用户名: 密码: 验证码:
黄曲霉素—银团簇体系SERS增强机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄曲霉素(AFs)是一种强致癌、致畸的物质,普遍存在于人类食品和动物饲料中,可导致基因变异发生癌变,因此需要对其进行含量限度检测,但黄曲霉素拉曼信号非常弱,采用常规拉曼光谱(NRS)很难检测。因此本论文采用密度泛函理论(DFT)B3LYP方法,6-311G(d, p)(C, H, O)/LANL2DZ(Ag)基组,计算了黄曲霉素B1、B2、G1以及G2分子吸附在不同结构银团簇的表面增强拉曼散射光谱和预共振拉曼光谱,获得了表面增强拉曼散射的增强因子,分析了表面增强拉曼散射的化学增强和电场增强的机理,并且研究了外加电场作用对黄曲霉素B1分子表面增强拉曼散射的影响。
     两类黄曲霉素分子可以通过不同位点吸附于银团簇,产生表面增强拉曼散射效应。B和G类黄曲霉素分子通过C=O位垂直吸附于银团簇为最有利构型,与实验检测结果-致。计算得到两类黄曲霉素分子(AFs)的常规拉曼光谱和表面增强拉曼光谱与实验结果符合很好。通过比较复合物AFs-Ag、AFs-Ag2、AFs-Ag4以及AFs-Ag6、AFs-Ag7的表面增强拉曼光谱(SERS)和相关实验数据,获得了吸附基底对黄曲霉素表面增强拉曼散射的影响:四种黄曲霉素分子在菱形(Ag4)和五角双锥型十面体的银团簇(Ag7)表面吸附时,增强因子最大达到了104,对应pyrane环C=O伸缩振动,主要是由黄曲霉素分子周围化学环境改变而引起的基态静极化率改变导致的,增强机理为基态化学增强。
     通过含时密度泛函(TD-DFT)方法,计算了两类黄曲霉素-银团簇复合物的吸收光谱和跃迁能。两类黄曲霉素-银团簇体系的电荷转移共振激发分别发生在430nm (AFB1分子),420nm (AFB2分子)以及400nm左右(AFG1分子)。选择电荷转移预共振激发波长作为入射光,计算得到复合物AFB1-Agn(n=2,4,6)以及AFG1-Agn(n=2,4,6,7)的预共振拉曼光谱的增强因子约为102~104。复合物AFB2-Ag2中电荷转移共振拉曼信号增强因子明显大于电荷转移激发:电荷转移态激发波长1144.1nm和544nm可以使拉曼信号增强102,而选择电荷转移预共振波长432.5nm和410nm作为入射光,其拉曼信号增强了104。表面增强拉曼散射的增强机理为银团簇和黄曲霉素分子之间的电荷转移共振增强。
     随着外加电场的增加,复合物AFB1-Agn(n=1,2,4,6,7)中低能态电子向高能级跃迁的几率增大,体系稳定性降低;能隙逐渐减小,占据轨道的电子容易被激发到空轨道,可能的电子跃迁光谱频率减小。不同的外电场(0.0005a.u,0.005a.u,0.01a.u)作用下复合物的电子结构和拉曼光谱显示:外加电场使复合物AFB1-Agn(n=1,2,4,6,7)的结构参数发生明显改变,从而引起复合物拉曼光谱的变化:共振峰随着外电场的增大出现明显的蓝移,最大蓝移达到100cm-1,且单个振动模式很难被区分,同一频率出现几种振动模式的耦合。复合物AFB1-Agn(n=1,2,4,6,7)中增强因子最大的振动模,其振动方向均沿着外加电场方向,此方向也为极化率改变最大的方向。
     最后,采用三维时域差分法(3D-FDTD)模拟了不同形状(球状、柱状、棱形柱状、三棱锥以及笼状),不同结构和尺寸的银纳米粒子表面局域增强电场分布。同一种银纳米粒子采用位于紫外或深紫外区域且与AFs-Agn复合物相应的电荷转移预共振的入射光激发时,局域表面电场明显更强,最大增强因子达到了109,不同于文献报道中紫外区域无法获得SERS增强的结论。电场增强与仅考虑化学增强效应得到的对应复合物预共振拉曼光谱强度的变化趋势一致,这为研究单分子表面增强拉曼散射的实验提供了参考。笼状结构银纳米粒子表面的电场分布表明,笼状银纳米粒子表面局域电场分布在紫外或红外入射光激发下没有明显的增强,这是由于笼状银纳米粒子的结构具有多个顶点,产生高阶多极矩散射效应导致的,内部电子的集体激荡行为难以简单地数值分析也是产生此现象的原因。
Aflatoxins (AFs) are a group toxins of most powerful toxicity and carcinogenicity, as the most common mycotoxins are detected in human food and animal feed. Aflatoxins can cause gene mutation and leat to malignant tumors or hepatocellular carcinoma, thus we need detecting of Aflatoxins content. But the Raman signal of Aflatoxins molecules is very weak and difficult to detect by conventional Raman spectroscopy. In this thesis, the Surface-enhanced Raman scattering (SERS) and pre-resonance Raman spectra of Aflatoxin Bi, B2, G1and G2molecules adsorbed on sliver clusters were calculated using density functional theory (DFT) method with B3LYP/6-311G(d, p)(C, H, O)/LANL2DZ(Ag) basis set. The SERS enhancement factors and chemical and electric field enhancement mechanism were obtained. We investigated the structural properties and Raman spectra of AFB1-Agn(n=1,2,4,6,7) complexes under the external electric field.
