分析了双球粒子系统在双高斯波束任意入射时的散射场以及粒子之间的相干散射场;从理论上对粒子系统中单个粒子受到的结合力进行了分析,数值计算了分别处于单波束和双波束势阱中的双球粒子系统的结合力,分析了粒子大小、折射率、球心间距离、入射方向、极化方向、相位差等参数对结合力的影响。
The interaction between the particles and the shaped beams is one of the rather active research topics in many theoretical investigations and engineering applications. It provides a very important guidance and has practical meanings for the development of so many fields such as biomedicine, physics, chemistry, etc. The electric-magnetic scattering of the beam, the optical trapping and manipulating of the particles by the beam are the unquestionable focus of the research. The studies on the interaction between the homogeneous, layered particles and the shaped beams have been reported for many times. However, still there is a number of work should be done about the eccentric particles and multi-particles which more commonly exist in nature.
     This article refers to the study on the interaction of arbitrarily incident Gaussian beam with eccentric sphere and bi-sphere. It includes the discussion on the beam scattering of the particles and the optical trapping and optical binding of the particles by the beam. The main achievements are summarized as follows:
     Firstly, according to the expansion of the off-axis incidence beam in terms of the spherical vector wave functions (SVWFs) and considering the influence of the polarization direction of the beam, the expansion of the off-axis incidence polarized beam is given by using the superposition of vector field. Based on the expansion of the oblique incidence beam and combining the coordinates rotation matrix in the Cartesian coordinates, the expansion and the beam-shape coefficients (BSCs) of the beam in the particle coordinate system are given when the beam is polarized in any angle, off-axis and obliquely incoming, so the universal description of the incident beam is provided. Then the arbitrarily incident BSCs with respect to the normalized SVWFs are calculated. The relations between the off-axis BSCs with respect to positive-time factor and that with respect to negative-time factor has been re-derived and numerically verified, meanwhile the existed expressions are amended.
     Secondly, according to the generalized Lorenz-Mie theory (GLMT), utilizing the boundary conditions at each boundary of the eccentric sphere and bi-sphere, the scattering equations of the two systems have been deduced by using the additional theorems of the spherical vector wave functions when r≥|d| and when r≤|d| respectively. The effects on the scattering characteristics of eccentric sphere and bi-sphere of the parameters, such as the particle size, the distance between the centers of sphere, the incidence angle, polarization angle, etc., have been calculated and analyzed. Additionally, the scattering equations and the scattering characteristics for the cases of a sphere with an eccentric conductor inclusion, two conductor spheres and a bi-sphere composed by a conductor sphere and a dielectric sphere, have been compared and discussed respectively.
     Thirdly, the radiation forces and radiation torques exerted on the eccentric sphere by the arbitrarily incident Gaussian beam are investigated. Based on the study on the scattering theoies of the arbitrarily incident Gaussian beam by eccentric sphere, the series expressions of the radiation forces and torques are deduced by combining Maxwell Stress Tensor (MST) and the generalized Lorenz-Mie theory. After the comparison with the results presented in the literature, the radiation forces and torques are numerically calculated when the locations of the beam waist center, the incident directions, the polarized directions, the particle's sizes, the inner core's relative sizes and positions are different respectively, and the influence of the changes of these parameters to the forces and torques is analyzed.
     Fourthly, on the basis of the expansion of the arbitrarily incident Gaussian beam, the expression of BSCs for double beams is given by using the superposition of the vector field. Combining with the scattering theory of the eccentric sphere illuminated by a single Gaussian beam, the scattered field of dual-beam is evaluated and analyzed for different parameters, such as the incidence direction, polarization direction and phase difference, etc.. The radiation forces and radiation torques of the eccentric sphere acted by the dual-beam are investigated, and the influence to the forces and torques of the particle's parameters, incidence angle and the phase difference of the two beams is discussed.
     Fifthly, based on the generalized Lorenz-Mie theory, the expressions of the dual-beam is applied to the study of the scattering characteristics of bi-sphere, and combining the scattering equations of bi-sphere for single beam incidence, the scattered field of the bi-sphere system is computed when the dual-beam arbitrarily incidents. Then, the optical binding force of the bi-sphere system is analyzed theoretically, the force in the single beam potential well and that in the dual-beam potential well are numerically calculated respectively. And the influence to the optical binding force of such parameters as the particle size, the refractive index, the distance between the centers of the spheres, the incident direction, the polarized direction, etc., is analyzed.
