用户名: 密码: 验证码:
用于呼出气体中肺癌标志物检测的声波传感器及仪器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺癌的发病率及死亡率逐年上升,早发现、早治疗是提高肺癌患者生存率的关键。常规肺癌检测方法不能用于大范围高危人群筛查,急需一种无创、快捷、廉价的肺癌诊断方法。人体呼出气体中的挥发性有机化合物以及呼出气体冷凝物中都存在与肺癌相关的标志物,因此可通过呼吸检测来实现肺癌的无创诊断。
     本文在实验室已有的呼出气体肺癌标志物研究的基础上,研制了分别用于呼出气体中挥发性有机化合物检测和呼出气体冷凝物中癌胚抗原检测的声波传感器及分析仪器,并进行了临床试验。本文研究工作得到了浙江省科技厅重大攻关项目和国家自然科学基金仪器专项的资助。本文的主要内容如下:
     1.针对呼出气体中的痕量挥发性有机化合物标志物,设计了高灵敏度、低温度系数的谐振型瑞利波气体传感器。该传感器的质量灵敏度达到2.667kHz/ng,传感器的翻转温度为23.36℃,在20℃到40℃范围内,温度灵敏度小于365.9Hz/0C,温度系数小于114ppm/℃;
     2.设计并优化了谐振型瑞利波气体传感器的配用电路。在原有振荡电路中增加了移相环节,使传感器工作在中心频率下,提高了振荡电路的输出稳定度及动态响应范围。增加了滤波及衰减等环节,减小了混频输出中频信号中的射频噪声;
     3.针对呼出气体冷凝物中的肺癌标志物癌胚抗原检测,设计并对比了钽酸锂与石英两种不同基底的乐甫波传感器。钽酸锂基底传感器在液体介质中衰减小,但质量灵敏度低。石英基底传感器的质量灵敏度达到-1.208°/ng,更适用于呼出气体冷凝物中的癌胚抗原检测;
     4.针对两种不同基底乐甫波传感器液相条件下的不同工作特性,设计了两种聚二甲基硅氧烷微流控芯片。提出了微流控芯片与乐甫波传感器之间压合式的结合方法,优化了微流控芯片的通道高度,实现了微流控芯片与乐甫波传感器的多次利用。微流控芯片结合动态进样加快了传感器表而的修饰和检测过程,并实现了实时监测;
     5.采用谐振型瑞利波气体传感器结合气相色谱分离技术,实现了呼出气体中肺癌标志性挥发性有机化合物的检测仪器,对十三烷和十三酮的检测下限达到1ppb。采用乐甫波免疫传感器结合微流控技术实现了呼出气体冷凝物中癌胚抗原的检测仪器,对癌胚抗原的检测下限达到了56.44ng/mL;
     6.采用呼出气体中挥发性有机化合物的检测仪器测试了89例临床样品,肺癌呼吸检测的灵敏度为95.74%,特异性为69.05%;采用呼出气体冷凝物中癌胚抗原的检测仪器初步测试了6例临床样本,在2例肺癌病人的呼出气体冷凝物样本中检测到了癌胚抗原。
The morbidity and mortality of lung cancer increased year by year, early detection and early treatment is the key to increase the survival rate of lung cancer patients. Conventional lung cancer detection methods can not be used in a wide range of high-risk population screening, so a non-invasive, fast and inexpensive diagnostic method for lung cancer is urgently needed. Volatile organic compounds (VOCs) in the breath gas and the exhaled gas condensate (EBC) contain markers which are associated with lung cancer, so non-invasive diagnosis of lung cancer can be achieved through breath test.
     Based on the laboratory's existing research on the exhaled lung cancer markers, two kinds of acoustic sensors and analytical instruments were developed for the detection of VOCs in the exhaled breath and carcino-embryonic antigen (CEA) in EBC, and clinical experiments were carried out. The work of this paper has been funded by Key Scientific and Technological Research Project of Science and Technology Department of Zhejiang Province of China, and the instrument specific project of National Natural Science Foundation.
