用户名: 密码: 验证码:
胎盘源性间充质干细胞及血管内皮生长因子对缺血性皮瓣促愈作用的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究目的是探索人胎盘源间充质干细胞(HPMSC_S)能否向创伤修复过程中起关键作用的创伤修复细胞---血管内皮细胞分化;并构建PIRE2-EGFP-VEGF双顺反子真核质粒表达载体,并运用脂质体转染法将该真核质粒表达载体转染至HPMSC_S内;通过腹腔内注射途径探索HPMSC_S能否携带目的基因向创伤局部归巢扩充,HPMSC_S本身对创伤修复的促进作用及其作用机制,以及它是否与VEGF在创伤修复过程中有协同作用,探索HPMSC_S及VEGF对超比例皮瓣的促愈作用。
     本实验首先通过密度梯度离心法从废弃的胎盘组织中分离、培养了间充质干细胞,并通过流式分析仪对其表面标志加以分析,结果表明该细胞与骨髓源间充质干细胞的表面标志基本相同;并绘制了生长曲线,结果表明该细胞符合干细胞基本特征;为了鉴定HPMSC_S的多向分化能力,我们进行了成脂肪、成骨诱导鉴定,结果表明,该细胞完全具有多向分化潜能。
     然后将鉴定后的HPMSC_S加入内皮细胞诱导分化培养体系中,向内皮细胞诱导分化。研究结果显示,HPMSC_S在培养基中持续培养后,形态由“类成纤维细胞样”转变为类似内皮细胞的“铺路石样结构”。成熟内皮细胞特异的表面标志vWF在未诱导的HPMSC_S中不表达,但在这种内皮样细胞却为阳性表达。流式细胞仪检测显示,内皮细胞表面标志CD31、CD34的表达量较未诱导前均有所增加, Dil-Ac-LDL摄取实验发现,诱导后的内皮样细胞具有摄取Dil-Ac-LDL的能力。以上说明本实验的诱导方案能够诱导HPMSC_S出现内皮细胞表型,且随着诱导时间的延长其表型特征也愈加明显,提示HPMSC_S在体外特定条件下具有定向分化为内皮细胞的潜能。
     为了研究HPMSC_S能否充当VEGF基因的转运载体,本实验首先构建了PIRE2-EGFP-VEGF双顺反子真核质粒表达载体,并采用脂质体转染法,用Lipofectin脂质体成功将真核表达载体PIRES2-EGFP-VEGF_(165)转入HPMSC_S中,经绿色荧光显微镜下观察,可见EGFP表达的绿色荧光蛋白,提示EGFP已成功转入靶细胞。证明脂质体介导的PIRES2-EGFP-VEGF_(165)转染HPMSC_S是可行的。转染细胞经G418筛选后,出现数量较多的细胞克隆,而非转染组细胞100%死亡,提示VEGF基因转染HPMSC_S的效果和G418筛选的效果都较好。通过VEGF的免疫印迹分析(Western-blot技术)发现有较强VEGF表达,而空载体转染组则表达较弱。通过MTT法检测VEGF的生物学活性发现:转染目的基因的HPMSC_S所表达的VEGF生物学活性较空载体组及对照组明显提高,而空载组要高于对照组,这些结论提示:一方面VEGF_(165)在HPMSC_S中有较强表达并被正确修饰,HPMSC_S可以作为基因治疗的载体细胞;另一方面提示HPMSC_S也可能具有内分泌VEGF的功能,但作用较弱。为了防止转染外源性基因的HPMSC_S出现基因突变,失去多向分化潜能,我们又对转染外源基因的HPMSC_S进行鉴了多向诱导分化定,结果表明,转染后的HPMSC_S仍旧保持干细胞特性。
     最后,本实验通过将标记BrdU的携带目的基因pIRES2-EGFP-VEGF_(165)的HPMSC_S注射于大鼠腹腔内,通过皮瓣抗BrdU免疫组化观察了HPMSC_S的迁徙归巢特性,发现实验组皮瓣远端缺血区域内可见被BrdU标记的HPMSC_S广泛分布,且多分布于表皮层及真皮层下方的新生血管周围,说明HPMSC_S具有向创伤缺血部位表皮及真皮下方归巢扩充的特性,并有可能向内皮细胞分化,促进血管新生。通过皮瓣免疫组化染色及微血管计数发现,携带目的基因及空载体的HPMSC_S组以及单纯应用VEGF组皮瓣真皮下方及表皮层内可见大量黄染颗粒,说明皮瓣真皮下方及表皮层内有大量内皮细胞及微血管形成,但空载体组数量少于携带目的基因组及VEGF组,携带目的基因组黄染颗粒细胞数目最多,这就说明VEGF与HPMSC_S联合作用促血管形成作用大于单纯HPMSC_S或VEGF作用,说明VEGF与HPMSC_S有协同作用,VEGF可以促进HPMSC_S向内皮细胞分化、增殖,促进血管新生,HPMSC_S很可能通过内分泌或旁分泌促血管形成因子来间接促进血管新生。HE染色组织病理学检查也证实,携带目的基因pIRES2-EGFP-VEGF_(165)的HPMSC_S的皮瓣下方细胞成分及新生血管均最多,而携带空载体的HPMSC_S皮瓣下方细胞成分丰富,但血管数量少于携带目的基因组及VEGF组,这也证实,HPMSC_S具有向修复细胞表型分化的特点,但其促血管形成作用低于VEGF与HPMSC_S联合作用及单纯应用VEGF。皮瓣成活率检测表明:携带目的基因的HPMSC_S促进皮瓣成率最高,其次为VEGF组,再次为空载组,三者均较对照组有明显促进皮瓣成活的作用。
