用户名: 密码: 验证码:
微囊藻毒素-LR对鱼类分子毒性效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水体富营养化加剧,藻类所引起的水污染问题已越来越引起人们的关注,蓝藻是目前已知产生毒素最多、对人类健康造成的危害最大的藻类。微囊藻毒素-LR(microcystins-LR,MC-LR)是有毒蓝藻细胞合成的二级代谢产物,是一种细胞内毒素。微囊藻毒素可影响鱼类的胚胎发育和生长,也可引起肝脏、肾脏等内部器官的病理变化,和导致鱼体的氧化损伤等。然而,有关微囊藻毒素对鱼类分子水平上的毒性效应的研究则很少。本研究以斑马鱼和鳙鱼为对象,采用实时荧光定量PCR、分子克隆和免疫印迹技术在分子水平上揭示了MC-LR对鱼类的毒理效应。
     本研究中采用人工繁殖的方法收集健康的斑马鱼胚胎,待孵化出膜后,用浓度为200μg/L和800μg/L MC-LR溶液浸泡幼鱼进行攻毒实验。在染毒12h,24h,48h,96h和168h后取样。用实时荧光定量PCR方法检测了斑马鱼幼鱼的重组激活基因Rag(Rag1,Rag2)、淋巴细胞特异性蛋白酪氨酸激酶(LCK)、T细胞受体α(TCRα)、转录因子GATA1、锌指纹蛋白(Ikaros)和热休克蛋白基因(HSP90、HSP70、HSP60、HSP27)的表达变化。发现Rag1、Rag2、LCK、TCRα、GATA1和Ikaros都有表达上升趋势,特别是在800μg/L MC-LR处理后,在很多时间点内表达上升明显,与对照组有显著差异(P<0.05);热休克蛋白基因(HSP90、HSP70、HSP60、HSP27)的表达变化更为明显,在200μg/L和800μg/L MC-LR处理后,所有热休克蛋白基因的表达均有上升,且差异明显(P<0.05),尤其是HSP70在800μg/L MC-LR处理168h后,其表达量上升了近300倍。这说明MC-LR可影响斑马鱼幼鱼早期发育的重要调控因子、转录因子和热休克蛋白的表达,从而推测MC-LR可能影响斑马鱼的早期发育和免疫系统功能。
     本研究通过分子克隆技术中的RACE方法获得了两个鳙鱼去毒酶相关基因的cDNA全长,并进行了系统进化分析及推导的蛋白质序列分析。
     谷胱甘肽过氧化物酶(Glutathione Peroxidase,GPX)基因cDNA全长903个核苷酸(nucleotides,nt)(GenBank accession no.FJ357422),包含426 nt的开放阅读框,编码142个氨基酸,其中5′、3′端非编码区分别为182 nt和292 nt,推测GPX蛋白的分子式C_(740)H_(1144)N_(196)O_(213)S_4,分子量为16.3226千道尔顿,等电点5.93,预测该蛋白为水溶性。系统进化分析和氨基酸序列比对的结果表明,鳙鱼GPX与草鱼、鲢鱼、鲋鱼的相似性较高,分别为99.3%,97.9%,93.0%。
     谷胱甘肽还原酶(Glutathione reductase,GR)基因cDNA全长831个核苷酸(nucleotides,nt)(GenBank accession no.FJ349627),包含717 nt的开放阅读框,编码239个氨基酸,其5′、3′端非编码区分别为74 nt和40 nt,推测GR蛋白的分子式C_(1131)H_(1796)N_(324)O_(347)S_7,分子量为25.709千道尔顿,等电点7.71,预测该蛋白为水溶性。系统进化分析和氨基酸序列比对的结果表明,鳙鱼GR与斑马鱼、大西洋鲑相似性较高,分别为90.8%和81.1%。
     在健康鳙鱼中,对两个基因转录和表达产物的器官组织分布进行了详细的分析。实时荧光定量PCR的结果表明,GPX和GR在所有被检测的鳙鱼组织中都有表达,呈组成型表达,且具有相似的组织分布模式,即在肝脏中的表达最高,其次是脾脏、鳃、中肾、头肾等,脑和心脏中的表达较低。分别构建GPX和GR基因的原核表达质粒pQE40-GPX和pQE40-GR,通过原核表达、表达蛋白纯化、并制备多克隆抗体,对脑、鳃、心脏、头肾、中肾、肝脏、肌肉、脾脏、和胸腺等器官中的目的基因蛋白进行免疫印迹分析。免疫印迹Western blotting结果显示GPX蛋白在各个组织中广泛表达。
     经腹腔注射MC-LR(50μg/kg body weight)对鳙鱼进行染毒实验,以注射灭菌生理盐水作为对照,分别于染毒后6h,12h,24h,48h,96h和168h后取处理组和对照组的肝脏、脾脏、头肾、肠道。用实时荧光定量PCR方法检测鳙鱼的GPX和GR表达变化。发现在MC-LR诱导后GPX在肝脏、脾脏和头。肾中过量表达,差异显著(P<0.05);GR在肠道和头肾中,表达变化显著(P<0.05),上升倍数较高,而在肝脏和脾脏中GR的表达虽然也是增加的,但变化没有肠道和头肾中的明显。结果表明,GPX和GR基因在微囊藻毒素的影响下,转录及表达加强,生成更多的酶蛋白,从而增强机体对微囊藻毒素的解毒能力。