     The major contents of this thesis are listed below:
     1) Resonant Rayleigh Wave gas sensor with high sensitivity and low temperature coefficient was designed for the detection of trace VOCs markers in exhaled breath. The mass sensitivity of this sensor is2.667kHz/ng,the turnover temperature is23.36℃, the temperature sensitivity between20℃and40℃is less than365.9Hz/℃, and the temperature coefficient is less than1.4ppm/℃.
     2) Circuits for Rayleigh Wave gas sensors were designed and optimized. Phase shifter is added into the oscillator, forcing the working frequency of the sensors close to the center frequency, so the stability and the dynamic range of the oscillation circuit are improved. RF noise in the IF output of mixer is reduced by additional filters and attenuators.
     3) Two kinds of Love Wave sensors with different piezoelectric substrate were developed for the detection of CEA in EBC. Sensors based on LiTaO3have little loss in liquid, but the sensitivity is low. The sensors based on quartz are more suitable for detection of CEA in EBC, which have a high mass sensitivity of-1.208°/ng.
     4) Two kinds of Polydimethylsiloxane (PDMS) microfluidic chips were designed, because the two kinds of Love Wave sensors have different working characteristics in liquid. A pressure method to combine the love wave sensor with PDMS chip was proposed, realizing reusability of the sensor chips and microfluidic chips. The height of the channel in PDMS chips was optimized. Besides, fast and realtime detection was achieved by dynamic injection mode.
     5) Combining resonant Rayleigh Wave gas sensors with gas chromatography (GC), instrument for detection of exhaled VOCs lung cancer markers was developed. The limit of detection (LOD) to tridecane and tridecanone is lower than I ppb. Combining Love Wave immunosensors with microfluidics, instrument for detection of CEA in EBC was developed. The LOD to CEA is56.44ng/mL.
     6)89clinical VOCs samples were test by the VOCs detection instrument, the sensitivity is95.74%and selectivity is69.05%;6clinical EBC samples were test by the EBC detection instrument, CEA was detected in EBC samples of two lung cancer patients.
引文
1. Antczak A., Nowak D., Shariati B., Krol M., Piasecka G., Kurmanowska Z., Increased hydrogen peroxide and thiobarbituric acid-reactive products in expired breath condensate of asthmatic patients, European Respiratory Journal,1997,10, 1235-41.
    2. Balint B., Kharitonov S. A., Hanazawa T., Donnelly L. E., Shah P. L., Hodson M. E., Barnes P. J., Increased nitrotyrosine in exhaled breath condensate in cystic fibrosis, European Respiratory Journal,2001,17,1201-7.
    3. Bodini A., D'Orazio C., Peroni D. G., Corradi M., Zerman L., Folesani G., Assael B. M., Boner A. L., Piacentini G. L., IL-8 and pH values in exhaled condensate after antibiotics in cystic fibrosis children, International Journal of Immunopathology and Pharmacology,2007,20,467-72.
    4. Branch D. W., Brozik S. M., Low-level detection of a Bacillus anthracis simulant using Love-wave biosensors on 36°YX LiTaO3, Biosensors & Bioelectronics, 2004,19,849-859.
    5. Branch D. W., Thayne L. E.,4D-4 Love wave acoustic array biosensor platform for autonomous detection, Proceedings of the IEEE, Ultrasonics Symposium, 2007.
    6. Carpagnano G. E., Foschino-Barbaro M. P., Resta O., Gramiccioni E., Carpagnano F., Endothe!in-1 is increased in the breath condensate of patients with non-small-cell lung cancer, Oncology,2004,66,180-4.
    7. Carpagnano G. E., Foschino-Barbaro M. P., Spanevello A., Resta O., Carpagnano F., Mule G., Pinto R., Tommasi S., Paradiso A.,3p microsatellite signature in exhaled breath condensate and tumor tissue of patients with lung cancer, American Journal of Respiratory and Critical Care Medicine,2008,177,337-41.
    8. Chan H. P., Tran V., Lewis C., Thomas P., Markers of oxidative stress in exhaled breath of subjects with lung cancer, Respirology,2008,13, A58.