引文
[1]Quinten, M., Kreibig, U., Henning, T., and Mutschke, H., wavelength-dependent optical extinction of carbonaceous particles in atmospheric aerosols and interstellar dust, Appl. Opt.,2002, vol.41, pp.7102-7113.
    [2]Meyer, R.A., Light scattering from red blood ghosts:sensitivity of angular dependent structure to membrane thickness and refractive index, Appl. Opt.,1977, 16, pp.2036-2037.
    [3]He J., Karlsson, A., Swartling, J., et.al., Numerical simulations of light scattering by red blood cells, in Editor (Ed.)^(Eds.) Book numerical simulations of light scattering by red blood cells (Lund Institute of Technology, Department of Electromagnetic,2003, edn.), pp.18.
    [4]B. M. R., M. J. M. and A. R. W. K, Three-dimensional, three-component velocity measurements using stereoscopic micro-PIV and PTV, Measurement science and technology,2006,17, pp.2175-2185.
    [5]Chigier, N., Combustion measurement, Hemisphere Publishing Corporation, New York,1991.
    [6]Ashkin, A., Acceleration and trapping of particles by radiation pressure, Phys. Rev.Lett,1970,24, pp.156-159.
    [7]Ashkin, A., Dziedzic, J.M., Optical levitation by radiation pressure, Appl. Phys. Let.,1971,19, pp.283-285.
    [8]Ashkin, A., Dziedzic, J.M., Stability of optical levitation by radiation pressure. Appl.Phys. Lett.,1974,24,pp.586-588.
    [9]Ashkin, A., Dziedzic, J.M., Optical levitation of liquid drops by radiation pressure. Science,1975,187, pp.1073-1075.
    [10]Ashkin, A., Dziedzic, J.M., Optical levitation in high vacuum. Appl. Phys.Lett., 1976,28, pp.333-335.
    [11]Ashkin, A., Application of laser radiation pressure, Science,1980,210, pp.1081-1087.
    [12]Ashkin, A., and Dziedzic, J. M., Observation of light scattering from nonspherical particles using optical levitation, Appl.Opt.,1980,19, pp.660-668.
    [13]Ashkin, A., Dziedzic, J. M., Bjorkholm, J.E., Chu, S., Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett.,1986,11, pp.288-290.
    [14]Ashkin A., and Dziedzic, J. M., Optical trapping and manipulation of viruses and bacteria. Science,1987,235, pp.1517-1520.
    [15]Ashkin, A., and Dziedzic, J. M., Optical trapping and manipulation of single cells using infrared laser beams. Nature,1987,330, pp.769-771.
    [16]Lorenz, L., Lysbev(?)gelsen i og uden for en af plane Lysb(?)lger belyst Kugle, Videnskabernes Selskabs Skrifter,1890,6, pp.2-62.
    [17]Mie, G, Beitrage zur optik truber medien speziel kolloidaler metallosungen Ann Phys.,1908,25,pp.377-445.
    [18]Brillouin L., Light scattering cross section of spheres for Electromagnetic waves, J. Applied Physics,1949,20, pp.1110-1125.
    [19]Hulst V.D., Light scattering by small particles, New York,1981.
    [20]Aden A.L., and Kerker M., Scattering of electromagnetic wave from concertric sphere, J. Appl. Phys.,1951,22, pp.1242-1246.
    [21]Scharfman, H., Scattering from coated spheres in the Region of the First Resonance, J. Appl. Phys.,1954,25, pp.1352-1356.
    [22]Brunsting, A., and Mullaney, P.F., Light scattering from coated spheres:model for biological cells, Appl. Opt,1972,11, pp.675-680.
    [23]Kerker M., The Scattering of light and other electromagnetic radiation, Academic, New York,1969.
    [24]Bohren, C.F., and Huffman D.R., Absorption and scattering of light by small particles, Wiley, New York,1983.
    [25]Johnson, B.R., Light scattering by a multilayer sphere, Appl. Opt.,1996,35, pp.3286-3296.
    [26]Sinzig, J., and Quinten, M., Scattering and absorption by spherical mulilayer particles, Appl. Phys. A,1994,58, pp.157-162.
    [27]Albini, FA., Scattering of a Plane wave by an inhomogeneous sphere under the Born Approximation, J.Applied Physics,1962,33(10), pp.3032-3036.
