用户名: 密码: 验证码:
玛纳斯河流域绿洲荒漠区盐渍化土地利用变化与利用潜力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对土壤盐渍化高光谱变化特征和遥感影像表现特征的研究是监测与认识盐渍化土壤变化规律的依据。在此基础上,分析与评估盐渍化土壤的利用潜力是预防土壤退化、保障农业可持续发展的依据。本文以玛纳斯河绿洲荒漠区为研究区,根据田间采样与室内分析数据、不同水盐含量土壤高光谱数据、研究区不同时段遥感数据,通过对土壤水盐高光谱特征分析、不同时期土壤盐渍化变化规律分析以及研究区耕地利用潜力分析,明确了研究区土壤水盐的光谱变化特征以及不同程度盐渍化耕地的利用潜力,揭示了研究区土地利用/土地覆被的变化规律,为区域盐碱土改良与利用以及可持续农业的发展提供理论依据和技术支持。主要结论如下:
     1.研究区土壤水、盐高光谱特征:对研究区不同质地、含水量、含盐量的土壤高光谱测定数据进行去包络线和一阶微分处理后,①确定了反映盐渍化程度敏感波段为347~377nm和1800~1911nm;②土壤反射光谱受土壤质地、含盐量、含水量等因素影响。粘土反射率最高,粉粘壤土次之,砂壤土最低;土壤含盐量越高其光谱反射率也越高;土壤含水量光谱曲线变化临界值是其田间持水量,低于田间持水量,随水分含量增加反射率减小,高于田间持水量,随水分含量增加反射率升高。
     2.研究区土壤盐渍化遥感定量反演:基于2009年4月26号研究区TM数据的土壤盐分指数影像与同期田间采样测定的盐分数据,采用线性回归方法,构建了土壤盐渍化遥感定量反演模型(y=0.093x+0.766,精度87.34%)。根据该模型得到研究区非盐渍化土壤占其总面积的57.02%,轻度盐渍化土地面积占18.7%,中度盐渍化土壤与重度盐渍化土壤面积占24.28%,并计算出玛纳斯河流域0-30cm土壤盐分储量约为2.2×109t。
     3.研究区盐渍化土地利用/土地覆被变化:由1989、2001、2012年三个时期遥感数据获得研究区土地利用变化,在研究时段内,研究区耕地、林地和草地面积增长率分别为5.06%、1.20%和3.59%,水体面积变化不大,建设用地面积增长率为0.91%,未利用土地面积减少率为11.39%,主要被开发为耕地和林草地;采用决策树分类对研究区耕地盐渍化程度研究表明随着时间的推移盐渍化逐渐减弱,到研究期末非盐渍化耕地面积为31.58%,轻度盐渍化耕地面积为23.02%,中、重度盐渍化面积占到45.39%。
     4.盐渍化耕地利用潜力评估:根据研究区典型农田田间采样和室内分析数据,结合地下水埋深和土壤质地调查数据,以土壤速效养分(碱解氮、有效磷、速效钾)、有机质含量、土壤pH值、总盐含量、地下水埋深七个指标,采用模糊数学方法,构建盐碱地利用潜力评估模型。评估结果表明:研究区耕地以中潜力(44.75%)和中高潜力(27.92%)为主,高潜力(9.51%)和低潜力(17.81%)面积较少,占研究区耕地的27.32%。
     本文对玛纳斯河流域盐渍化土壤的高光谱特征、盐渍化土壤的遥感影像特征、盐渍化土壤的利用特征和变化规律以及盐渍化土壤的利用潜力进行了系统的研究,为研究区的土壤盐渍化防治、农业规划及产业结构调整、农田水利规划和生产提供科学依据。
Investigation and evaluation of regional soil salinization is of great significance inknowing the change rules of soil salinization, preventing soil degradation and the promotingsustainable agriculture’s development. In this paper, taking desert area of Manasi river basinas the research object, researchers use the combined method of field sampling, analysis ofexperimental data and remote sensing image interpretation. Through interpretation ofremote sensing image in three different periods, researchers discuss the changing situationof land use/land cover on a regional scale and the temporal and spatial evolution of theland; with the help of land use statistics, GIS spatial analysis and fuzzy comprehensiveevaluation, researchers carry out the analysis, processing and modeling of field samplingdata in order to reveal the spatial variability of soil salinity and to provide certain theoryreference and scientific basis for evaluation, utilization and improvement of regional soilsalinization. The main research achievements are:
     1. Spectral characteristics of saline soil with differdent water and salt content: Therelations between soil salinization level and soil spectrum were analyzed: That obtainedsensitive bands of347-377nm and1800-1911. Changes of spectral reflectance in soil underthe different condition of texture, water and salt content were studied. Spectral reflectanceof different texture soil was as follows: Clay>silty-clay-loam> sandy loam. Soilsalinization degree is heavier, the higher the spectral reflectance values. Reflectancespectrum curve of different texture soil had the critical value of field moisture capacity,when soil water content was higher than field capacity, and the reflectivity increased withsoil moisture; reflectivity decreased with the increase of soil water content below fieldcapacity.