Tissue coloboma after trauma or tumor operation usually requires the use of the skin flap transplanting to restore. Over the years, even though designs and surgical techniques of the skin flap have improved continuously, and have tried to adopt a number of materia medica to improve the survival of skin flap, but this problem that because of the hypoxia-ischemia in remote tissue of the skin flap and venous reflux impeded after the skin flap transplanting often leading to the dead of the transplanting skip flap tissue has always plagued clinicians. The hot issue on injury and reconstruction of surgery field research is on how to improve the survival rate of over-length skin flap and expand clinical application of random skin flap. Many scholars found through research that there are two keys to solve this problem: (1) after the skin flap transplanting, repair in trauma process should be started as soon as possible, mobilize repair in trauma factor fully, speed up the repair in trauma of the skin flap transplanting section, and promote "bonding" between skin flap with the recipient site, a skin flap with the surrounding tissue(;2) speeding up reconstruction of the remote skin flap ischemia section blood circulation, resolve remote skin flap hypoxia-ischemia status. The two combined actions can promote the survival of super-ratio skin flap effectively.
     VEGF (Vascular endothelial growth factor) is a secreted glycoprotein, the proliferation is strong, and is easy to reach the target cells, and has the promoting effect on migration, proliferation, growth of vascular endothelial cell; and can also promote proliferation, migration of the fibroblast; and stimulates the partial reconstruction cell gathering in trauma, has a strong role in promoting repair in trauma, synthesizes and secretes extracellular matrix, has strong promoting repair in trauma. It is only known cytokines on the purpose of treatment of ischemia- hypoxia through direct effects on vascular endothelial cell surface receptors and rapid formation of new blood vessels, in the short term reconstruction blood circulation of the ischemia section. Although VEGF has an efficient ability to promote angiogenesis, but it has very short half-life and is difficult to play persistent effect with expensive price, so it is difficult to be promoted in practical applications. Therefore, looking for a suitable VEGF sustained-release system or VEGF persistent effect system is in urgent need of solution currently.