    [28]Stein, R.S., Wilson, P.R., and Stidham, S.N., Scattering of light by Heterogeneous spheres, J. Applied Physics,1963,34, pp.46-51.
    [29]Hovenac, E.A., and Lock, J.A., Assessing the contributions of surface waves and complex rays to far-field Mie scattering by use of the Debye series, J. Opt. Soc. Am. A,1992,9(5), pp.781-795.
    [30]Inada, H., and Plonus, M.A., The Geometric Optics Contribution to Scattering from a large Dense Dielectric Sphere, IEEE Transaction on Antennas and propagation,1970, AP18(10), pp.89-99.
    [31]Glantschnig, W.J., and Chen, S.-H., Light scattering from water droplets in the geometrical optics approximation, Appl. Opt.,1981,20, pp.2499-2509.
    [32]Wu, Z.S., and Wang, Y.P., Electromagnetic Scattering for Multilayered Sphere-Recursive Algorithms, Radio Science,1991,26(6), pp.1393-1401.
    [33]吴振森,王一平,多层球电磁散射的一种新算法,电子科学学刊,1993,15,pp.174-180.
    [34]吴成明,吴振森,肖景明,“双层介质球波散射的近似计算”,西安电子科技大学学报,1994,21(3),pp.308-314.
    [35]Sun, W., G. Loeb, N., and Fu, Q., Light scattering by coated sphere immersed in absorbing medium:a comparison between the FDTD and analytic solutions, Journal of Quantitative Spectroscopy and Radiative Transfer,2004,83(3-4), pp. 483-492.
    [36]Zhou X.B., Li, S., and Stamnes, K., Geometrical-optics code for computing the optical properties of large dielectric spheres, Appl. Opt.,2003,42, pp.4295-4306.
    [37]Xu, F., Cai, X., and Ren, K.F., Geometrical-optics approximation of forward scattering by coated particles, Appl. Opt.,2004,43, pp.1870-1879.
    [38]Li, R.X., and Han, X., Jiang, H., et.al., Debye series for light scattering by a multilayered sphere, Appl. Opt.,2006,45(6), pp.1260-1270.
    [39]Rayleigh, L., On the electromagnetic theory of light, Philos. Mag.,1881,12, pp.12-81.
    [40]Kerker, M., and Matijevic, E., Scattering of electromagnetic waves from concentric infinite cylinders, J. Opt. Soc. Am.,1961,51, pp.506-508.
    [41]Wait, J.R., Scattering of a plane wave from a circular dielectric cylinder at oblique incidence, Can. J. Phys.,1955,33, pp.189-195.
    [42]Islam, M., Scattering of electromagnetic waves by a composite cylinder, J. Appl. Phys.,1964,5(4), pp.550-557.
    [43]Kerker, M., Coose, D., Fraone, W.A., et. al., Electromagnetic scattering from an infinite circular cylinder at oblique incidence, Ⅰ. radiance functions for m=1.46, J. Opt. Soc. Am.,1966,56(4), pp.531-534.
    [44]Farone, W. A., and Querfeld, C. W, Electromagnetic scattering from a radially inhomogeneous infinite cylinders at oblique incidence, J. Opt. Soc. Am.,1966,56, pp.476-480.
    [45]Barabas, M., Scattering of a plane wave by a radially stratified tilted cylinder, J. Opt. Soc. Am. A,1987,4, pp.2240-2248.
    [46]Gurwich, I., Shiloah, N., and Kleiman, M., The recursive algorithm for electromagnetic scattering by tilted infinite circular multilayered cylinder, J. Quant. Spectr. Rad. Trans.,1999,63, pp.217-229.
    [47]吴振森,郭立新,崔索民,垂直入射时无限长多层圆柱的内、外场计算,电子学报,1995,23,pp.114-116.
    [48]Caorsi, S., and Pastorino, M., Scattering by Multilayer Isorefractive Elliptic Cylinders, IEEE Transactions on antennas and propagation,2004,52, pp.189-196.
    [49]Sun, W., Loeb, N.G., and Bing, U., Light scattering by an infinite circular cylinder immersed in an absorbing medium, Applied Optics,2005,44 (12), pp.2338-2342.