    9. Chen X., Xu F. J., Wang Y., Pan Y., Lu D., Wang P., Ying K., Chen E., Zhang W., A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis, Cancer,2007,110(4),835-844.
    10. Corradi M., Folesani G., Andreoli R., Manini P., Bodini A., Piacentini G., Carraro S., Zanconato S., Baraldi E., Aldehydes and glutathione in exhaled breath condensate of children with asthma exacerbation, American Journal of Respiratory and Critical Care Medicine,2003,167,395-9.
    11. Cross P. S., Haydl W. H., Smith R. S., Design and Applications of Two-Port SAW Resonators on YZ-lithium Niobate, Proceedings of the IEEE,1976,64(5).
    12. Dai Z., Chen J., Yan F., Ju H., Electrochemical sensor for immunoassay of carcinoembryonic antigen based on thionine monolayer modified gold electrode, Cancer Detection and Prevention,2005,29,233-240.
    13. Dragonieri S., Annema J. T., Schot R., van der Schee M. P., Spanevello A., Carratu P., Resta O., Rabe K. F., Sterk P. J., An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD, Lung Cancer,2009,64,166-170.
    14. Du J., Harding G. L., A multilayer structure for Love-mode acoustic sensors, Sensors and Actuators A-Physical,1998,65,152-159.
    15. Du J., Harding G. L., Ogilvy J. A., Dencher P. R., Lake M., A study of love-wave acoustic sensors, Sensors and Actuators A-Physical,1996,56,211-219.
    16. Du J., Harding G. L., Ogilvy J. A., Dencher P. R., Lake M., A study of Love-wave acoustic sensors, Sensors and Actuators A-Physical,1996,56,211-219.
    17. Eiccman G. A., Karpas Z., Ion Mobility Spectrometry, Boca Raton, CRC Press, 1994,1-228
    18. El Fissi L., Friedt J-M., Ballandras S., Robert L., Cherioux F., Acoustic characterization of thin polymer layers for Love mode surface acoustic waveguide, Proceedings of the IEEE, International Frequency Control Symposium,2008.
    19. Farnell G. W., Adler E. L., in, W.P. Mason, R/N. Thurston (Eds.), Elastic wave propagation in thin layers, Physical acoustics, vol.9, Academic Press, New York, 1972, pp.35-127.
    20. Fossella F. V., Komaki R., Putnam J. B., Lung Cancer, Springer-Verlag, New York, USA,2003.
    21. Francis L. A., Investigation of Love waves sensors, Optimisation for biosensing applications. Master Thesis. Universite Catholique de Louvain,2001.
    22. Francis L. A., Thin film acoustic waveguides and resonators for gravimetric sensing applications in liquid. PhD Thesis. Universite Catholique de Louvain, 2006.
    23. Gammoudi I., Tarbague H., Lachaud J. L., Destor S., Othmane A., Moyenet D., Kalfat R., Rebiere D., Dejous C., Love Wave Bacterial Biosensors and Microfluidic Network for Detection of Heavy Metal Toxicity. Sensor Letters 2011, 9(2),816-819.
    24. Gessner C., Kuhn H., Toepfer K., Hammerschmidt S., Schauer J., Wirtz H., Detection of p53 gene mutations in exhaled breath condensate of non-small cell lung cancer patients, Lung Cancer,2004,43,215-22.
    25. Giardina M., Olesik S. V., Application of low-temperature glassy carbon-coated macro fibers for solid-phase microextraction analysis of simulated breath volatiles, 2003, Analytical Chemistry,75(7),1604-1614.
    26. Gisbert J. P., Pajares J. M.,13C-urea breath test in the diagnosis of Helicobacter pylori infection-a critical review, Alimentary Pharmacology & Therapeutics,2004, 20(10),1001-1017.
    27. Gizeli E., Bender F., Rasmusson A., Saha K., Josse F., Cernosek R., Sensitivity of the acoustic waveguide biosensor to protein binding as a funcion of the waveguide properties, Biosensors & Bioelectronics,2003,18,1399-1406.