     In recent years, it was discovered that stem cells has important applications capacity in the field of repair in trauma. MSCs (mesenchymal stem cells) and ADSCS (adipose-derived stem cells) could be mobilized, homed and expanded to the injury point to participate in repair in trauma. the specific capacity of MSCS and ADSCS is that they can move directly to injury tissue can be confirmed in the repair in skin trauma, it is proved that MSCS has been involved in the whole process of repair in trauma, MSCS and ADSCS can home to the injury point or differentiate into phenotype of injury cells, and it also can promote the regeneration of the tissue endogenous cell by creating the enhancement of micro-environment. But at present, the fact whether the placenta-derived stem cells in repair in trauma process can home to the trauma section and play a catalytic role in repair in trauma is not reported now. Moreover, stem cells can also act as vector cells of gene therapy, transport gene to target section, exert therapeutic effects. Such as MSC etch adult stem cells can be used as gene therapy vector of multi-diseases of the central nervous system; MSC, rADSC, EPC etch can be used as therapy vector for VEGF, FGF etch cytokines to promote the establishment of collateral circulation and angiogenesis. But at present there is very rare report about HPMSC_S as gene therapy vector
     In order to explore whether HPMSC_S can home to the trauma section and can promote repair in trauma, as well as whether it can act as a vector cell of VEGF cells to deliver VEGF to trauma section, exert persistent effect of VEGF, we carried out an experiment as follows:
     1. To obtain HPMSCs from the placenta, this experiment separated mononuclear cells from the placenta perfusate using density gradient centrifugation, cultivated adherence, further selected independent clones to cultivate separately, purified HPMSC_S cloning from adherent cells. We've detected its general biological characteristics, and differentiated into fat, bone to identify its multidirectional differentiation potentiality through directed induction.
     2 In order to explore whether HPMSCs can differentiate to repair in trauma cells phenotype, we carried out the experiment on "human placenta mesenchymal stem cells (HPMSCs) inducing in vitro to differentiate into vascular endothelial ", by optimizing the endothelial nutrient fluid, after the directed inducing HPMSCs to cultivate 3 d passage, cell morphology changed ,when passage cell grew to 80% ~ 90% confluence, expressed analogy endothelial "cobblestone"-like structure known as "endothelial-like cells", back cell body inducing 7 d or 14 d retracted gradually, enhanced a sense of three-dimension. Specific surface mark vWF of mature endothelial cell did not express in not induced HPMSC_S, but such endothelial-like cells were positive expression. Flow cytom -etry showed that the expression of CD31 was 22.39%, but it had increased compared to not induced HPMSCs; but CD34 was the same to not induced, endothelial-like cells did not express after induction. Dil-Ac-LDL uptake experiments revealed that endothelial-like cells after induction had the ability to uptake Dil-Ac-LDL. In summary, the current induced scheme can induce HPMSCs to appear endothelial cell phenotype, and its phenotypic characteristics are more obvious as the extension of the induction time, HPMSCs has the capacity to direct and different -iate into endothelial cells in vitro specific conditions.
     3 In order to prove that HPMSC_S has the function of gene therapy vector cell, the experiment established a pIRES2-EGFP-VEGF_(165) eukaryotic expression vector, and transferred pIRES2-EGFP-VEGF_(165) into HPMSC_S by liposome method successfully, and identified that HPMSC s with gene still has stem cell characteristics by multidirection induced differentiation..
     4 In order to explore whether HPMSC_S with pIRES2-EGFP-VEGF_(165) can home to repair in trauma and promote blood circulation in ischemic section, we carried out an vitro experimental study on〝basic research on HPMSC_S of pIRES2-EGFP-VEGF_(165) eukaryotic expression vector impact on the survival of ischemic skin flap〞. Through research we confirmed that HPMSC_S with gene has characteristics to home to repair in trauma section, and differentiate to repair in trauma cell and promote blood circulation of ischemic section, improve the survival of the ultra proportion skin flap.
     Sum up fully, this study confirms by experiment that the placenta-derived stem cells has the characteristic to differentiate to repair in trauma cell phenotype , and it can be used as vector cells of the gene therapy to deliver target genes to trauma section, play a role in promoting repair in trauma , and maintain its multi-directional differentiation potentiality; VEGF can express vector by constructed eukaryote, and transfer into HPMSCS, transport it to its target section through the vector cells , and play sufficient effect. This study further improves the theory of the stem cells family to promote repair in trauma, and also provides a new way and methods for VEGF sufficient effect.