    [50]Jiang, H.F., and Han, X., Light scattering by a multilayered infinite cylinder immersed in an absorbing medium,7th International Symposium on Antennas, Propagation and Em Theory, Vols 1 and 2, Proceedings,2006, pp.757-760.
    [51]Li, R., Han, X.e., Jiang, H., et al., Debye series of normally incident plane-wave scattering by an infinite multilayered cylinder, Applied Optics,2006,45 (24), pp. 6255-6262.
    [52]Asano, S., and Yamamoto, G, Light scattering by a spheroidal particle, Appl. Opt., 1975,14,pp.29-49.
    [53]Asano, S., Light scattering properties of spheroidal particles, Appl. Opt.,1979,18, pp.712-723.
    [54]Sinha, B. P., and ACPhIE, R. H. M., Electromagnetic plane wave scattering by a system of two parallel conducting prolate spheroids, IEEE Trans. Antennas Propagat.,1983, AP-31,pp.294-304.
    [55]韩一平,椭球粒子高斯波束的散射,博士,西安电子科技大学,2000.
    [56]韩一平,吴振森,平面波用椭球波函数的展开,西安电子科技大学学报,1999,26,pp.227-231.
    [57]韩一平,吴振森,椭球粒子电磁散射的边界条件的讨论,物理学报49(2000),pp.57-60.
    [58]韩一平,吴振森,一种平面波在椭球坐标系展开的计算方法,西安电子科技大学学报(自然科学版),2000,27,pp.795-797.
    [59]Lock, J.A., Ray scattering by an arbitrarily oriented spheroid. Ⅰ. Diffraction and specular reflection, Appl. Opt.,1996,35, pp.500-514.
    [60]Lock, J. A., Ray scattering by an arbitrarily oriented spheroid. Ⅱ. Transmission and cross-polarization effects, Appl. Opt.,1996,35, pp.515-531.
    [61]Morita, N., Tanaka, T., Yamasaki, T., and Nakanishi, Y, Scattering of a beam wave by a spherical object, IEEE Trans. Antennas. Propag.,1968, AP 16, pp.724-727.
    [62]Tam, W. G., and Corriveau, R., Scattering of electromagnetic beams by spherical objects, J. Opt. Soc. Am.,1978,68, pp.763-767.
    [63]Davis, L. W., Theory of electromagnetic beam, Phys. Rev. A,1979,19, pp.1177-1179.
    [64]Gouesbet, G, Maheu, B., and Grehan, G., Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation, J. Opt. Soc. Am. A, 1988, Vol.5, pp.1427-1443.
    [65]Gouesbet, G, Grehan, G, and Maheu, B., Computations of the gn coefficients in the generalized Lorenz-Mie theory using three different methods, Applied Optics, 1988, Vol.27, pp.4874-4883.
    [66]Gouesbet, G, Grehan, G, and Maheu, B., Localized interpretation to compute all the coefficients gnm in the generalized Lorenz-Mie theory, J. Opt. Soc. Am. A, 1990, Vol.7, pp.998-1003.
    [67]Lock,J. A., and Gouesbet, G., Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz-Mie theory, Ⅰ. On-axis beam, J. Opt. Soc. Am. A,1994, Vol.11, pp.2503-2515.
    [68]Gouesbet,G, and Lock, J. A., Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory, Ⅱ. Off-axis beam, J. Opt. Soc. Am. A,1994, Vol.11, pp.2516-2525.
    [69]Wu, Z.S., and Ren, K., et. al., Improve of electromagnetic scattering of plane wave and beam for multilayered sphere, Appl. Opt.,1997,36(21), pp.5188-5198.
    [70]Khaled, E. E. M., Hill, S. C., and Barber, P. W., Light scattering by a coated sphere illuminated with a Gaussian beam, Appl. Opt,1994,33, pp.3308-3314.
    [71]Barton, J. P., Electromagnetic-field calculations for a sphere illuminated by a higher-order Gaussian beam. Ⅰ. Internal and near-field effects, Appl. Opt.,1997,36, pp.1303-1311.
    [72]Barton, J. P., Electromagnetic-field calculations for a sphere illuminated by a higher-order Gaussian beam. Ⅱ. Far-field scattering, Appl. Opt.,1998,37, pp.3339-3344.
    [73]Barton, J. P., Electromagnetic-field calculations for irregularly shaped, layered cylindrical particles with focused illumination, Appl. Opt.,1997,36, pp.1312-1319.