Microcystins are cyanobacterial toxins in water blooms that have received increasingattention as a public biohazard for human and animal health. Microcystins are a group ofcyanobacterial hepatotoxins and the most common and potently toxic one ismicrocystin-LR (MC-LR). It has been well documented that MC-LR may have adverseeffect on embryo development and growth of fish, and pathological damages in liver andkidney of fish, and oxidative damage in fish exposed to MC-LR. However, the moleculartoxicology of MC-LR on fish has not yet been investigated. The present study wastherefore designed to examine the molecular toxic effect of MC-LR on bighead carpAristichthys nobilis and zebrafish Danio rerio by using real-time polymerase chainreaction, molecular cloning and immunoblotting.
     Zebrafish embryos were collected from artificial fertilization. The transcriptions ofsix immune-related genes, i.e. Rag1, Rag2, Ikaros, TCRα, Lck, GATA1 and HSPs(HSP90、HSP70、HSP60、HSP27) were analyzed by real-time PCR at 12h, 24h, 48h,96h and 168h post immersing in 200μg/L and 800μg/L MC-LR, respectively. The increasein transcriptions of Ragl, Rag2, Ikaros, TCRα, Lck and GATA1 were observed, andsignificant higher transcriptions of those six genes were observed on fish exposed to800μg/L MC-LR. There were significant increases in transcriptions of HSPs, andespecially significant change on HSP70 of fish exposed to 800μg/L MC-LR at 168h.These results demonstrated that microcystin-LR exposure could affect the function ofzebrafish larval immune system, resulting in immunomodulation.
     The GPX and GR cDNA full sequence of Aristichthys nobilis has been cloned usingRACE-PCR and PCR.
     The GPX full length cDNA is 903 bp, including a 182 bp 5'UTR (untranslatedregion),a 426 bp open reading frame,and a 292 bp 3'UTR. The putative protein of GPX is142 aa. The molecular formula is C_(740)H_(1144)N_(196)O_(213)S_4, and the molecular weight is16.3226KDa, and estimated pIs is 5.93. GPX protein is water solubility.Comparison of thededuced amnio acid sequences showed that GPX of Aristichthys nobilis shared 99.3%,97.9% and 93.0% identity with those of Ctenopharyngodon idella, Hypophthalmichthysmolitrix and Carassius auratus, respectively.
     The GR full length cDNA is 831 bp, including a 74 bp 5'UTR (untranslated region),a 717 bp open reading frame, and a 40 bp 3'UTR. The putative protein of GR is 239 aa. The molecular formula is C_(1131)H_(1796)N_(324)O_(347)S_7, and the molecular weight is 25.709KDa,and estimated pls is 7.71. GRprotein is water solubility. Comparison of the deduced amnioacid sequences showed that GR of Aristichthys nobilis shared 90.8% and 81.1%identitywith those of Danio rerio and Salmo salar, respectively.