引文
[1]. Mandriota S J, Seghezzi G, Vassalli J D,et al. Vascular endothelial growth factor increase urokinase receptor expression in vascular endothelial cells [J]. Biol Chem,1995,270(1):9709-9716.
    [2]. Noiri E,lee E,Testa J,et al.Podokinesis in Endothelia Cell migration: Role of nitric oxide [J].Am J Physiol,1998,274(1):C236-244.
    [3]. Davidge S T,Baker D N,MclanghlinM K.Nitric oxide produced by endo- thelial cells increase production of eicosanoidsthrough activatin of pros -taglandin H synthase [J].Circ Res,1995,77(2):274-283.
    [4]. Goldberg M A, Schneider T J. Similarities beteen the oxygensens ingm- echanisms regulation the expression of vascular endothelial growth factor and erythropoietin [J]. Biol Chem,1994,269(6):4355-4359.
    [5]. Seko Y,Seko YO,Fujikura H,et al.Induction of vascular endothelial growth factor after application of mechanical stress to retinal pigment epit- helium of the rat in vitro [J].IOVS,1999,40(13):3287-3291.
    [6]. Laurent A,Lantieri M D.Vascular endothelial growth factor expressi- onin expanded tissue:A possible mechanism of angiogenesis in tissue ex-pansion [J]. Plast Reconstr Surg,1998,101(2):392-397.
    [7]. Gou D,Jia Q,SongH Y,et al.Vascular Endothelial Growth Factor mote- styrosine Phosphorylation of MediatorsofSignalTransductionThat Contain SH2 Domains [J].J Biol Chem,1995,270(12):6729-6731.
    [8]. Grugel S,Finkenzeller G,Weindel K,et al.Both v-Ha-Ras and v-Raf stimulates expression of the vascular endothelial growth factor in NIH 3T3 Cells [J].J Biol Chem,1995,270(43):25915-25919.
    [9]. Debabrata M,Leonidas T,Vikas P,et al.Wild-Type p53 and v-Src Exert Opposing Influences on Human Vascular Endothelial Growth Factor Gene Expression [J].Cancer Res,1995,55(24):6161-6165.
    [10]. Frank S,Hubner G,Breier G,et al.Regulation of Vascular Endothelial Growth Factor Expression in Cultured Keratinocytes[J].J Biol Chem,1995,270 (21): 12607-12613.
    [11]. Gorski D H,Beckett M A,Jaskowiak N T,et al.Blockage of the vascularendothelial growth factor stress response increase the antitumor effects ofionizing radiation [J].Cancer Res,1999,59(14):3374-3378.
    [12]. Hood J D,Meininger C T,Ziche M,et al.VEGF upregulates ecNOSmessage, protein,and NO production in human endothelial cells[J].AmPathol,1998,74(3): H1054-1058.
    [13].Ferrara N,Hoek K,Jakeman L,etal. Molecular and biological properties of the vascular endothelial growth factor family of proteins [J]. Endocr Rev ,1992,13(1):18-32.
    [14].Tischer E,Mitehell R,Hartman T,etal. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing [J]. Biol Chem,1991,266(18):11947-11954.
    [15].Ferrara N,Davis-snyth T. The biology of vascular endothelial growth factor [J].Endocr Rev,1997,18(1):4-25.
    [16].Houck KA,Leung DW,Rowland AM,etal. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms [J]. Bio Chcm,1992,267(36):26031-26037.
    [17].Brown LFP,Yeo KT,BersE B,et al. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing [J]. Exp Med,1992,176(5):1375-1379.
    [18].Stefan F,Hubner G,Breier G,et al. Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing [J].Biol Chem,1995,270(21):12607-12613.
    [19].PeterJ,Taub MD,Jona than D,etal. Locally administered vascular endothelial growth factor cDNA increases survival of ischemic experimental skin flaps [J] .Plast Reconstr Surg, 1998,l02(6):2033-2039.
    [20].张从纪,周树夏,李慧增等.颌面部爆炸伤愈合过程中血管相关生长因子变化和作用的实验研究[J].中华创伤杂志,2001,16(1):35-37.