     2. Iinversion based on Remote sensing Soil salinization in the studyarea:The relations of salt content data and salt index on april26,2009TMimages is: y=0.093+0.766x. accuracy of87.34%. There is accounted for57.02%unsalinization soil in the study area, by remote sensing inversion,mild-salinization soil area of18.7%, moderate salinization and severesalinization area accounted for24.28%. The total soil salt reserve in Manas riverbasin0to30cm soil is about2.2x109tons.
     3. Land use/cover survey in Manas river valley: By interpretation and analysis ofremote sensing images in three different periods of1989,2001,2012, researchers concludethat construction land boom, woodland, grassland area increase, unused land area isshrinking, the water area steady, cultivated land has also been on the rise in the pasttwenty-three years with human activity. The results of arable land using the decision treeclassification show that the degree of cultivated salinization land with the passage of timegradually weakened, the unsalinization cultivated area of31.58%, mild salinization ofcultivated land area of23.02%, moderate salinization and severe salinization area accountedfor45.39%.
     4. Saline soil utilization potential evaluation: soil organic matter, available nitrogen,available phosphorus, available potassium, pH value, total salt content and groundwaterdepth of sampling are tested by investigation and analysis on the desert oasis in Manasifield, researchers successfully constructed the saline-alkali land use potential evaluationmodel, and by using interpolation in ArcMap9.3analysis, the study area land use potentialspatial distribution map and four class risk area diagram of the comprehensive evaluationare made. The secondary utilization potential area above the saline-alkali soil of study areaaccounted for72.68%of the total area.
     From this research we would get lots of scientific help about soil salinity treatment&improvement,agriculture planning&adjusting, and irrigation and drainage engineeringplanning in the future.
引文
[1] Metternieht,G.I.,Zinek,J.A..,Remote sensing of soil salinity:Potentials and constraints[J].Remote Sensing of Environment2003.85,l-20.
    [2]董孝斌,张玉芳,严茂超,等.天山北坡山盆系统耦合与农业结构调整[J].农业现代化研究,2006,(5):377-379.
    [3]乔木等.新疆灌区土壤盐渍化及改良治理模式[M].新疆科学技术出版社,2008.12.
    [4]樊自立.1996.新疆土地开发对生态与环境的影响及对策研究[M].乌鲁木齐气象出版社:33-53.
    [5]邵景力,崔亚莉,李慈君.2003.玛纳斯河流域山前平原地下水资源分析及合理开发利用研究[J].干旱区地理,26(1):6-11.
    [6]樊自立,穆桂金,马英杰,等.2002.天山北麓灌溉绿洲的形成和发展[J].地理科学,22(2):184-189.
    [7]李玉义,柳红东,张凤华,中国农业大学学报,陈阜,赖先齐.新疆玛纳斯河流域灌溉技术对土壤盐渍化的影响[[J].2007,12(1):22-26.
    [8]石元春,李保国,李韵珠.区域水盐运动监测预报[M].河北科学技术出版杜,1991.
    [9] Rao B R M, RavisankarT, Dwivedi R S, et a1. Spectral behaviour of salt-affectedsoils[J].International Journal of Remote Sensing,1995,16(12):2125—2136.
    [10] Mettemieht G I, Zinck J A. Remote sensing of soft salinity: potentials andconstraints[J].Remote Sensing of Environment,2003,85:1-20.
    [11] Mougenot B, Epema G F, Pouget M. Remote sensing of affected soils [J]. RemoteSensingReview,1993,7:241-259.
    [12]宋长春,阎百兴,宋新山.电磁技术在苏打盐渍化土壤研究中的应用[J].地理科学,2002,22(1):91-95.