     The organ distribution of GPX and GR was analyzed both in the transcription andprotein levels.By real time PCR analysis, the transcription products of the cloned geneswere detected in different tissues of healthy bighead carp, and the two genes had similiarpatterns of tissue distribution, with the highest expression level in liver. Western blottinganalyses revealed that GPX protein existed broadly in examined tissues
     The gene transcription of GPX and GR in liver, spleen, head kidney and intestine ofAristichthys nobilis were quantified by real-time PCR at 6h, 12h, 24h, 48h, 96h and 168hpost intraperitoneal injection with 50μg MC-LR/kg body weight. Significant increase ofGPX in liver, spleen and head kidney were observed. Also, significant increases of GR inintestine and head kidney were observed, and there were no significant changes of GR inliver and spleen. These results showed that the increased transcriptions of GPX and GR inAristichthys nobilis could be induced by MC-LR, leading to generating more antioxidaseand elevating the ability of detoxification on fish.
引文
[1] Carmichael W W. Toxic microcystis and the environment. In:Watanabe M F ed.,Toxic microcystin. Boca Raton: CRC Press, 1996. 2-4
    [2] Rao P V L, Nidhi G, Jayaraja R, et al. Age-dependent effects on biochemical variables and toxicity induced by cyclic peptide toxin microcystin-LR in mice. Comp Biochem Physiol C, 2005,140: 11-19
    [3] OECD. Eutrophication of waters monitoring assessment and control. Paris,OECD publication, 1982.
    [4] Shen P P, Shi Q, Hua Z C, et al. Analysis of microcystins in cyanobacteria blooms and surface water samples from Meiliang Bay, Taihu Lake, China. Environ Int,2003,29: 641-647
    [5] Shi Q, Cuia J, Zhang J, et al. Expression modulation of multiple cytokines in vivo by cyanobacteria blooms extract from Taihu Lake, China. Toxicon, 2004, 44:871-879
    [6] Chen T, Zhao X Y, Liu Y, et al. Analysis of immunomodulating nitric oxide,iNOS and cytokines mRNA in mouse macrophages induced by microcystin-LR.Toxicology, 2004,197: 67-77
    [7] Yea S S, Kim H M, Oh H M, et al. Microcystin-induced down-regulation of lymphocyte function through reduced IL-2 mRNA stability. Toxicol Lett, 2001,122:21-31
    [8] Hernandez M, Macia M, Padilla C, et al. Modulation of human polymorphonuclear leukocyte adherence by cyanopeptide toxins. Environ Res,2000, 84: 64-68
    [9] Lanko A, Carmichael W W, Grasman K A, et al. The uptake kinetics and immunotoxic effects of microcystin-LR in human and chicken peripheral blood lymphocytes in vitro. Toxicology, 2004,204: 23-40
    [10] Chorus I, Bartram J. Toxic cyanobactria in water. A guide to their public health consequences, monitoring and management. Great Britain, St Edmundsbury Press,1999:57
    [11] Harker N, Natio T, Cortes M, et al. The CD8α gene locus is regulated by the Ikaros famile of proteins. Mol Cell, 2002,10: 1403-1415
    [12] Li Y, Sun B J, Wu H J. et al. Effects of pure microcystin-LR on the transcription of immune related genes and heat shock proteins in the larval stage of zebrafish (Danio rerio). Aquaculture, 2009, 289(1): 154-160
    [13] Weiss M, Orkin SH, Transcription factor GATA-1 permits survival and maturation of erythroid precursors by preventing apoptosis. Proc Natl Acad Sci USA, 1995, 92:9623-9627
    [14] Wiegand C, Pflugmacher S, Oberemm A, et al. Uptake and effects of microcystin-LR on detoxication enzymes of early life stages of the zebra fish (Danio rerio). Environ Toxicol, 1999, 14:89-95
    [15] Williams J H, Farag A M, Stansbury M A, et al. Accumulation of hsp70 in juvenile and adult rainbow trout gill exposed to metal-contaminated water and/or diet. Environ Toxicol Chem, 1996, 15:1324-1328
    [16] 彭金良,严国安,沈国兴.α-萘酚对小球藻谷胱甘肽及其还原酶的影响.中国环境科学,2001,21(2):140-143