    [21].蔚竼,李佛保.血管内皮细胞生长因子影响大鼠皮瓣成活的实验研究[J].中国修复重建外科杂志,1997,11(6):376-378.
    [22].Hom DB,Asseffa G. Effects of endothelial cell growth factor on vascular compromised skin flaps [J]. Arch otolaryngol Head Neck Surg,118(6):624-628.
    [23].Chapman GD,Lim CS,Gammon RS,et al. Gene transfer into coronary arteries of intact animals with a percutaneous balloon catheter [J] .Circ Res,1992,71(l):27-33.
    [24].Padubidri A,Brown EJ. Effect of vascular endothelial growth factor (VEGF) on survival of random extension of axial pattern skin flaps in the rat [J]. Ann Plas Surg,1996,37(6):604-611.
    [25].Laurant A,Lantieri MD,Martin-carcia N,et al. Vascular endothelial growth factor expression in expanded tissue: a possible mechanism of angiogenesis in tissue expansion [J]. Plast Reconstr Sug,l998,101(2):392-397.
    [26]. InserJ M,PieczecA,Schainfeld R,et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb [J]. Lancet, 1996 ,348(9024):370-4.
    [27].付小兵,王德文.现代创伤修复学[M].北京:人民军医出版社,1999:209-210.
    [28].Reubinoff BE, Pera MF, Fong CY, et al. Em-bryonic stem cell lines from human blastocysts:somatic differentiation in vitro [J].Nat Biotechnol, 2000, 18: 399-404.
    [29].Kehat I, Kenyagin-Karsenti D, Snir M, et al. Human embryonic stem cells can differenti-ate into myocytes with structural and functional prope- rties of cardiomyocytes [J]. J Clin Invest,2001, 108: 407-412.
    [30].Gould E,Reeves AJ,Fallah M,etal. Hippocampal neurogenesis in adult old world Primates [J].Proc Natl Acad Sci USA,1999,96:5263-5267.
    [31].Chiasson B J,Tropepe V Morshead C M,et al. Adult mammalion forebrain ependymal And subependymal cells demonstrate proliefrative potential,but only subepedymal cells have neural stem cells characteristies [J]. J Neurosci,1999,19: 4462-4471.
    [32].Shihabuddin L S,Palmer T D,Gage F H. The search for neural progenitor ceells:Prospects for the therapy of neurodegenerative disease [J]. Mol Med Today,1999,5:474-480.
    [33].Jaction K A,Mi T, Goodell M A. Hematopoietic potential of stem cells isolated from Murin skeletal muscle [J]. Porc Natl Aeda Sci USA , 1999,96:14482-14486.
    [34].Pittenger M F,Mackay A M,Beck S C ,et al. Multilineage Potential of adult human mesenchymal stem cells [J]. Science,1999,284:143-147.
    [35].Krause D S,Theise N D,Collector M l,et al. Multi-organ,multi- lineage engraftment by a single bone marrow-derived stem cell [J].Cell,2001,105:369-377.
    [36].Jiang Y H,Jahagirda B N,Reinhardt R L,et al. Pluripotency of mesenchymal stem cells derived from adult marrow [J].Natural,2002,20:1-9.
    [37].Rao MS,Mattson MP.Stem cells and aging:expanding the possibilities [J]. Mech Aging Dev,2001,122:713-34.
    [38].曾凤华,沈柏均,王红美等.胎盘造血功能的初步研究[J].中华血液学杂志,2000,21:291-293.
    [39].Majmudar M K,Thiede M A,Mosca J D,et al.Phenotypic and functional Comparison of cultures of marrow-derived mesneehymal stem cells (MSCs) and stromal cells [J].J Cell Physiol,1998,176:57-66.
    [40].Eaves C J,Cashman J D,Kay R J,et al. Mechnaisms that regulate the cell cycle status of very primitive hematopoietic cells in longterm human marrow cultures, analysis of positive and negative regulators produced by stromal cells within the adherent layer [J]. Blood,1991,78:110-117.
    [41].Mehler M F,Rozenatl R,Dougherty M,et al.Cytokine regulation Of neuronal dieffrentiation of hippocampal progenitor cells [J].Nature, 1993, 362:62-65.