    [13] Rao B R M, Dwivedi R S, Venkataratnam L,et a1. Mapping the Magnitude of Sodieityin Part of the Indo-Gangetic Plains of Uttar Pradesh Northern India Using landsat-TMData[J].International Journal of Remote Sensing,1991,12(3):419-425.
    [14] Dahaan, R.L.and vegetation as indications of irrigation induced soilsalinization[J].Remote Sena.Environ.80:406-417.
    [15] Dehaan R L, Taylor G R. Field-derived spectra of salinized soils and vegetation asindicators of irrigation-induced soil satinization [J].Remote Sensing of Environment,2002,80:406-418.
    [16] Howari F M, Goedell P C, Miyamoto S. Spectral properties of salt crusts formed Orlsaline soils[J].Journal of Environment Quality,2002,31:l453-1461.
    [17] Howari F M. Chemical and environmental implications of visible and near-infraredspectral features of salt crusts formed from different brines [J]. Annali di,Chimica,2004,94(4):315-323.
    [18] Howari F M.Reflectance spectra of common salts in arid soils (320-2500nm):application of remote sensing. USA:PHD thesis University of Texas at E1paso,2001,5.
    [19] Mettemicht G,Zinck J A.Spatial discrimination of salt-and sodium-affected soilsurfaces[J].International Journal of Remote Sensing,1997,18(12);2571-2586.
    [20]霍东民,孙家柄,刘高焕,等.3S技术在黄河三角洲土壤盐分分析样点采集中的应用[J].遥感信息,2001,(2):35-37.
    [21] Rao B R M, RavisankarT, Dwivedi R S, et a1. Spectral behaviour of salt-affectedsoils[J].International Journal of Remote Sensing,1995,16(12):2125—2136.
    [22] Khan Nasir M,Rastoskuev Victor V,Shalina Elena V,et a1. Mapping salt-affected soilsusing Remote sensing indicators-a simple approach with the use of GISIDRISI. Proceedings. ACRS2001-22nd Asian Conference on Remote Sensing,Singapore,2001,1:25-29.
    [23] Bui E N,Henderson B L.Vegetation indicators of salinity in northernQueensland[J].Austral Ecology,2003,8:539-552.
    [24] Mettemicht G,Zinck J A.Spatial discrimination of salt-and sodium-affected soilsurfaces[J].International Journal of Remote Sensing,1997,18(12);2571-2586.
    [25] Dwivedi R S,Rao B R M. The selection of the best possible Lantsat TM bandcombination for delineating salt-affected soils[J]. International Journal of RemoteSensing,1992,13(11):205l-2058.
    [26] Khan Nasir M,Rastoskuev Victor V,Shalina Elena V,et a1. Mapping salt-affected soilsusing Remote sensing indicators-a simple approach with the use of GISIDRISI. Proceedings. ACRS2001-22nd Asian Conference on Remote Sensing,Singapore,2001,1:25-29.
    [27]骆玉霞,陈焕伟. GIS支持下的TM图象土壤盐渍化分级[J].遥感信息,2001,(4):12-15.
    [28] Dehaan R, Taylor G R. Image-derived spectral endmembers as indicators of salinisation[J].International Journal of Remote Sensing,2003.24(4):775-794.
    [29] Sreenivas K,Venkataratnam L,Narasimha Rao P V.Dielectric properties of salt-affectedsoils[J]. International Journal of Remote Sensing.1995.16(4):641-649.
    [30] Verma K S, Saxena R K,Barthwal,et a1.Remote sensing technique for mapping salt-affected soils[J]. International Journal of Remote Sensing, l994,15(9):1901-1914.
    [31]关元秀,刘高焕,王劲峰.基于GIS的黄河三角洲盐碱地改良分区[J].地理学报,2001,56(2):198-205.
    [32]骆玉霞,陈焕伟. GIS支持下的TM图象土壤盐渍化分级[J].遥感信息,2001,(4):12-15.
    [33] KARAVANOVA E I,Shrestha D P,Orlov D S.App lication of remote sensing techniquesfor the R,study of soil salinity in semi-arid Uzbekistan [A].In:Bridges EM,HannamID,Oldeman Let al.Response to Land Degradation[C].New Delhi,India: Oxford&IBHPublishing Co.PvLtd,ISBN no,2001:261-273.
    [34] Verma K S, Saxena R K, Barthwal, et a1. Remote sensing technique for mapping saltaffected soils [J]. International Journal of Remote Sensing,1994,15(9):1901-1914.