     The two type of Aflatoxins adsorbed on sliver clusters through different adsorption site, resulting in Surface-enhanced Raman scattering effect. The Aflatoxins molecule prefer to a perpendicular orientation adsorbed on Ag clusters by C=O site, which is consistent with the experimental phenomena. Compared with the Raman spectra of AFs-Ag, AFs-Ag2, AFs-Ag4and AFs-Ag6, AFs-Ag7complexes and experimental data, it was obtained that the effect of adsorption substrate to Surface-enhanced Raman scattering of Aflatoxins molecule. The calculated results showed that the SERS spectra were strongly dependent on Ag clusters site and the configuration of new complexes. When the four Aflatoxins molecule adsorbed on diamond silver cluster (Ag4clusters) and Ag7clusters, the enhancement factors were strongest, and up to104, attributed to C=O stretching vibration mode. The enhancement mechanism was ascribed to the ground state static chemical enhancement from the static polarizability changes.
     The absorption spectra and electronic transitional energy of the two type Aflatoxins molecule were carried out based on Time-dependent DFT (TD-DFT) method. We found the pre-resonance Raman spectra were strongly dependent on the charge tranfer resonant state of new complexes. Wavelengths were nearly resonant with the charge transfer excitation states, which were adopted as incident light when simulating the pre-resonance Raman spectra for AFBi-Agn(n=2,4,6) and AFGi-Agn(n=2,4,6,7)complexes, respectively. The enhancement factors were obtained about102-104compared with the normal Raman spectra. The Raman intensities of charge transfer resonance of the AFB2-Ag2complex were significantly greater than the charge transfer excitation. The pre-resonance Raman spectra of AFB2-Ag2complex are explored at1144.1nm and544nm, which were charge transfer excitation energy, the enhancement factors were102. The charge transfer pre-resonant wavelength of432.5nm and410nm as the incident light, the pre-resonance enhancement factor of AFEB2-Ag2complex was up to104, mainly caused by the charge transfer excitation resonance. The charge transfer resonant energy of Aflatoxins-Ag clusters system were in430nm(AFB1molecule),540nm (AFB2) and400nm (AFG1molecule), this resules will provides corresponding reference to the experiment.
     With the increase of the external electric field, the probability of the electons from low enregy state to high energy level increases in AFB1-Agn(n=1,2,4,6,7) complexes, the stability of AFB1-Agn(n=l,2,4,6,7) complexes were decreased; the energy gap of the complexes decrease gradually with external electric increase, the electron that occupied orbits were induced to empty orbits easily, the probability of the electron transition spectral frequency decreases. With the effect of the different external field, electronic structure and Raman spectrum of the AFB1-Agn(n=1,2,4,6,7) complexes showed that structural parameter of the AFB1-Agn(n=1,2,4,6,7) complexes were changed. Therefore, Raman spectra of the complexes has changed. With the increase of the external electric field, the Raman spectra were occured blue shift significantly, the maximum blue shift was up to100cm-1, and the single vibration mode was difficult to be distinguished, the coupling of vibration modes were happen. The maximum vibrational mode of AFB1-Agn(n=l,2,4,6,7) complexes was along with the electric field direction, and it was the largest direction of the polarization change.
     The local electric field distribution of silver nanoparticles, which were different structures (spherical, cylindrical, prismatic columnar, three pyramid and cage-like) and different size, were simulated using three-dimensional finite difference time-domain (3D-FDTD). When UV or deep UV region wavelengths as the incident light which were corresponding to charge transfer resonance of AFB1-Agn(n=1,2,4,6,7) complexes, the local surface electric field of the silver nanoparticles were significantly stronger, the maximum enhancement factor was up to109, it is different with the conclusion of the reported in the literature that can not be obtained SERS enhancement in the ultraviolet region. The electric field enhancement was consistent with change trend of the pre-resonance Ranam spectra of corresponding complexes, which were only to considering the chemical enhancement effect. The local electric field distribution of Cage-like structural silver nanoparticles was showed that the electric field distribution was not significantly enhanced under different incident light of the ultraviolet or infrared. This is due to the the Caged silver nanoparticle structure having a plurality of vertices that produce higher-order multipole moments scattering, and internal electronic collective agitation behavior is difficult to numerical analysis.