    [42].Maysinger D,Berezovskaya O,Fedoroff S,et al.The hematopoietic cyt- okine colony stimulating factor is also a growth factor in the CNS, Mic- roencapsulated CSF-1 and LM-10 cells as delivery systems [J].Exp Neurol, 1996,141:47-56.
    [43].Berezovskaya O,Maysinger D,Fedoroff S.The hematopoietic cyto- kine,colony-stimulating factor-l is also a growth factor in the CNS , conge- nital absence of CSF-1 in mice results in abnormal micorglial response and increased neuron vulnerability to injury [J].Int J Dev Neurosci,1995,13: 285-299.
    [44].Berezovskaya O,Maysinger D,Fedoroff S. Colony-stimulating factor -l potentiates neuronal survival in cerebral cortex ischemic lesion [J]. Acta Neuropathol (Berl),1996,92:479-486.
    [45].Kopen G C,prokockop D J,and phinney D G .Marrow stromalcel1s migratethroughout forebarin and cerebellum, and they dieffrentiate into astrocytes after injection into neonatal mouse barins [J].Proc Natl Acad Sci USA , 1999 ,96:10711-10716.
    [46].Ha丫,Choi JU,Yoon DH,etal. Neural Phenotyp expression of cultured human cord blood cells in vitro [J].Neu Report,2001,12(16): 3523-3527.
    [47].Sanchez-Ramos J R,Song S, Kamath S G , etal. Expression of neural markers in human umbilical blood [J]. Exp Neuorl,2001,171:109-115.
    [48].Kaviani A,Perry T E,Barnes C M ,etal. The Placenta as a cell source in fetal tissue engineering [J].J Pediatric Surg,2002,37(7):995-999.
    [49].In,tAnker P S,Seherjon S A,Kleijburg-van-der-Keur C,et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human Placenta [J]. Stem Cells,2004,22:1338-1345.
    [50].Alvarez-Silva M,Belo-Diabangouaya P,Salaun J,et al. Mouse Placenta is a major hematopoietic organ [J].Development, 2003,130: 5437-5444.
    [51].Zhang X,Nakaoka T,Nishishita T,etal. Effieient adeno- associated virus-mediated gene expression in human Placenta- derived mesenchymal cells [J].Microbiol Immunol,2003,47:109-116.
    [52].Zhang Y,Li C,Jiang X,et al. Human Placenta- derived mesenchymal Progenitor cells support culture expansion of long-term culture- initiating cells from cord blood CD34+ cells [J].Exp Hematol, 2004,32: 657-664.
    [53].Fukuehi Y,Nakajima H,Sugiyama D,et al. Human Placenta- derived cells have mesenchymal stem/ progenitor cell Potential[J]. Stem Cells, 2004, 22:649-658.
    [54].Bailo M,Soneini M,Vertua E,etal. Engraftment potential of human amnion and chorion cells derived from term placenta [J]. Transplantation, 2004,78:1439-1448.
    [55].Yen B L,Huang H l,Chien C C,et al. Isolation of multipotent cells from human term Placenta [J].Stem Cells, 2005,23:3-9.
    [56].Peister A, Mellad J A, Larson B L, et al . Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential[J]. Blood, 2004, 103 (5) : 1662-1668.
    [57].薛群,苗宗宁,曲静,等.胎盘间充质干细胞向神经细胞诱导的实验研究[J].江苏医药杂志, 2004, 30 (11) : 817-819.
    [58].Ratajczak M Z, Kucia M, Reca R, et al . Stem cell plasticity Revisited: CXCR4- positive cells expressing mRNA for early muscle,liver and neural cells“hide out”in the bone marrow [J]. Leukemia,2004, 18 (1) : 29-40.
    [59].Ning Huang,Asim Khan,Homa Ashrafpour,et al.Efficacy and mechanism of adenovirus-mediated VEGF-165 gene therapy for augmentation of skin flap viability [J].Plast Reconstr Surg,1998,81:233-239
    [60]. Daniel R K , Kerrigan C L. Principles and physiology of skin flap surgery [J]. Plastic Surgery, 1990, 1: 225–378.