    [35] Khan Nasir M,Rastoskuev Victor V,Shalina Elena V,et a1. Mapping salt-affected soilsusing Remote sensing indicators-a simple approach with the use of GISIDRISI. Proceedings. ACRS2001-22nd Asian Conference on Remote Sensing,Singapore,2001,1:25-29.
    [36] Mettemicht G,Zinck J A.Spatial discrimination of salt-and sodium-affected soilsurfaces[J].International Journal of Remote Sensing,1997,18(12);2571-2586.
    [37] Fouad A1-Khaier.Soil Salinity Detection using satellite remote sensing[M]. Master’sthesis International institute for Geo-information science and earth observation,enschede, theNether lands,2003.3.
    [38] Saha S K, Kudrat M Bhan. Digital processing of Landsat TM data for wastelandmapping in parts of Aligarh District, Uttar Predesh, India. International Journal ofRemote Sensing,1990,11:485-492.
    [39]赵庚星,窦益湘,田文新,等.卫星遥感影象中耕地信息的自动提取方法研究[J].地理科学,2001,21(4):224~229.
    [40]张定祥,刘顺喜,尤淑撑,等.基于机载成像光谱数据的宜兴市土地利用/土地覆分类方法对比研究[J].地理科学,2004,24(2):193-198.
    [41] Fouad A1-Khaier.Soil Salinity Detection using satellite remote sensing[M]. Master’sthesis International institute for Geo-information science and earth observation,enschede, the Nether lands,2003.3.80.
    [42] Dwivedi R S, Sroenivas K.Image transforms as a tool for the study of soil salinityandalkalinity Dynamics [J].International Journal of Remote Sensing,1998,19(4):605-619.
    [43]刘庆生,骆剑承,刘高焕.资源一号卫星数据在黄河三角洲地区的应用潜力初探[J].地球信息科学,2000,2(2):56-57.
    [44]宋长春,邓伟,李取生,等.松嫩平原西部土壤次生盐渍化防治技术研究[J].地理科学.2002,22(5):610—614.
    [45] Metternieht G Assessing temporal and spatial changes of salinity using fuzzy logicremote sensing and GIS. foundations of an expert system[J]. EcologicalModelling,2001,144:163-179.
    [46] Dwivedi R S, Sroenivas K.Image transforms as a tool for the study of soil salinityandalkalinity Dynamics [J].International Journal of Remote Sensing,1998,19(4):605-619.
    [47]浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.
    [48] Howari F M, Goedell P C, Miyamoto S. Spectral properties of salt crusts formed Orlsaline soils[J].Journal of Environment Quality,2002,31:l453-1461.
    [49] Howari F M. Chemical and environmental implications of visible and near-infraredspectral features of salt crusts formed from different brines [J]. Annali di, Chimica,2004,94(4):315-323.
    [50] Howari F M.Reflectance spectra of common salts in arid soils (320-2500nm):application of remote sensing. USA:PHD thesis University of Texas at E1paso,2001,5.
    [51] Dehaan R L, Taylor G R. Field-derived spectra of salinized soils and vegetation asindicators of irrigation-induced soil satinization [J].Remote Sensing of Environment,2002,80:406-418.
    [52] Sreenivas K,Venkataratnam L,Narasimha Rao P V.Dielectric properties of salt-affectedsoils[J].International Journal of Remote Sensing.1995.16(4):641—649.
    [53] Mettemicht G,Zinck J A.Spatial discrimination of salt-and sodium-affected soilsurfaces[J].International Journal of Remote Sensing,1997,18(12);2571-2586.
    [54] Silvastri S,Marani M,Settl J,et a1.Salt marsh vegetation radiometry Data analysis andscaling[J].Remote Sensing of Environment,2002,80:473-482.
    [55] Mettemicht G,Zinck J A.Spatial discrimination of salt-and sodium-affected soilsurfaces[J].International Journal of Remote Sensing,1997,18(12);2571-2586.
    [56] Campbell J B. Spatial variation of sand content and pH within single contiguousdelineations of tow soil mapping units [J]. Soil Sci. Soc. Am. J.,1978,42:460-464.
    [57] Burgess T M, Webster R and McBratney A B.Optimal interpolation and isarithmicmapping of soil properties Ⅳ. Sampling strategy [J]. Soil Sci. Soc. Am. J.,1981,32:643-659.
    [58] Trangmar B B, Yost R S and Uehara G. Application of geostatistics to spatial studies ofsoil properties [J]. Advanced Agronomy,1985,38:44-94.