引文
[1]Kurtzman C.P, Horn B.W, Hesseltine C.W. Aspergillus nomius, a new aflatoxin producing species related to Aspergillus flavus and Aspergillus tamarii. Antonie Van Leeuwenhoek,1987,53,147-158.
    [2]van Egmond H. P, Schothorst R.C, Jonker M.A. Regulations relating to mycotoxins in food:Perspectives in a global and european context. Ana. Bioana. Chem,2007,389, 147-157.
    [3]Benasutti M, Ejadi S, Whitlow M.D, Loechler E.L. Mapping the Binding Site of Aflatoxin B1 in DNA:Systematic Analysis of the reactivity of Aflatoxin B1 with Ganines in Different DNA sequences.Biochemistry,1988,27,472-481.
    [4]Essigmann J.M, Croy R.G, Nadzan A.M, Busby W.F, Reinhold V.N, Buchi G, Wogan G.N. Proc. Structural identification of the major DNA adduct formed by aflatoxin B1 in vitro. Nati. Acad. Sci. U. S. A,1977,74,1870-1874.
    [5]张东升,赵晓联.黄曲霉毒素M的危害、污染现状及检测方法进展.中国卫生检验,2004(6):266-269.
    [6]Moricz A.M, Horvath E, Ott P.G, Tyihak E. Raman spectroscopic evaluation of the influence of Pseudomonas bacteria on aflatoxin B1 in the BioArena complex bilautographic system. J.Raman Spectrosc,2008,39,1332-1337.
    [7]卢艳杰,龚院生,张连富.油脂检测技.北京:化学工业出版社,2004,134-254.
    [8]Khayoon W.S, Saad B, Yan C.B, Hashim N.H, Abdussalam A.S.M, Ml Salleh B.S. Determination of aflatoxins in animal feeds by HPLC with multifunctional column clean-up. Food Chemistry.2010,118,882-886.
    [9]Wyszomirski M, Prus W. Molecular modeling of a template substitute and monomers used in molecular mprinting for aflatoxin B1 micro-HPLC analysis. Molecular Simulation.2012,38,892-895.
    [10]倪梅林,谢东华,曹苏仙.高效液相色谱法与快速酶免疫法检测食品中黄曲霉毒素的比较.江苏农业科学,2006(5):167—169.
    [11]Peiwu L, Qi Z, Wen Z, Immnoassays for aflatoxins. Trends in Analytical Chemistry, 2009,28(9):1115-1125.
    [12]赵晓联,赵春城,钮伟民,李芳.中国卫生检验杂志.2001,11,473-474.
    [13]李兴霞,王国霞,潘家荣,免疫分析新方法在食品安全检测中的应用.生物技术 通报,2006(10):42-45.
    [14]李培武,马良杨,金娥.粮油产品黄曲霉毒素B1检测技术研究进展,中国油料作物学报,2005(6):77-81.
    [15]刘梦琴,黄勇,刘阳新.电化学酶联免疫传感器的发展概述.化学传感器,2007(3):3-8.
    [16]Carter R.M, Jacobs M.B, htbranoGJ. Rapid Detection of Aflatoxin B1 with Imrnunochemical Optrodes. Analytical Leters,1997,8:1465-1482.
    [17]Amrmd N.H, Micheli L, Palleechi G. Electrecheaaaical immunosensor for determination of aflatoxin Bi in barley. Analytica Chimica Acta,2004, 520(1-2):159-164.
    [18]Carlson M.A, Bargemn C.B, Benson R.C, et al. An automated, handheld biosensor for aflatoxin. Biosonsors & Bioelectmnies,2000 (14):841-848.
    [19]Liu Y, Qin Z.H, Xing F, et al. Immune-biosemor for aflatoxin B1 based bio-electrocatalytic reaction on micro-comb electrode. Biochemical Engineering Journal,2006(32):211-217.
    [20]张树霖.拉曼光谱学与低维纳米半导体.科学出版社,2008,1-6,38-39,52,60,277.
    [21]Raman C. V, Krishnan K. S. A new type of secondary radiation. Nature.1928, 121:501-502.
    [22]张明生.激光光散射谱学.科学出版社,2008,11,450-454,462-463,470,473-475。
    [23]Fleischmann M, Hendra P J, McQuillan A. J. Raman spectra of pyridine adsorbed ata silver electrode. Chem. Phys. Lett.,1974,26:163-166.
    [24]Albrecht M. G, Crieghton J. A, Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc,1977,99(15),5215-5217.
    [25]Jeanmaire D. L, Van Duyne R. P. Surface Raman spectroelectrochemistry:Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem.1977,84,1-20.
    [26]Aravind P.K, Nitzan A, Metiu H. The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres. Surface Science.1981,110:189-204.
    [27]Moskovits M. Surface-enhanced spectroscopy. Reviews of Modern Physics,1985, 57(3):783-826.
    [28]Moskovits M, Tay L.L, Yang J, Haslett T. SERS and the Single Molecule, Topics in Applied Physics,2002,82:215-227.