    [74]Barton, J. P., Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination, Appl. Opt.,1995,34, pp.5542-5551.
    [75]吴振森,郭立新,崔索民,垂直入射时无限长多层介质圆柱的内、外场计算,电子学报,1995,23,pp.114-116.
    [76]Kozaki, S., A new expression for the scattering of a Gaussian beam by a conducting cylinder, IEEE Trans. Antennas Propagat.,1982,30, pp.881-887.
    [77]Zhang,H.Y., and Han, Y. P., Scattering of shaped beam by an infinite cylinder of arbitrary orientation, Journal of the Optical Society of America B,2008,25, pp.131-135.
    [78]Zhang, H.Y., Han, Y. P., and Han, G. X., Expansion of the electromagnetic fields of a shaped beam in terms of cylindrical vector wave functions, Journal of the Optical Society of America B,2007,24, pp.1383-1391.
    [79]Zhang, H. Y, and Han, Y P., Scattering by a confocal multilayered spheroidal particle illuminated by an axial Gaussian beam, IEEE Trans. Antennas Propagat., 2005,53,pp.1514-1518.
    [80]Xu, F., Ren, K. F., Cai, X., and Shen, J., Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. Ⅱ. By a spheroidal particle with end-on incidence, Appl. Opt.,2006,45, pp.5000-5009.
    [81]Xu, F., Ren, K.F., Gouesbet,G, Grehan,G, Generalized Lorenz-Mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid, J. Opt. Soc. Am.A,2007,24(1), pp.119-131.
    [82]Friedman, B., and Russek, J., Addition theorems for spherical waves, Q. Appl. Math.,1954,12, pp.13-23.
    [83]Stein, S., Addition theorems for spherical wave functions, Q. Appl. Math.,1961, 19, pp.15-24.
    [84]Cruzan, O. R., Translational addition theorems for spherical vector wave functions, Q. Appl. Math.,1962,20, pp.33-44.
    [85]Bobber, P.A., and Vlieger, J., Light scattering by a sphere on a substrate, Physica A,1986,137,pp.209-241.
    [86]Fikioris, J. G., and Uzunoglu, N. K., Scattering from an eccentrically stratified dielectric sphere, J. Opt. Soc. Am.,1979,69, pp.1359-1366.
    [87]Borghese, F., Denti, P., Saija, R., and Sindoni, O. I., Optical properties of spheres containing a spherical eccentric inclusion, J. Opt. Soc. Am. A,1992,9, pp.1327-1335.
    [88]Fuller, K.A., Scattering and absorbtion by inhomogeneous spheres and sphere aggregates, SPIE Proc.,1993,1862,249-257.
    [89]Ngo, D., Light Scattering from a Sphere with a Nonconcentirc Spherical Inclusion, Ph.D. dissertation,1994, Dept. of Physics, New Mexico State University, Las Cruces.
    [90]Ngo, D., Light scattering from nonconcentric spheres, Dept. of Physics, New Mexico State University, Las Cruces (1996).
    [91]Videen, G., Ngo, D., Chylek, P., and Pinnick, R. G., Light scattering from a sphere with an irregular inclusion, J. Opt. Soc. Am. A,1996,12, pp.922-928.
    [92]Kyutae, L., and Sang, S. L., Analysis of electromagnetic scattering from an eccentric multilayered sphere, IEEE Trans Antennas Propag.,1995,43(11), pp.1325-1328.
    [93]Gouesbet, G., and Grehan, G., Generalized Lorenz-Mie theory for a sphere with an eccentrically located spherical inclusion," Journal of Modern Optics,2000,47, pp.821-837.
    [94]Trinks, W., (1953), Zur viefachstreuung an kleinen kugeln, Ann. Phys., Dtsch.22, pp.561-590.
    [95]Germogenova, O.A., (1963), The scattering of a plane electromagnetic wave by two spheres, Akad. Nauk SSSR, Izvestiia, Ser.Geofiz, No.4, pp.648-653.
    [96]Bonkowski, R.R., Lubitz, C. R., and Schensted, C.E., (Oct.1953), Studies in radar cross-section Ⅵ:Cross-sections of corner reflectors and other multiple scatters at microwave frequencies, Rept.No.UMM-106, E.R.I., Univ. of Michigan, Ann Arbor, Mich.