    [59] Webster R.Quantitative spatial analysis of soil in the field [J]. Advance in Soil Science,1985,3:1-70.
    [60] Kooijman S A L M. Some remarks on statistical analysis of grids with respect toecology[J].Annals of Systems Research,1976,5:113-132.
    [61] Levin S A. The problem of pattern and scale in ecology [J]. Ecology,1992,73:1943-1967.
    [62] Johnston M A.An evaluation of the four-electrode and electromagnetic inductiontechniques of soil salinity measurement: Pietermerizburg, Natal, University of Natal,Ph.D.dissertation,1994,191.
    [63] Robertson G P, Soil resources, microbial activity, and primary production across anagricultural ecosystem [J]. Ecological Applications,1997,7:158-170.
    [64] Schlesinger W H, Pilmanis A M. Plant-soil interactions in deserts [J]. Biogeochemistry,1996,42:169-187.
    [65] Li H, Reynolds J F. On definition and quantification of heterogeneity [J]. Oikos,1995,73(2):280-284.
    [66]雷志栋,杨诗秀,许志荣.土壤空间变异性初步研究[J].水利学报,1985,(9):10-21.
    [67]张淑娟,何勇,方慧.基于GPS和GIS的田间土壤特性空间变异性的研究[J].农业工程学报,2003,19(2):39-44.
    [68]胡克林,李保国,林启美,陈德立.农田土壤养分的空间变异性特征[J].农业工程学报.1999,15(3):33-38.
    [69]姚荣江,杨劲松.基于电磁感应仪的黄河三角洲地区土壤盐分时空变异特征[J].农业工程学报:2008:24(3):107-113.
    [70]秦耀东,李保国,应用析取克里格方法估计区域地下水埋深分布[J].水利学报,1998(8).28-33.
    [71]陈家军,郭乔羽,王红旗,应用协同一泛克立格法估计地下水水位[J],水利学报,2000(7).7-13.
    [72]石元春,李保国,李韵珠.区域水盐运动监测预报[M].河北科学技术出版杜,1991.
    [73]张展羽,詹红丽,滨海平原农田土壤含盐量空间变异分析[J].河海大学学报(自然科学版)2002,30(4),61-65.
    [74]徐英,陈亚新,史海滨,等.协方差矩阵上-下三角分解法在区域土壤水盐条件模拟的应用[J].水利学报,2004(11):33-38.
    [75]李海滨,林忠辉,等.Kriging方法在区域土壤水分估值中的应用[J].地理研究,2001,20(4);446-452.
    [76]邓孺孺,田国良,柳钦火,等.粗糙地表土壤含水量遥感模型研究[J].遥感学报,2004,8(1):75-80.
    [77]李天杰,杨胜天,张利田.卫星遥感在区域性水盐运动监测和预测中的应用初探—以晋北盆地为例.见:徐希孺主编.环境监测与作物估产的遥感研究论文集.北京:北京大学出版社,1991,109–131.
    [78] Sanderson E W,Zhang M,Ustin S L,et al.Geostatistical scaling of canopy watercontent in a California salt marsh[J].Land-scape Ecology,1998,13:79-92.
    [79]陈亚新,史海滨,等.盐溶质及其离子品位空间变异性的C0_Kriging估计[J].水利学报,(6),35-40.
    [80]王遵亲.中国盐渍土[M].北京:科学出版社,1993.
    [81]刘长江,李取生,李秀军.深松对苏打盐碱化旱田改良与利用的影响[J].土壤,2007,39(2):306—309.
    [82]姚荣江.杨劲松,刘广明.东北地区盐碱土特征及其农业生物治理[J].土壤,2006(3):256-210.
    [83]马晓丽,贾志宽,肖恩时,等.渭北旱塬秸秆还田对土壤水分及作物水分利用效率的影响[J].干旱地区农业研究,2010,(5):59-64.
    [84]李茜,孙兆军,秦萍.宁夏盐碱地现状及改良措施综述[J].安徽农业科学,2007,35(33):255-257,260.
    [85]唐华俊,逢焕成,任天志,等.节水农作制度理论与技术创新[M].北京:中国农业科学技术出版社,2008:108-115.
    [86]武俊英,刘景辉,李倩,等.内蒙古地区不同耕作方式与播种深度燕麦耐盐碱性分析[J].干旱地区农业研究,2009,27(2):138-147.