    [29]Qin L, Zou S, Xue C, Atkinson A, Schatz G.C, Mirkin C.A. Designing, fabricating, and imaging Raman hot spots. Proc Natl Acad Sci USA,2006,103(36):13300-3.
    [30]Camden J.P, Dieringer J.A, Wang Y, et al. Probing the Structure of Single-Molecule Surface-Enhanced Raman Scattering Hot Spots. J. Am. Chem. Soc,2008,130(38): 12616-12617.
    [31]Wei H, Hao F, Huang Y Z, et al. Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems. Nano Lett,2008,8:2497-2502.
    [32]Wei H, Hakanson U, Yang Z L, et al. Individual nanometric hole-particle pairs for surface-enhanced Raman scattering. Small,2008,4.(9):1296-1300.
    [33]Nie S, Emory S R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science,1997,275(5303):1102-1106.
    [34]Kin F. W, van Duyne R. P, Schatz G. C. Theory of Raman scattering by molecules adsorbed on electrode surfaces. Journal of Chemical Physics,1978,69:4472-4481.
    [35]Moskovits M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. Journal of Chemical Physics,1978,69(9):4159-4161.
    [36]Fuchs R. Theory of the optical properties of ionic crystal cubes. Physical Review B. 1975,11:1173-1174.
    [37]Creighton J. A, Blatchford C. G, Albrecht M. G. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. Journal of the Chemical Society, Faraday Transactions 2,1979,75:790-798.
    [38]Blatchford C. G, Cambell J. R, Creighton J. S. Plasma resonance enhanced Raman scattering by absorbates on gold colloids:The effects of aggregation. Surface Science, 1982,120:435-455.
    [39]Vo-Dinh T. Surface-enhanced Raman spectroscopy using metallic nanostructuresl, Trac. Trends Anal. Chem.,1998,17(8-9):557-582.
    [40]Campion A, Kambhampati P. Surface enhanced Raman scattering. Chem Soc Rev, 1998,27(4):241-250.
    [41]Chang P. K, Furtak T. E. Surface enhanced Raman scattering,1982, New York: Plenum Press.
    [42]Campion A, Ivanecky J. E, Child Ⅲ C. M, et al. On the Mechanism of Chemical Enhancement in surface-enhanced Raman scattering. Journal of the American Chemical Society.1995,117(47):11807-11808.
    [43]Kneipp K, Kneipp H, Itzkan Ⅰ, et al. Ultrasensitive Chemical Analysis by Raman spectroscopy. Chemical Reviews,1999,99(10):2957-2975.
    [44]Otto A, Grabhorn H, Akemann W. Surface enhanced Raman scattering. Journal of Physics-Condensed Matter,1992,4(5):1143-1212.
    [45]周吉.银纳米材料可控合成及其在表面增强光谱中的应用研究.2009,博士学位论文,6,21-22.
    [46]Plith W. J. Electrochemical Properties of small clusters of metal Atoms and Their Role in Surface Enhanced Raman Scattering. Journal of Physical Chemistry,1982,86(16): 3166-3170.
    [47]Roy D, Furtak T. E. Characterization of Surface Complexes in Enhanced Raman Scattering. Journal of Chemical Physics,1984,81(9):4168-4175.
    [48]Jensen L, Aikens C. M, Schatz G. C. Electronic Structure Methods for Studying Surface-Enhanced Raman Scattering. Chemical Society Reviews,2008,37(5): 1061-1073.
    [49]Hallmark V. M, Campion A. Unenhanced Raman Spectroscopy of Benzene Adsorbed on Single Crystal Silver Surfaces Evidence for Surface Selection Rules. Chemical Physics Letters,1984,110(6):561-564.
    [50]Adrian F. J. Charge Transfer Effects in Surface Enhanced Raman Scattering. Journal of Chemical Physics,1982,77(11):5302-5314.
    [51]Ueba H. Theory of Charge Transfer Excitation in Surface Enhanced Raman Scattering. Surface Science,1983,131(23):347-366.
    [52]Ding S Y, Wu D Y, Yang Z L, et al. Some Progresses in Mechanistic Studies on Surface-Enhanced Raman Scattering. Chem. J. Chinese U,2008,29(12):2569-2581.
    [53]吴国桢.分子振动光谱学原理与研究,2001,北京:北京大学出版社。
    [54]Albrecht A. C. On the theory of Raman intensities. J. Chem. Phys.,1961,34:1476.
    [55]Faraday M, The Bakerian lecture:experimental relations of gold (and other metals) to light Philos. Trans. R. SOC. London,1857,147,145-181.
    [56]Mie G. Scattering of light by colloidal metal particles. Ann. Physik,1908,25: 377-381.
    [57]Kerker M. The Scattering of Light and other electromagnetic Radiation:Academic, New York,1969.