    [17] Ito E, Takai A, Kondo F, et al.Comparison of protein phosphatase inhibitory activity and apparent toxicity of microcystins and related compounds. Toxicon, 2002, 40:1017-1025
    [18] Milutinovic A, Zivin M, Zorc-Pleskovic R, et al. Nephrotoxic effect of chronic administration of microcystins-LR and YR. Toxicon, 2003, 42:281-288
    [19] 连民,刘颖,俞顺章等.饮用水中微囊藻毒素对人群健康影响的横断面研究.中华流行病学杂志,2000,21(6):437-440
    [20] 李嗣新.微囊藻毒素的生态学和毒理学研究:[博士学位论文].中国科学院,2007
    [21] Nobre A C L, Coelho G R, Coutinho M C, et al. The role of phospholipase A_2 and cyclooxygenase in renal toxicity induced by microcystin-LR. Toxicon, 2001, 39: 721-724
    [22] 朱惠刚.水中有机化学污染物对人体影响评价.中国环境科学,198,77(4):67-73
    [23] Dawoson R M. The Toxicology of Microycstins. Toxicon, 1998, 36(7): 953-962
    [24] Pouria S, de Andrdae A, Barbosa J, et al. Fatal micorcystin intoxication in haemodiaylsis unit in Cuaruar, Brazil. Lnacet, 1998, 352:21-26
    [25] Zapata A, Diez B, Cejalvo T, Guti(?) rrez-de Fr(?)as C, Cort(?)s A. Ontogeny of the immune system offish. Fish and Shellfish Immunology, 2006, 20:126-136
    [26] Zegura B, Sedmak B, Filipic M. Microcystin-LR induces oxidative DNA damage in human hepatoma cell line HepG2. Toxicon, 2003, 41: 41-48
    [27] Vajcova V, Navratil S, Palikova M. The effect of intraperitoneally applied pure MC-LR on haematological, biochemical and morphological indices of silver carp (Hypophthalmichthys molitrix Val.). Acta Vet Brno, 1998, 67:281-287
    [28] 吴革平,章如新.重组激活基因在免疫反应中的作用.国外医学耳鼻咽喉科学分册.2005,29(4):241-244
    [29] Foremme H, Kohler A, Krause R, et al. Occurrence of cyanobacterial toxins-microcystins and anatoxin-a in Berlin water bodies with implications to human health and regulations. Environ Toxicol, 2000, 15:120-130
    [30] Paz P E, Wang S, Clarke H, et al. Mapping the Zap-70 phosphorylation sites on LAT(linker for activition of T cells) required for recruitment and activation of signalling proteins in T cells. Biochem J, 2001, 356(2): 461-471
    [31] Zhang J Y, Zhang H J, Chen Y X. Sensitive apoptosis induced by microcystins in the crucian carp(Carassius auratus)lymphocytes in vitro. Toxicol in Vitro, 2006, 20:560-566
    [32] Molina T J, Kishihara K, Siderovski D P, et al, Profound block in thymocyte development in mice lacking p561ck. Nature, 1992, 357(6374): 161-164
    [33] Legname G, Seddon B, Lovatt M, et al. expression of a p56Lck transgene reveals a central role for Lck in the differentiation of CD4 SP thymocytes. Immunity, 2000, 12(5): 537-546
    [34] Meng A M, Tang H, Yuan B Z, et al. Positive and negative cis-acting elements are required for hematopoietic expression of zebrafish GATA-1. Blood, 1999, 93(2): 500-508
    [35] Pevny L, Simon M C, Robertson E, et al. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature, 1991, 349 (6386): 257-260
    [36] Beattie K A, Ressler J, Wiegand C, et al. Comparative effects and metabolism of two microcystins and nodularin in the brine shrimp Artemia salina. Aquat Toxicol. 2003, 62: 219-26.
    [37] Pfluglnaeher S, Wiegland C, Beattie K A, et al. Uptake,effects,and metabolism of cyanobacterial toxins in the emergent reed plant. Environ Toxicol Chem, 2001, 20: 846-852
    [38] Lindquist S, Craig E A. The heat shock proteins. Annu Rev Genet. 1988, 22: 631-677
    [39] Bieche I, Laurendeau I, Tozlu S, Olivi M, Vidaud D, Vidaud D, Vidaud M. Quantitation of MYC gene expression in sporadic breast tumors with a real-time reverse transcription-PCR assay. Cancer Res, 1999, 9:2759-2765
    [40] Wei L, Sun B J, Song L, et al. Gene expression profiles in liver of zebrafish treated with microcystin-LR. Environ Toxicol Pharmacol, 2008, 26:6-12
    [41] Wiegand C, Pflugmacher S, Oberemm A, et al. Uptake and the effects of microcystin-LR on detoxication enzymes of early life stages of the zebrafish (Danio rerio). Environ.Toxicol, 1999, 14: 89-95.