    [61]. Grabb W C. Basic techniques of plastic surgery [J]. Plastic Surgery, 1986,11: 3–74.
    [62]. Serletti J M, Higgins J P, Moran S, et al. Factors affecting outcome in free-tissue transfer in the elderly [J]. Plast Reconstr Surg ,2000,106: 66–70.
    [63]. Pang C Y, Forrest C R, and Morris S F. Pharmacologic augmentation of skin flap viability: a hypothesis to mimic the surgical delay phenomenon or a wishful thought[J].Ann Plast Surg, 1989,22: 293–306.
    [64].曹祥元,廉维,莫非凡等.中药对超长皮瓣成活影响的SOD动态观察[J].西南国防医药,1995,5(5):260-262.
    [65].庄力,宋业光.维拉帕米在大鼠缺血随意皮瓣中作用的研究[J].中华医学美学美容杂志,2003,9(6):352-355.
    [66].Kryger,Zhang F,Dogan T,et al.The effects of VEGFon survival of a random flap in the rat:examination of various routes of administration[J].Br J Plast Surg,2000,53:234-239.
    [67]. Wunderlich K, Senn B C, Todesco L,et al. Regulation of connective growth factor gene expression in retinal vascular endothelial cells by angiogenic growth factor[J]. Gracfes Arch Cain Exp Ophthahnol, 2000,238(11): 910-915.
    [68].Suzuma K, Naruse K, Suzuma I,et al. Vasular endothelia growth factor induces expression of connective tissue growth factor via KDR, F1tl, and phosphafidyl/nositol 3-kinase-akt-dependent pathways in reanal vascular cells[J]. J Biol Chem,2000,275(52):40725-40731.
    [69].屈纪富,程天民,许霖水等.放创复合伤时创伤局部bFGF和NGF含量的变化[J].中华放射医学与防护杂志,2002,22(3):158-161.
    [70].付小兵,孙同柱,王亚平等.表皮生长因子与碱性成纤维细胞生长因子促进创面修复效应的比较性研究[J].Chinese J Reparative and Reconstructive Surg,1999,13(5):278-281.
    [71]. Shima D T, Deutsch U, and D'Amore P A. Hypoxic induction for vascular endothelial growth factor (VEGF) in human epithelial cells is mediated by increases in mRNA stability[J]. FEBS Lett, 1995,370: 203–208.
    [72]. Shi Q,Rafii S,Wu M H,et al.Evidence for circulating bone marrow derived endothelial cells[J].Blood,1998,92:362-367.
    [73].方利君,付小兵,孙同柱等.骨髓间充质干细胞分化为血管内皮细胞的实验研究[J].中华烧伤杂志,2003,19(1):22-24.
    [74]. Tremain N,Korkko J,Ibberson D,et al.MicroSA GE analysis of 2353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages[J].Stem Cell,2001,19:408-418.
    [75].雷永红,付小兵,盛志勇等.大鼠脂肪干细胞(rADSC)转运VEGF基因促进随意皮瓣成活的研究[J].中国美容医学,2007,16(1):7-10.
    [76].Pittenger M F,Maekay A M,Beek S C,etal. Multilineage Potential of adu1t human Mesenchymal stem cells [J].Science,1999,284(5411):243-4.
    [77].Jiang Y,Jahagirdar BN,Reihnardt RL,etal. Pluripotency of mesenchmyal stem Cells derived from adault marrow [J].Natuer,2002,418(6893):41-49.
    [78].BrazeltonTR,Rossi FM,VKeshet GI,etal.From marrow to brain: Expres- sion of Neuronal Phenotypes in adult mice [J].Science,2000,290:1775-1779.
    [79].Woodbury D,Schwaz E J,Prockop D J,etal. Adult rat and human bone marrow Srtomal cells dieffrentiate into neurons [J]. Neurosci Res,2000,61(4): 364- 370.
    [80].Sanchez R J,Song S,Cardozo P F,etal. Adult bone marrow stromal cells differentiate into neural cells in vitro [J].ExP Neurol,2000,164 (2): 247-256.