    [97]Angelakos, D. J., and Kumagai, K., High-frequency scattering by mulitiple spheres, IEEE Trans.Ant.Prop.,1964, AP-12, No.1, pp.105-109.
    [98]Liang, C., Lo, Y. T., Scattering by two spheres, Radio Sience,1967,2,1481.
    [99]Bruning J. H., Lo. Y. T., Multiple scattering of EM waves by spheres part Ⅰ-Multipole expansion and Ray-Optical solutions, IEEE Transactions on Antennas and Propagation,1971,19,378
    [100]Fuller, K. A., Kattawar, G. W., Wang, R. T., Electromagnetic scattering from two dielectric spheres further comparisons between theory and experiment, Appl. Opt., 1986,25, pp.2521.
    [101]Fuller, K. A., Optical resonances and two-sphere systems, Appl. Opt.,1991,30, pp.4716.
    [102]PiotrJ. Flatau, Kirk A. Fuller, Scattering by two spheres in contact:comparisons between discrete-dipole approximation and modal analysis, Appl. Opt.,1993, 32(18), pp.3302-3305.
    [103]Mishchenko, M. I., Mackowski, D. W., Light scattering by randomly oriented bispheres, Opt. Lett.,1994,19, pp.1604.
    [104]Mishchenko, M. I., Mackowski, D. W., Travis, L. D., Scattering of light by bispheres with touching and separated components, Appl. Opt.,1995,34, pp.4589.
    [105]Mishchenko, M. I., Coherent backscattering by two-sphere clusters, Opt. Lett., 1996,21, pp.623.
    [106]Videen, G, Ngo, D., Matthew, B. H., Light scattering from a pair of conducting, osculating sphees, Opt. Comm.,1996,125,275.
    [107]Gouesbet, G, and Grehan, G., Generalized Lorenz-Mie theory for assembles of spheres and aggregates, J. Opt. A:Pure Appl. Opt.,1999, pp.706-712.
    [108]白璐,吴振森,陈辉,郭立新,高斯波束入射下串粒子的散射问题,物理学报,2005,54,2025.
    [109]Liu, L. S., Ke, H. Y., Wu, Z. S., Bai, L., Front. Electr. Electron. Eng. China,2008, 3,70.
    [110]Kim, J. S., Lee, S. S., Scattering of laser beams and the optical potential well for a homogeneous sphere, J.Opt. Soc. Am.,1983,73, pp.303-312.
    [111]Barton, J. P, Alexander, D. R., Schaub, S. A., Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam, J. Appl. Phys.,1989,66, pp.4594-4602.
    [112]Ren, K. F., Grehan, G, and Gouesbet,G, Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory and associated resonance effects. Opt. Commun.,1994,108, pp.343-354.
    [113]Ren, K. F., Grehan, G., and Gouesbet, G., Prediction of reverse radiation pressure by generalized Lorenz-Mie theory, Appl. Opt.,1996,35, pp.2702-2710.
    [114]Onofri, F., Grehan, G., and Gouesbet, G., Electromagnetic scattering from a multilayered sphere located in an arbitrary beam, Appl. Opt.,1995,34, pp.7113-7124.
    [115]Polaert, H., Grehan, G., and Gouesbet, G., Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam. Opt. Commun.,1998, 155, pp.169-179.
    [116]Lock, J. A., Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration, Appl. Opt.,2004,43, pp.2532-2544.
    [117]Lock, J. A., Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. Ⅱ. On-axis trapping force, Appl. Opt.,2004,43, pp.2545-255.
    [118]韩一平,杜云刚,张华永,高斯波束对双层粒子的辐射捕获力,物理学报,2006,55(9),pp.4557-4562.
    [119]Xu F., Ren, K.F., Gouesbet G, and Cai, X.S., and Grehan G, Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam, Physical Review A,2007,75,026613.
    [120]Xu F., Loke, J.A., Gouesbet G, and Tropea, C., Radiation torque on a spheroid: Analytical solution, Physical Review A,2008,78,013843.
    [121]Nemoto, S., Togo, H., Axial force acting on a dielectric sphere in a focused laser beam, Appl. Opt,1998,37, pp.6386-6394.
    [122]Chaumet, P. C, Vesperinas, M. N., Time-averaged total force on a dipolar sphere in an electromagnetic field. Opt. Lett.,2000,25, pp.1065-1067.
    [123]Schut, T. C. B., Hesselink, G, and Grooth, B. G. D., et. al. Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps. Cytometry,1991,12, pp.479-485.