    28. Gizeli E., Goddard N. J., Lowe C. R., Stevenson A. C., A Love plate biosensor utilising a polymer layer. Sensors and Actuators B Chemical,1992,6,131-137.
    29. Gizeli E., Liley M., Lowe C. L., Design considerations for the acoustic waveguide biosensor. Smart Materials & Structures,1997,6,700-706.
    30. Gizeli E., Stevenson A. C., Goddard N. J., Lowe C. R., A novel Love-plate acoustic sensor utilizing polymer overlayers, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1992,39 (5),657-659.
    31. Grate J. W., Klusty M., Surface acoustic wave vapor sensors based on resonator devices, Analytical Chemistry,1991,63(17),1719-1727
    32. Harding G. L., Du J., Dencher P. R., Barnett D., Howe E., Love wave acoustic immunosensor operation in liquid, Sensors and Actuators A-Physical,1997, 61(1-3),279-286.
    33. Hashimoto K-Y., Surface Acoustic Wave Devices in Telecommunications, Springer Verlag,2000.
    34. Henry Wohltjen, Raymond Dessy, Surface acoustic wave probe for chemical analysis. I. Introduction and instrument description, Analytical Chemistry,1979, 51(9), pp 1458-1464
    35. Hermann F., Weihnacht M., Sensors based on shear-horizontal surface acoustic waves in layered quartz/SiO2 and LiTaO3/SiO2structures, Proceedings of the IEEE, Ultrasonics Symposium,1999.
    36. Herrmann F., Buttgenbach S., Temperature-compensated Shear Horizontal surface acoustic wave in layered quartz/SiO 2-structures. Physica status solidi, 1998,170, R3-R4.
    37. Herrmann F., Hahn D., Buttgenbach S., Separate determination of liquid density and viscosity with sagitally corrugated Love mode sensors. Sensors and Actuators A-Physical,1999,78,99-107.
    38. Herrmann F., Weihnacht M., Buttgenbach S., Properties of sensors based on shear-horizontal surface acoustic waves in LiTaO3/SiO2 and quartz/SiO2 structures, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2001,48(1),268-273.
    39. Hickernell F. S., Knuth H. D., Dablemont R. C., Hickernell T. S., The surface acoustic wave propagation characteristics of 64° YX LiNbO3 and 36° YXLiTaO3 substrates with thin-film SiO2, Proceedings of the IEEE, Ultrasonics Symposium, Seattle, USA.1995.
    40. Horvath I., Hunt J., Barnes P. J., on behalf of the ERS/ATS Task Force, Exhaled breath condensate, methodological recommendations and unresolved questions, European Respiratory Journal,2005,26,523-548.
    41. Howe E., Harding G., A comparison of protocols for the optimisation of detection of bacteria using a surface acoustic wave (SAW) biosensor. Biosensors & Bioelectronics,2000,15(11-12),641-649.
    42. Jakoby B., Bastemeijer J., Vellekoop M. J., Temperature-compensated Love-wave sensors on quartz substrates, Sensors and Actuators A-Physical,2000,82(1-3), 83-88.
    43. Kalantar-Zadeh K., Powell D. A., Sadek A. Z., Wlodarski W., Yang Q. B., Li Y. X., Comparison of ZnO/64° LiNbO3 and ZnO/36° LiTaO3 surface acoustic wave devices for sensing applications, Sensor. Letter,2006,4(2),135-138.
    44. Kalantar-Zadeh K., Trinchi A., Wlodarski W., Holland A., A novel Love-mode device based on a ZnO/ST-cut quartz crystal structure for sensing applications, Sensors and Actuators A-Physical,2002,100,135-143.
    45. Karasek F. W., Plasma Chromatography, Analytical Chemistry,1974,46, 710A-720a.
    46. Kovacs G., Lubking G. W., Vellekoop M. J., Venema A., Love waves for (bio)-chemical sensing in liquids. Proceedings of the IEEE, Ultrasonics Symposium,1992, pp.281-285.