    [81]. Kopen G C,prokoekop D J,and PhinneyD G. Marrow stromal cel1s migrate throughout forebrain and cerebellm,and they differentiate into astrocytes after Injection into neonatal mouse barins [J]. Proc Natl Acad Sci USA,1999,96:1711-1071
    [82].Kaviani A ,Perry T E ,Barnes C M ,et al . The placenta as a cell source infetal tissue engineering [J]. Pediatric Surg , 2002 , 37 :995-999.
    [83].Corti S ,Locatelli F ,St razzer S ,et al . Modulated geration of neuronal cells f rom bone marrow by expansion and mobilization of circulating stem cells with in vivo cytokine treatment [J]. Experimental Neurology ,2002 ,177 :4432452.
    [84].Tremain N, Korkko J, Ibberson D,et al. MicroSAGE analysis of 2353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages [J].Stem Cells, 2001, 19 (5): 408-418.
    [85].Morrison S J,Shah N M,Anderson D J.Regulatory mechanism in stem cell biology [J].cell,1997,88(3):287-298.
    [86].陈文芳,王连唐,石慧娟等.骨髓间充质干细胞定向分化为软骨细胞[J].中国病理生理杂志,2004,20(7):1195-1199.
    [87].Shi Q,Rafii S,Anderson DJ.Evidence for circulating bone marrow -derived endothelial[J].cells,1998,92(2):362-367.
    [88].Steinert A F , Palmer G D , Evans C H. Gene therapy in t he muscul- oskeletal System [J].Curr Opin Ort hop ,2004 ,15 :318-324.
    [89].Zhang Y, Sekirov L , Saravolac E , et al . Stabilized plasmid lipid particles for regional gene t herapy : formulation and transfection properties[J].Gene Ther ,1999 ,6 :1438-1447.
    [90].Evans C H , Ghivizzani S C , Robbins P D , et al . The 2003 nicolas andry award orthopaedic gene therapy[J].Clin Ort hopaed & Rel Res , 2004 , 429 : 316-329.
    [91].Weidner N,Folkman J,Pozza F,et al. Tumor angiogenesis:a New significant and independent prognostic indicator in early-stage breast carcinoma [J]. Natl Cancer Inst,1992,84(2):1875-1887.
    [92].Weidner N, Semple J P, Welch W R,et al. Tumor angiogenesis and metas- tasis: correlation in invasive breast carcinoma. [J].Med, 1991,324(1): 1-8.
    [93].Tepper O M,Galiano R D,Kalka,et al.Endothelial progenitor cells the promise of vascular stem cells for plastic surgery[J].Plast Reconstr Surg, 2003,111:846-854.
    [94].Hekeman P,Zeidler J,Korfmacher S,et al.Leptin induces inflammation -related gene in RNm5F insulinoma cells[J].BMC Mol Bio,2007,8(2):41.
    [95].Kajstura J ,Rota M ,Wang B ,et al.Bone marrow cells differentiate in cardiaccell lineages after infarction independently of cell fusion[J]. CircRes,2005,6(1):127-137.
    [96].Brittan M ,Braun K M ,Reynolds L E ,et al. Bone marrow cells engraft within the epidermis and proliferate in vivo with no evidence of cell fusion[J].Pathol,2005,205(1):1-13.
    [97].Fathke C ,Wilson L ,Hutter J ,et al.Contribution of bone marrow derived cells to skin:collagen deposition and wound repair[J].Stem Cells, 2004,22(5):812-822.
    [98].Badiavas E V ,Abedi M ,Butmarc J ,et al. Participation of bone marrow derived cells in cutaneous wound healing[J].Cell Physiol,2003,196(2): 245 -250.
    [99].Hofstettr C P ,Schwarz E J ,Hess D , et al. Marrow stormal cells form guiding strands in the injured spinal cord and promote recovery[J]. Proc Natl Acad Sci,2002,99(4):2199-2204.
    [100].付小兵.近年来创伤修复(愈合)与组织再生几个主要领域的新进展与展望[J].中华实验外科杂志,2004,21(6):647-649.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700