    [87]李义玲,乔木,杨小林,等.干旱区典型流域近30年土地利用/土地覆被变化的分形特征分析――以玛纳斯河流域为例[J].干旱区地理,2008.31(1):75-81.
    [88]张凤华.2011.干旱区绿洲、山地、荒漠系统耦合效应及其功能定位――以玛纳斯河流域为例[J].干旱区资源与环境,25(5):52-56.
    [89]程维明,周成虎,刘海江,等.玛纳斯河流域50年绿洲扩张及生态环境演变研究[J].中国科学(D辑),2005.35(11):1074-1086.
    [90]袁国映,屈喜乐,李竞生,中国新疆玛纳斯河流域农业生态环境保护与合理利用研究[M].新疆科技卫生出版社,乌鲁木齐,1995,78-83.
    [91]肖军.新疆天山北麓水资源保证程度分析[J].干旱区资源与环境,1994,8(2):47-56.
    [92]李玉义,张海林,张凤华,等.2007.新疆玛纳斯河流域农业水资源可利用潜力分析[J].自然资源学报,22(1):44-50.
    [93]程维明.2003.玛纳斯河流域景观格局及其演化研究[D].中国科学院地理科学与资源研究所,北京.
    [94]李新国,李和平,任云霞.开都河流域下游绿洲土壤盐渍化特征及其光谱分析[J].土壤通报,2012,43(1):166-170.
    [95]张飞,丁建丽,塔西普拉提·特依拜等.渭干河-库车河三角洲绿洲盐渍化地地物光谱数据分析[J].光谱学与光谱分析,2008,28(12):2921-2925.
    [96]李民赞.光谱分析技术及其应用[M].北京:科学出版社,2006.
    [97] CLOUTIS E.A.Hyperspectral geological remote sensing: Evaluation of analyticaltechniques[J]. International Journal Remote Sensing,1996,17(12):2215-2242.
    [98] HUANG Z,TUMER B J,DURY S J,et al. Estimating foliage nitrogen concentrationfrom HYMAP data using continuum removal analysis[J].Remote Sensing ofEnvironment,2004,93:18-29.
    [99] BENDOR R,PATKLN A,BANIN A,et al. Mapping of several soil properties usingDAIS-7915hyper-spectral scanner data: a case study over clayey soils in Israel [J].International Journal of Remote Sensing,2002,23(6):1043-1062.
    [100]顾晓鹤,王堃,潘瑜春,等.基于HJ1A-HSI超光谱影像的耕地有机质遥感定量反演[J].地理与地理信息科学,2011,27(6):69-73.
    [101]吴昀昭,田庆久,季峻峰等.土壤光学遥感的理论、方法及应用[J].遥感信息,2003,(1):40--47.
    [102]马诺,杨辽,李均力.焉耆盆地土壤盐渍化的光谱特征分析[J].干旱区资源与环境.2008,22(2):114-117.
    [103] CSILLAG F, PASZTOR L, BIEHL L.Spectral band selection for thecharacterization of salinity status of soils[J].Remote Sensing ofEnvironment,1993(43):231-242.
    [104]张飞,塔西普拉提·特依拜,丁建丽等.塔里木盆地北缘绿洲盐渍化地地物光谱特征分析[J].东北林业大学学报.2009,36(6):37-42.
    [105]史培军,土地利用/土地覆盖变化研究的方法与实践.北京:科学出版社,2000.
    [106]师长安,王长耀,陆地卫星TM解译精度的可靠性评价.黄土高原水土保持林区遥感综合研究[M].北京:中国科学技术出版社,1990,177-182.
    [107]吴薇,颜长珍,王建华等,应用遥感和GIS技术进行西北区域土地资源调查[J].中国沙漠,2000,20(2):229-231.
    [108]宋乃平,陆地卫星TM图像在土地利用调查中的应用研究.黄土高原水土保持林区遥感综合研究[M].北京:中国科学技术出版社,1990,161-169.
    [109]乔木,杨小林,等,干旱区典型流域近30a土地利用/覆被变化和景观破碎化分析——以玛纳斯河流域为例[J],中国沙漠,2008,28(6):1050-1057.
    [110]赖先齐,刘建国,张凤华,等.玛纳斯河流域绿洲农业弃耕地生态重建的研究[J].河子大学学报,2004,22(1):27-30.
    [111]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    [112]许树柏,层次分析法原理[M].天津:天津大学出版社,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700