    [58]Bohren C. F, Huffman. D. R. Absorption and Scattering of Light by Small Particles, Wiley Interscience, New York,1983.
    [59]Haes A. J, et al. A localized surface Plasmon resonance bilsensor:First steps toward an assay for Alzheimer's disease. Nano Letters,2004,4(6):1029-1034.
    [60]Haes A. J and Van Duyne. R. P. A nanoscale optical blosensor:Sensitivity and selectivity of an approach based on the localized surface Plasmon resonance spectroscopy of triangular silver nanoparticles. Journal of the American Chemical Society,2002,124(35):10596-10604.
    [61]Hutter E and Fendler J. H. Exploitation of localized surface Plasmon resonance. Advanced Materials.2004,16(19):1685-1706.
    [62]Jensen T.R, et al. Nanosphere lithography:Tunable localized surface Plasmon resonance spectra of silver nanoparticles. Journal of Physical Chemistry B.2000, 104(45):10549-10556.
    [63]Malinsky M. D, et al. Chain length dependence and sensing capabilities of the localized surface Plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. Journal of the American Chemical Society.2001,123(7):1471-1482.
    [64]Willets K. A and Van Duyne R. P. Localized surface Plasmon resonance spectroscopy amd sensing. Annual Review of Physical Chemistry.2007,58:267-297.
    [65]Zhao J, et al. Localized surface Plasmon resonance biosensors. Nanomedicine.2006, 1(2):219-228.
    [66]郑春开.等离子体物理.北京大学出版社,2009,1,20-28.
    [67]Bohren C F, Huffman D R. Absorption and scattering of light by small Partieles. NewYork:John Wiley & Sons,1983,97-99,136-141.
    [68]朱玲,俞大鹏.采用离散偶极近似(DDA)方法研究渐变锥形金属纳米结构的超聚焦效应.科学通报,2009,54(12):1687-1692.
    [69]郭斌,唐永建,罗江山等.双还原剂法制备的三角形银纳米盘的吸收和发射光谱研究.贵金属,2008,29(2):6-10.
    [70]Shankar S.S, Rai A, Ahmad A, et al. Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings, Chem. Mater,2005,17(3):566-572.
    [71]黄鹏,付永启,杜惊雷等.十字星形金属纳米粒子的消光性质.光散射学报,2009,21(3):256-261.
    [72]Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002,298(5601):2176-2179.
    [73]Anjana S, Sudhir K, Tulsi M. Synthesis of silver nnaoprisms in formamide, J. Coll. Inter.Sci.,2005,287(2):496-500.
    [74]Wang H, Brandl D W, Nordlander P, et al. Plasmonic nanostructures:artificial molecules. Acc. Chem. Res.,2007,40(1):53-62.
    [75]黄鹏,付永启,杜惊雷等.菱形金属纳米粒子光学性质的研究.光散射学报,2009,21(2):157-162.
    [76]Porel S, Singh S, Radhakrishnan T P. Polygonal gold nanoplates in a polymer matrix. Chem Commun,2005,18:2387-2389.
    [77]Wang L.Y, Chen X, Zhan J, et al. Synthesis of gold nano-and microplates in hexagonal 1iquid crystals. J. Phys. Chem. B.,2005,109(8):3189-3194.
    [78]Petrova H, Perez J.J, Pastoriza S.I. et al. On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. Phys. Chem. Chem. Phys,2006,8 (7):814-821.
    [79]Cui B, Veres T. Fabrication of metal nanoring array by nanoimprint lithography (NLL) and reactive ion etching. Microelectronic Engineering,2007,84(5):1544-1547.
    [80]Purcell E.M, Pennypacker C.R. Scattering and absorption of light by non-spherical dielectric grains. J. Astrophys,1973,186:705-714.
    [81]Draine B.T, Flatau P.J. Discrete-dipole approximation for periodic targets:theory and tests. J. Opt. Soc. Am. A,2008,25(11):2693-2703.
    [82]Yang Z.L, Aizpurua J, Xu H.X. Electromagnetic field enhancement in TERS configurations. J Raman Spectrosc,2009,40:1343-1348.
    [83]阮芳雄,张顺平,李志鹏等.钯纳米粒子体系中的近场耦合与SERS效应.科学通报,2010,55(21):2078-2085.
    [84]Nehl C.L, Liao H, Hafner J.H. Optical properties of star-shaped gold nanoparticles. Nano Lett,2006,6(4):683-688.
    [85]Jain P.K, Eustis S, El-Sayed M.A. Plasmon coupling in nanorod assemblies:Optical absorption, discrete dipole approximation simulation,and exciton-coupling model. J Phys Chem B,2006,110(37):18243-18253.
    [86]Jain P.K, El-Sayed M.A. Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry:Elongated particle pairs and nanosphere trimers. J Phys Chem C,2008,112(13):4954-4960.
    [87]Li Y.Y, Pan J, Zhan P, et al. Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-threedimensional metallic nanohole array. OPTICS EXPRESS,2010,18(4):3546-3555.