    [124]Ashkin, A., Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys.J.,1992,61, pp.569-582.
    [125]Harada, Y., Asakura, T., Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Optics Communications,1996.124, pp.529-541.
    [126]Nieminen, T. A., and Numerical modelling of optical trapping, Computer Physics Communications,2001,142, pp.468-471.
    [127]Bayoudh, S., Niemeinen, T. A., Heckenberg, N. R., and Rubinsztein-Dunlop, H., Orientation of biological cells using plane-polarized Gaussian beam optical tweezers, Journal of Modern Optics,2003,50(10), pp.1581-1590.
    [128]Gauthier, R. C., Laser-trapping properties of dual-component spheres, Appl. Opt., 2002,41,pp.7135-7144.
    [129]Ashkin A., Dziedzic J.M., Observation of radiation pressure trapping of particles by alternating light beams, Phy. Rev. Lett.,1985,54(12), pp.1245-1248.
    [130]Erik Fallman, Ove Axner, Design for fully steerable dual-trap optical tweezers, Appl. Opt.,1997, Vol.36, No.10, pp.2107-2113.
    [131]P. Zemanek, A. Jonas, L. Sramek, M.Liska, Optical trapping of Rayleigh particles using a Gaussian standing wave, Optics Communications,1998,151, pp.273-285.
    [132]Pavel Zemanek and Alexandr Jonas, Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave, J. Opt. Soc. Am. A,2002, Vol.19, No.5,1025.
    [133]Zemanek, P., Jonas, A., Jakl, P., Sery, M., Jezek, J., and Liska, M., Theoretical comparison of optical traps created by standing wave and single beam, Opt. Commun.,2003,220, pp.401-412.
    [134]王兆英,林强,非傍轴双光束势阱产生的辐射力,光学学报,2001, Vol.21.No.11, pp.1316-1320.
    [135]Tomas Cizmar, Veneranda Garcez-Chavez, Kishan Dholakia, and Pavel Zemanek, Optical trapping in counter-propagating Bessel beams, SPIE, Bellingham, WA, 2004, Vol.5514.
    [136]A.Casaburi, G. Pesce, P. Zemanek, A. Sasso, Two-and three-beam interferometric optical tweezers, Optics Communications,2005,251, pp.393-404.
    [137]李银妹等,细胞激光微操作系统,中国科学院科技成果鉴定,1996.10.
    [138]李银妹等,光学操作微加工装置与技术,中国科学院科技成果鉴定,2000.8
    [139]崔国强.李银妹,环形光对光阱有效捕获力的提高,中国激光,2001,28(89-92).
    [140]沈为民,李银妹,乐加昌,光镊技术测量生物大分子间的结合强度,应用激光,2004,24(4),pp.233-236.
    [141]郭红莲,曹勤红,任东涛,激光光钳法细胞膜弹性测量技术的建立和白细胞膜弹性的测量,科学通报,2003,48(3),pp.246-251.
    [142]郭红莲,姚新程,李兆霖,光镊系统中微小颗粒的位移和所受力的测量,中国科学技术大学出版社,2002,32,pp.97-101.
    [143]姚新程,李兆霖,程丙英,et al.双层介质球体所受光作用力的分析与计算,光学学报,2000,20,pp.1305-1310.
    [144]郭红莲,双光镊系统及其在生物学中的应用,中国科学院物理研究所博士学位论文,2004年.
    [145]降雨强,激光的生物学效应,山西大学博士学位论文,2004.6.
    [146]毛方林,邢岐荣,王锴等,飞秒激光光镊横向光学力的理论分析,光子学报,2004,33:pp.513-516.
    [147]田洁,光镊技术在光子晶体领域应用中的探索,北京工业大学硕士学位论文,2003.5.
    [148]王晓娜,基于激光捕捉技术的精细加工,浙江大学硕士学位论文,2004.6.
    [149]Burns, M. M., Fournier, J. M., and Golovchenko, J.A., Optical binding, Phys. Rev. Lett.,1989,63,1233.
    [150]Burns, M.M., Fournier, J.M., and Golovchenko, J.A., Optical Matter: Crystallization and Binding in Intense Optical Fields, Science,1990,249,749.
    [151]Fournier, J. M., Burns, M.M., and Golovchenko, J. A., Writing Diffractive Structures by Optical Trapping, Proc. SPIE,1995,2406,101.