    47. Kovacs G., Venema A., Theoretical comparison of sensitivities of acoustic shear wave modes for (bio) chemical sensing inliquids, Applied Physics Letters,1992, 61,639-641.
    48. Laljer C. E., Joint chemical agent detector (JCAD):the future of chemical agent detection, Proceedings of SPIE,2003,64-74.
    49. Lange K., Rapp B. E., Rapp M., Surface acoustic wave biosensors, a review. Analytical and Bioanalytical Chemistry.2008,391(5),1509-1519.
    50. Li F., Xie Z., Schmidt H., Sielemann S., Baumbach J. I., Ion mobility spectrometer for online monitoring of trace compounds, Spectrochimica Acta Part B, Atomic Spectroscopy,2002,57(10),1563-1574.
    51. Lord H., Yu Y. F., Segal A., Pawliszyn J., Breath analysis and monitoring by membrane extraction with sorbent interface, Analytical Chemistry,2002,74, 5650.
    52. Loukides S., Bouros D., Papatheodorou G., Lachanis S., Panagou P., Siafakas N. M., Exhaled H2O2 in steady-state branchiectasis, relationship with cellular composition in induced sputum, spirometry, and extent and severity of disease., Chest,2002,121,81-7.
    53. Machado R. F., Laskowski D., Deffenderfer O., Burch T., Zheng S.,Mazzone P. J., Mekhail T., Jennings C., Stoller J. K., Pyle J., Duncan J., Dweik R. A., Erzurum S. C., Detection of lung cancer by sensor array analyses of exhaled breath, American Journal of Respiratory and Critical Care Medicine,2005,171(11),1286-1291.
    54. Mannelli I., Minunni M., Tombelli S., Mascini M., Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms(GMOs) detection. Biosensors & Bioelectronics,2003,18(2-3),129-140.
    55. Matatagui D., Fontecha J., Fernandez M. J., Aleixandre M., Gracia I., Cane C Horrillo M. C., Array of Love-wave sensors based on quartz/Novolac to detect CWA simulants, Talanta,2011,85,1442-1447.
    56. Matatagui D., Fontecha J., Fernandez M. J., Horrillo M. C., Gracia I., Cane C Design and fabrication of Love-wave sensors An experimental study. Proceedings of the 8th Spanish Conference on Electron Devices, CDE'2011.
    57. Matatagui D., Marti J., Fernandez M. J., Fontecha J. L., Gutierrez J., Gracia I., Cane C., Horrillo M. C., Chemical warfare agents simulants detection with an optimized SAW sensor array, Sensors and Actuators B, Chemical,2011,154 (2), 199-205.
    58. Mathers C. D., Loncar D., Projections of global mortality and burden of disease from 2002 to 2030, Plos Medicine,2006,3, e442.
    59. McCulloch M., Jezierski T., Broffman M., Hubbard A., Turner K., Janecki T., Diagnostic accuracy of canine scent detection in early-and late-stage lung and breastcancers, Integrative Cancer Therapies,2006,5,30-39.
    60. Moll N., Pascal E., Dinh D. H., Lachaud J-L., Vellutini L., Pillot J-P., Rebiere D., Moynet D., Pistre J., Mossalayi D., Mas Y., Bennetau B., Dejous C Multipurpose Love acoustic wave immunosensor for bacteria, virus or proteins detection, ITBM-RBM,2008,29,155-161.
    61. Montuschi P., Collins J. V., Ciabattoni G., Lazzeri N., Corradi M., Kharitonov S. A., Barnes P. J., Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers, American Journal of Respiratory and Critical Care Medicine,2000,162,1175-7.
    62. Montuschi P., Kharitonov S. A., Ciabattoni G., Barnes P. J., Exhaled leukotrienes and prostaglandins in COPD. Thorax,2003,58,585-8.
    63. Moser B., Bodrogi F., Eibl G., Lechner M., Rieder J., Lirk P., Mass spectrometric profile of exhaled breath-field study by PTR-MS, Respiratory Physiology & Neurobiology,2005,145,295-300.