    [88]Teo S.L, Lin V.K, Marty R, et al. Gold nanoring trimers:a versatile structure for infrared sensing. Opt. Express.2010,18(21):22271-22282.
    [89]Banaee M G, Crozier K B. Gold nanorings as substrates for surface-enhanced Raman scattering. Opt. Lett.2010,35(5) 760-762.
    [90]Fermi E. Un metodo statistico per la determinazione di alcune priorieta dell'atome. Rend. Accad. Lincei.,1927,6(32):602-607.
    [91]Thomas L.H. The Calculation of Atomic Fields. Proc. Camb. Phil. Soc,1927,23: 542-548.
    [92]Hohenberg P and Kohn W. Inhomogeneous Electron Gas. Phys. Rev. B,1964,136, 864-871.
    [93]Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys. Rev.1965,140(4A):1133-1138.
    [94]Kohn W, Sham L J. Quantum density oscillations in an inhomogeneous electron gas. Phys. Rev,1965,137(6A):1697.
    [95]Perdew J.P and Wang Y. Accurate and simple density functional for the electronic exchange energy Generalized gradient approximation,1986,33(12):8800-8802.
    [96]Zunger A, Freeman A.J. Ground-state electronic properties of diamond in the local-density formalism. Phys. Rev. B,1977,15(10):5049-5065.
    [97]Kohn W and Holthausen M.C. A Chemist's Guide to Density Functional Theory (Second Edition). Wiley:Weinheim,2001.
    [98]郭俊梅,邓德国,潘健生.计算材料学与材料设计.贵金属.1999,20:62-69.
    [99]Langreth D.C, Mehl M. J. Easily implementable nonlocal exchange-correlation energy functional. Phys. Rev. Lett.1981,47,446-450.
    [100]Perdew J.P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B.1992,45,13244-13249.
    [101]Becke A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A,1988,38(6):3098-3100.
    [102]李永健,陈喜.分子模拟基础,华中师范大学出版社,2011,8-18.
    [103]胡皆汉,王国祯.《红外与拉曼光谱的计算原理和计算程序》(上、下册),高等教育出版社,2009,第一版。
    [104]Neugebauer J, Reiher M, Kind C, Hess B.A. Quantum chemical calculation of vibrational spectra of large molecules-Raman and IR spectra for buckminsterfullerene. J. Comput. Chem.2002,23,895-890.
    [105]Yee K.S. Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media. IEEE Trans. Antennas Propagat.1966, 14:302-307.
    [106]Caria-Pablos D, Sigalas M, Montero de Espinosa. F. R. et al. Theory and experiments on elastic band gaps. Phys. Rev. Lett.,2000,84(19):4349-4352.
    [107]Sigalas M. M and Garcia N. Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method. J. Appl. Phys.,2000, 87(6):3122-3125.
    [108]Lambin P, Khelif A, Vasseur J.O, et al. Stopping of accoustic waves by sonic polymer-fluid composites. Phys. Rev. E,2001,63(6):066605.
    [109]Vasseur J. O, Deymier P. A, Khelif A. et al. Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency range:A theoretical and experimental study. Phys. Rev. E,2002,65(5):056608.
    [110]Cao Y, Hou Z and Liu Y. Finite difference time domain method for band-structure calculations of two-dimensional phononic crystals. State Commun,2004,132(8): 539-543.
    [111]Liu Q.H. The PSTD algorithm:a time-domain method requiring only two cells per wavelength. J.Mirco. Opt. Tech. Lett.1997,10:158-165.
    [112]Liu. Q. H. PML and PSTD algorithm for arbitary lossy anisotropic media. Journal of IEEE Mircowave Guided Wave Lett.1999,9(2):48-50.
    [113]马弘柯,聂在平,赵延文PSTD算法及其吸收边界分析.电子学报,2003,31(6):871-874.
    [114]Kunz K.S, Luebbers R.J. The Finite Difference Time Domain Method for Electromagnetics. CRC Press, LLC, Boca Raton,1993.
    [115]Krug Ⅱ J.T, Sanchez E.J, Xie X.S. Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation. J. Chem. Phys.2002,116(24):10895-15901.
    [116]Sullivan D.M. Electromagnetic Simulation Using the FDTD method. New York: IEEE Press.2000.
    [117]葛德彪,闫玉波.电磁波时域有限差分方法.西安电子科技大学出版社,2005,11-17,35-43.
    [118]Futamata M, Maruyama Y, Ishikawa M. Microscopic morphology and SERS activity of Ag colloidal particles. Vibrational Spectrosc,2002,30:17-23.
    [119]Kottmann J.P, Martin O.J.F, Smith D.R, Schultz S. Plasmon resonances of silver nanowires with a nonregular cross section. J. Phys. Rev. B.2001,64(23):235402 (1-10).