    [152]Eckstein, H., and Kreibig, U., Light induced Aggregation of Metal Clusters, Z. Phys. D,1993,26,239.
    [153]Claro, F., The effect of laser irradiation on the formation and destruction of clusters and cluster arrays, Physica A,1997,241,223.
    [154]Claro, F., and Rojas, R., Novel laser induced interaction profiles in clusters of mesoscopic particles, Appl. Phys. Lett.,1994,65,2743.
    [155]Tatarkova, S.A., Carruthers, A.E., and Dholakia, K., One-Dimensional Optically Bound Arrays of Microscopic Particles, Phys. Rev. Lett.,2002,89,283901.
    [156]McGloin,D., Carruthers, A.E., Dholakia, K., and E.M. Wright, Optically bound microscopic particles in one dimension, Phys. Rev. E,2004,69,021403.
    [157]Depasse, F., and J-M Vigoureux, Optical binding force between two Rayleigh particles,J. Phys. D:Appl. Phys.,1994,27,914.
    [158]Chaumet, P.C., and Nieto-Vesperinas, M.,Optical binding of particles with or without the presence of a flat dielectric surface, Phys. Rev. B,64,035422.
    [159]Xu, H., and Kall, M., Surface-Plasmon-Enhanced Optical Forces in Silver Nanoaggregates, Phys. Rev. Lett.,2002,89,246802.
    [160]Jack N., Lin, Z.F., Chan, C.T., Sheng, P., Photonic Clusters, Phys. Rev. B,2005, 72,085130.
    [161]Stephen H. S., Simon Hanna, Numerical calculation of inter-particle forces arising in association with holographic assembly, J. Opt. Soc. Am. A,2006,23(6), pp.1419-1431.
    [162]Karasek, V, Dholakia, K., and Zemanek, P., Analysis of optical binding in one dimension, Appl. Phys. B,2006,84, pp.149-156.
    [163]Karasek, V., and Zemanek, P., Analytical description of longitudinal optical binding of two spherical nanoparticles, J. Opt. A:Pure Appl. Opt.,2007,9, S215-S220.
    [164]Kawano, M., Blakely, J. T., Gordon, R., Sinton, D., Theory of dielectric micro-sphere dynamics in a dual-beam optical trap, Opt. Exp.,2008,16(13), pp.9306-9317.
    [165]Doicu.A., Wriedt.T., Computation of the beam-shape coefficients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave function, Appl. Opt.,1997,36, pp.2971-2978.
    [166]Lock, J. A., Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle, J. Opt. Soc. Am. A,1993,10, pp.693-706.
    [167]吴成明,吴振森,两种时间因子下波束因子gnm的比较,葛洲坝水电工程学院学报,1996,03,41.
    [168]Stratton, J. A., Electromagnetic Theory,1941, New York, McGraw-Hill.
    [169]王竹溪,郭敦仁,特殊函数概论,北京大学出版社,2000.5 pp206-240
    [170]Han, G X., Han,Y. P., and Zhang, H.Y., Relations between cylindrical and spherical vector wave functions, Journal of optics A-pure and applied optics. 2008,10,015006.
    [171]Edmonds, A.R., Angular momentum in quantum mechanics, Princeton University Press, N.J.Chap.4,1957.
    [172]Tsang,L., Kong, J. A., and Shin, R. T., Theory of Microwave Remote Sensing. New York:John Wiley & Sons,1985.
    [173]Ren,K.F., Grehan,G., and Gouesbet, G., Localized Approximation of Generalized Lorenz-Mie Theory:Faster Algorithm for Computations of beam shape coefficients gnm, Part. Part. Syst. Charact.,1992, vol.9, pp.144-150.
    [174]Moine, O., and Stout, B., Optical force calculations in arbitrary beam by use of the vector addition theorem, J. Opt. Soc. Am. B,2005,22, pp.1620-1631.
    [175]Xu, Y. L., Electromagnetic scattering by an aggregate of spheres, Applied Optics, 1995, vol.34(21), pp.4573-4588.
    [176]Xu,Y.L., Electromagnetic scattering by an aggregate of spheres:far field, Applied Optics,1997,36, pp.9496-9508.
    [177]Xu,Y.L., and Gustafson,A.S., An analytical solution to electromagnetic multisphere-scattering.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700