    64. Mutlu G. M., Garey K. W., Robbins R. A., Danziger L. H., Rubinstein I., Collection and analysis of exhaled breath condensate in humans, American Journal of Respiratory and Critical Care Medicine,2001,164(5),731-737.
    65. Pauling L., Robinson A. B., Teranishi R., Cary P., Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography, Proceedings of the National Academy of Sciences, USA,1971,68,2374-76.
    66. Pennazza G., Santonico M., Martinelli E., D'Amico A., Di Natale C., Interpretation of exhaled volatile organic compounds, European Respiratory Journa,12010,115-29.
    67. Phillips M., Altorki N., Austin J. H., Cameron R. B., Cataneo R. N., Greenberg J., Kloss R., Maxfield R. A., Munawar M. I., Pass H. I., Rashid A., Rom W. N., Schmitt P., Prediction of lung cancer using volatile biomarkers in breath, Cancer Biomark,2007,3,95-109.
    68. Phillips M., Basa-Dalay V., Blais J., Bothamley G., Chaturvedi A., Modi KD., Pandya M., Natividad M. P., Patel U., Ramraje N. N., Schmitt P., Udwadia Z. F., Point-of-care breath test for biomarkers of active pulmonary tuberculosis, Tuberculosis,2012,92(4),314-320.
    69. Phillips M., Cataneou R. N., Cummin A. R. C., Gagliardi A. J., Gleeson K., Greenberg J., Maxfield R. A., Rom W. N., Detection of lung cancer with volatile markers in the breath, Chest Journal,2003,123,2115-2123.
    70. Phillips M., Gleeson K., Hughes J. M., Greenberg J., Cataneo R. N., Baker L., McVay W. P., Volatile organic compounds in breath as markers of lung cancer, a cross-sectional study, Lancet,1999,353,1930-1933.
    71. Powell D. A., Kalantar-Zadeh K., Wlodarski W., Numerical calculation of SAW sensitivity, application to ZnO/LiTaO3 transducers, Sensors and Actuators A-Physical,2004,115,456-461.
    72. Raimbault V., ebiere D., Dejous C., A microfluidic surface acoustic wave sensor platform, Application to high viscosity easurements, Materials Science and Engineering, C 28,759-764
    73. Rocha-Gaso M. I., March-Iborra C, Montoya-Baides A., Arnau-Vives A., Surface generated acoustic wave biosensors for the detection of pathogens, a review. Sensors,2009,9,5740-5769.
    74. Saha K., Bender F., Rasmusson A., Gizeli H., Probing the viscoelasticity and mass of a surface-bound protein layer with an Acoustic Waveguide Device, Langmuir,2003,19,1304-1311.
    75. Schlensog M. D., Thomas M. A., Groncwold T. M., Tewes M., Famulok M., Quandt E., A Love-wave biosensor using nucleic acids as ligands. Sensors and Actuators B Chemical,2004,101,308-315.
    76. Schweyer M. G., Weaver J. T., Andle J. C., Douglas J. M., Comparison of surface transverse wave (STW) and shear horizontal acoustic plate mode (SH-APM) devices for biochemical sensors. Proceedings of the IEEE, International Frequency Control Symposium, Orlando, USA,1997, pp.147-155.
    77. Shen G. Y., Wang H., Deng T., Shen G. L., Yu R. Q., A novel piezoelectric immunosensor for detection of carcinoembryonic antigen, Talanta,2005,67, 217-220
    78. Silkoff P. E., Carlson M., Bourke T., Katial R., Ogren E., Szefler S.J., The Aerocrine exhaled nitric oxide monitoring system NIOX is cleared by the US Food and Drug Administration for monitoring therapy in asthma. Journal of Allergy & Clinical Immunology,2004,114,1241-1256.
    79. Tamarin O., Dejous C., Rebiere D., Pistre J., Comeau S., Moynet D., Bezian J., Study of acoustic Love wave devices for real time bacteriophage detection, Sensors and Actuators B Chemical,2003,91,275-284.