    [120]Kottmann J.P, Martin O.J.F, Smith D.R, Schultz S. Dramatic localized electromagnetic enhancement in Plasmon resonant nanowires. J. Chem. Phys. Lett. 2001,341(1-2):1-6.
    [121]Hao E, Schztz G.C. Electromagnetic fields around silver nanoparticles and dimmers. J. Chme. Phys.2004,120(1):357-366.
    [122]Yang W.H, Schztz G.C, Vanduyne R.P. Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes. J. Chem. Phys.1995,103:869-875.
    [123]Klein S, Geshev P, Witting T, Dickmann K, Hietschold M. Enhanced Raman scattering in the near field of a scanning tunneling tip-An approach to single molecule Raman spectroscopy. Electrochemistry.2003,71(2):114-116.
    [124]Demming F, Jersch J, Dickmann K, Geshev P.I. Calculation of the field enhancement on laser-illuminatied scanning probe tips by the boundary element method, Applied Physics B-Laser And optics.1998,66(5):593-598.
    [125]Mishchenko M.I. Light scattering by randomly oriented axially symmetric particles. J. Am. Opt. Soc. A.1991,8(6):871-882.
    [126]Mishchenko M.I, Travis L.D, Mackowski D.W. T-matrix computations of light scattering by nonspherical particles:A review. J. Quant. Spectro.& Rad. Tran.1996, 55(5):535-575.
    [127]Futamata M, Maruyama Y, Ishikawa M. Critical importance of the junction in touching Ag particles for single molecule sensitivity in SERS. J. Mol. Stru.2005, 735:75-84.
    [128]Futamata M, Maruyama Y, Ishikawa M. Metal nanostructures with single molecule sensitivity in surface enhanced Raman scattering. Vibrational Spectrosc.2004, 35:121-129.
    [129]Oubre C, Nordlander P. Finite Difference Time Domain Studies of the Optical Properties of Nanoshell Dimers. J. Phys. Chem. B.2005,109:10042-10051.
    [130]Cui L.; Ren B.; Tian Z. Q. Acta Phys.-Chim. Sin.2010,26,397.
    [131]Wu X. Z, Pei M.S, Wang L.Y, Li X. N, Tao X.T. Acta Phys.-Chim. Sin.2010,26, 3095.
    [132]Gu R.A, Shen X.Y, Wang M. Acta Phys.-Chim. Sin.2005,21,1117.
    [133]Liu S. S, Zhao X. M, Li Y. Z, Zhao X. H, Chen M.D. Spectrochimica Acta A 2009, 73,382.
    [134]Sun M. T, Liu S. S, Chen M. D, Xu H. X. J. Raman Spectrosc.2009,40,137.
    [135]Zhuang Z. P, Cheng J. B, Wang X, Ruan W. D, Zhao B. Spectrochimica Acta A 2007, 67,509.
    [136]Kathryn E. B, Christine M. A. J. Phys. Chem. A 2010,114,8858.
    [137]Biswas N, Thomas S, Kapoor S, Mishra A, Wategaonkar S, Venkateswaran S, Mukherjee, T. J. Phys. Chem. A2006,110,1805.
    [138]Zhuang Z.P, Ruan W.D, Nan J, Shang X. H, Wang X, Zhao B. Vib. Spectrosc.2009, 49,118.
    [139]Sun L, Bai Q. F, Zhang H. X. Acta Phys.-Chim. Sin 2011,27,1335.
    [140]Nicolas-Vazquez I, Mendez-Albores A, Moreno-Martinez E, Miranda R, Castro M. Arch Environ. Contam. Toxicol.2010,59,393.
    [141]Ramirez-Galicia G, Garduno-Juarez R, Gabriela Vargas M. Photochem. Photobiol. Sci.2007,6,110.
    [142]Billes F, Moricz A. M, Tyihak E, Mikosch H. Spectrochimica Acta A 2006,64,600.
    [143]Wu X.M. Wang H.Y, Wang J.S, Wang H.Y, Huang Y.W and Zhao Y.P., Analyst, 2012,137,4226,.
    [144]Becke A. D. J. Chem. Phys.1993,98,5648.
    [145]Lee C, Yang W, Parr R. G. Phys. Rev. B 1988,37,785.
    [146]Hay P. Y, Wadt W.R. J. Chem. Phys.1985,82,270.
    [147]Tian D. X, Zhang H. L, Zhao J. J. Solid State Commun.2007,144,174.
    [148]Frisch M. J, Trucks G. W, Schlegel H. B, et al. Gaussian 09, Revision A.01; Gaussian Inc.:Wallingford, CT,2004.
    [149]Schlegel. H. B, Velkovski. J, Halls. M. D. Harmonic frequency scaling factors for Hartree-Fock, S-VWN, B-LYP, B3-PW91 and MP2 with the sadiej pVTZelectric property basis set. Theor. Chem. Acc,2001,105:413-421.
    [150]Moskovits M. J. Chem. Phys.1982,77,4408.
    [151]Moskovits M.; Suh J. S. J. Phys. Chem.1984,88,5526.
    [152]Baetzold R. C. J. Chem. Phys.,1971,55,4363-4370.
    [153]Joe Ho, Kent M. Ervin, Lineberger W. C. J. Chem. Phys.,1990,93,6987-7002.
    [154]Vlsata B. K, Vincent V, Roland M. J. Chem. Phys.,2001,115,10450-10460.
    [155]Zhao J. C, He H. B, Li Y. B. J. Chem. Phys.,2001,14,281-284.
    [156]刘秀敏.对巯基苯胺分子的表面增强拉曼光谱的理论研究,2008,硕士学位论文,24-30,42-43.
    [157]IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol.56, Some Naturally Occurring Substances:Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins, International Agency for Research on Cancer, Lyon,1993, p489.
    [158]王君,刘秀梅.中国食品卫生杂志,2005,17(6),498-500.
    [159]Sadeghi N, Oveisi M.R, Jannat B, Hajimahmoodi M, Bonyani H, Jannat Food Control,2009,20,75-78.
    [160]Smela M. E, Currier S. S, Bailey E. A, Essigmann J. M. Carcinogenesis,2001,22(4): 535-545.
    [161]Mishra H. N, Chitrangada Das. Critical Reviews in Food Science and Nutrition, 2003,43(3):245-264.
    [162]胡继明,胡军,光散射学报,1998,10,141-144.
    [163]Zhuang Z.P,.Cheng J.B, Wang X. J. Molecule Structure,2006,794,77-82.
    [164]李喜波,王红艳,唐永建,徐国亮,毛华平等.原子与分子物理学报,2004,21,388-394.
    [165]Aikens C.M. and Schatz G.C. J. Phys. Chem. A.2006,110,13317-13324.
    [166]Otto A, Futamata M. Electronic Mechanisms of SERS. In Surface-Enhanced Raman Scattering:Physics and Applications,2006,103:147-148.
    [167]Kneipp K, Wang Y, Kneipp H, et al. Single Molecule Detection Using Surface Enhanced Raman (SERS). Physical Review Letters,1997,78(9):1667.
    [168]Moskovits M. Surface-Enhanced Raman spectroscopy:a brief retrospective, Journal of Raman Spectroscopy,2005,36:485-496.
    [169]Kneipp K, Kneipp H, Moskovits M. Surface-Enhanced Raman Scattering. Physics and Applications, Heidelberg:Springer,2006.
    [170]Garrell R.L. Surface-Enhanced Raman Spectroscopy. Analytical Chemistry,1989, 61(6):401A-411A.
    [171]宇燕,宋晓书,龙峰.MgO在外电场作用下的分子特性研究.四川大学学报(自然科学版),2009,46(3):749-755.
    [172]Xu G.L, Lv W.J, Liu Y. F, et al. Effect of external electric field on the optical excitation of silicon dioxide. Acta. Phy. Sin,2009,58:3058.
    [173]Cooper G, Olney T. N, Brion C. E. Absolute UV and soft X-ray photoabsorption of ethylene by high resolution dipole spectroscopy. J. Chem. Phys,1995, 194(1):175-184.
    [174]Crozier K.B. et al. Optical antennas:Resonators for local field enhancement. Journal of Applied Physics.2003,94(7):4632-4642.
    [175]Jackson J.B. et al. Controlling the surface enhanced Raman effect via the nanoshell geometry. Applied physics Letters.2003,82(2):257-259.
    [176]Kall M, Xu H.X and Johansson P. Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy. Journal of Raman Spectroscopy.2005,36(6-7):510-514.
    [177]Lu Y, et al. Nanophotonic crescent moon structures with sharp edge for u ltrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Letters.2005,5(1):119-124.
    [178]Zou S.L and Schatz G.C. Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields. Chemical Physics Letters.2005,403(1-3): 62-67.
    [179 Futamata M, Maruyama Y, Ishikawa M. Local electric field and scattering cross section of Ag nanoparticles under surface Plasmon resonance by finite difference time domain method. J. Phys. Chem. B.2003,107:7607-7617.
    [180]Micic M, Klymyshyn N, Suh Y.D, Lu H.P. Finite element method simulation of the field distribution for AFM tip-enhanced surface-enhanced Raman scattering microscopy. J. Phys. Chem. B.2003,107:1574-1584.
    [181]xfdtd7.1.0.5试用版http://en.wikipedia.org/wiki/FDTD.
    [182]Ren B, Lin X. F, Yang Z. L, Liu G. K, Aroca R. F, Mao B. W, Tian Z. Q. Surface enhanced Raman scattering in the ultraviolet spectral region:UV-SERS onrhodium and ruthenium electrodes. J. Am. Chem. Soc.2003,125:9598-9599.
    [183]Doerfer T, Schmitt M, Popp J. Deep-UV surface-enhanced Raman scattering. J. Raman. Spectrosc.2007,38(11):1379-1382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700