    80. Tang D. P., Yuan R., Chai Y. Q., Novel immunoassay for carcinoembryonic antigen based on protein A-conjugated immunosensor chip by surface plasmon resonance and cyclic voltammetry, Bioprocess and Biosystems Engineering,2006, 28,315-321
    81. Tigli O., Binova L., Berg P., Zaghloul M., Fabrication and characterization of a Surface Acoustic-Wave biosensor in CMOS Technology for cancer biomarker detection, IEEE Transactions on Biomedical Circuits and Systems,2010,4(1), 62-73.
    82. Tigli O., Binova L., Berg P., Zaghloul M., Fabrication and characterization of a Surface-Acoustic-Wave biosensor in CMOS Technology for cancer biomarker detection, IEEE Transactions on Biomedical Circuits and Systems,2010,4(1) 62-73.
    83. Turton A., Bhattacharyya D., Wood D., Liquid density analysis of sucrose and alcoholic beverages using polyimide guided Love-mode acoustic wave sensors, Measurement Science and Technology,2006,17,257-263.
    84. Voinova M. V., On mass loading and dissipation measured with acoustic wave sensors, A Review. Journal of Sensors,2009,1-13.
    85. Wang Z., Cheeke J. D. N., Jen C. K., Sensitivity analysis for Love mode acoustic gravimetric sensors, Applied Physics Letters,1994,64,2940-2942.
    86. White R. M., Voltmer F. W., Direct piezoelectric coupling to surface elastic waves, Applied Physics Letters,1965,7(12),314-316.
    87. Wingqvist G., Bjurstrom J., Liljeholm L., Yantchev V., Katardjiev I., Shear mode AIN thin film electro-acoustic resonant sensor operation in viscous media, Elsevier,2007,466-473.
    88. Wohltjen H., Ressy R., Surface Wave Probe for Chemical Analysis PartⅠ Instroduction and Instrument Description, part Ⅱ--gas chromatography detector Analytical Chemistry,1979,51,1458.
    89. Zampolli S., Elmi I., Sturmann J., Nicoletti S., Dori L., Cardinali C., Selectivity enhancement of metal oxide gas sensors using a micromachined gas chromatographic column, Sensors and Actuators B Chemical,2005,105, 400-406.
    90. https://dspace.lib.cranfield.ac.uk/handle/1826/7861
    91. http://www.lgpump.com.cn/product/product628.html
    92. http://www.saw-instruments.de
    93. http://www.anhuisafe.com/Show.asp?id=214
    94. http://www.estcal.com
    95.陈琳,非小细胞肺癌患者呼出气冷凝液CEA、ET-1测定的意义,复旦大学硕士学位论文,2009
    96.董敬军,陶一江,陈建荣,蔡映云,陶国华,非小细胞肺癌患者呼出气冷凝液中CEA检测的临床意义,临床肺科杂志,2008,13(7):828-830
    97.马航,肺癌治疗前后呼出气冷凝液和血浆中CEA、ET-1水平观察,交通医学,2009,23(6):656-657
    98.农天雷,常用化学发光免疫分析技术及其特点,现代医药卫生,2011,27(14):2156-2158
    99.邵建波,一种细胞培养微芯片的制作及应用,生物工程学报,2008,24(7):1253-1257
    100.孙俊峰,PECVD SiO2薄膜内应力研究,工艺技术与材料,2008,133(15):397-400
    101.王敏,声表面波器件用压电陶瓷材料,上海航天,1987,05:54-58
    102.王平,刘清君,生物医学传感与检测,2010,浙江大学出版社,267页
    103.王怡珊,肺癌呼出气体标志物确定及电子鼻临床诊断方法研究,浙江大学硕士学位论文,2012
    104.许峰,王海龙,关亚风,离子迁移谱研究进展,化学进展,2005,17(3):514-522
    105.於锦,呼出气体及其冷凝物中肺癌标志物及其检测方法的研究,浙江大学硕士学位论文,2011
    106.左大伟,杜晓松,谢光忠,胡佳,蒋亚东,用于气体检测的声表面波振荡电路设计,《微处理机》,2010,4:5-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700