    [42] Pflugmacher S, Wiegand C, Oberemm A, et al. Identification of an enzymatically-formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR. The first step of detoxication. Biochim Biophys Acta. 1998, 1425: 527-533.
    [43] Carmichael W W. The toxins of cyanobacteria. Sci Am, 1994, 270:64-72
    [44] Lambert T W, Holmes C F B, Hrudey S E. Microcystin class of toxins:health effects and safety of drinking water supplies. Environ Rev, 1994, 2:167-186
    [45] Luukkainen R, Namikoshi M, Sivoven K, et al. Isolaiton andidentification of microcystins from strains and two bloom samples of Microcystis spp.: structure of a new hepatotoxin. Toxicon, 1994, 32:133-139
    [46] Abdel-Rahman S, El-Ayouty Y M, Kamael H A. Characterization of heptapeptide toxins extracted from Microcystis aeruginosa(Egyptian isolate). Comparison with some synthesized analogs. Int J Pept Protein Res, 1993, 41:1-7
    [47] 胡智泉,刘永定.微囊藻毒素在细长聚球藻中的积累及其毒性效应.中国环境科学,2005,25(1):23-27
    [48] Sivonen K. Cyanobacterial toxins and toxin production.Phycologia, 1996, 35:12-24
    [49] McElhiney J, Lawton L A. Detection of the cyanobacterial hepatotoxins microcystins. Toxicol Appl Pharmacol, 2005, 203:219-230
    [50] Kondo F, Matsumoto H, Yamada S, et al. Detection and identification of metabolites of microcystins formed in vivo in mouse and rat livers. Chem Res Toxicol, 1996, 9: 1355-1359.
    [51] Best J H, Pflugmaeher S, Wiegand C, et al. Effects of enteric bacterial and cyanobacterial lipopolysaecharides, and of microcystin-LR, on glutathione S-transferase activities in zebrafish (Danio rerio). Aquat Toxicol, 2002, 60(3-4): 223-231
    [52] Gehringer M M, Downs K S, Downing T G, et al. An investigation into the effect of selenium supplementation on microcystin hepatotoxicity. Toxicon, 2003, 41(4): 451-458
    [53] 梁旭方,林小涛,黄芬等.真鲷肝脏解偶联蛋白2(UCP2)基因及其功能的探讨.动物学报,2003,49(1):110-117
    [54] Ritossa F A. New puffing pattern induced by temperature shock and DNP in Drophila. Experientia, 1962, 18:571-573
    [55] Liang X F, Ogata H Y, Oku H, et al. Abundant and constant expression of uncoupling protein 2 in the liver of red sea bream Pagrus major. Comparative Biochemistry and Physiology Part A, 2003, 136(3): 655-661
    [56] Prabhakar R, Vreven T, Morokuma K, et al. Elucidation of the Mechanism of Selenoprotein Glutathione Peroxidase(GPX)-Catalyzed Hydrogen Peroxide Reduction by Two Glutathione Molceules: A Density Functional Study. Biochemistry, 2005, 44:11864-11871
    [57] 黄周英,王重刚,左正宏等.三丁基锡对文蛤鳃的抗氧化酶活性及脂质过氧化的影响.环境科学学报,2005,25(10):1408-1412
    [58] 何珊,梁旭方,廖婉琴等.鲢鱼、鳙鱼、草鱼谷胱甘肽过氧化物酶cDNA的克隆及肝组织表达.动物学杂志,2007,42(3):40-47
    [59] Stoner R D, Adams W H, Slatkin D N, et al. Cyclosporine A inhibition of microcystin toxins. Toxicon, 1990, 28:569-573
    [60] Catherine E W, Agustin G Z, Nancy H, et al. Expression of zebrafish rag genes during early development identifies the thymus. Dev Biol. 1997, 182, 331-341
    [61] 张鋆.荧光实时定量PCR技术初探.生命科学趋势,2003,12:1-28
    [62] 朱伟峰.鲢鱼、鳙鱼、草鱼谷胱甘肽过氧化物酶基因的克隆及组织表达研究:[硕士学位论文].暨南大学,2007
    [63] Olnar A, Wu P, Largespada DA, et al. The Ikaros gene encodes a family of lymphocyte-restricted zinc finger DNA binding proteins, highly conserved in human and mouse. J Immunol, 1996, 156:585-592
    [64] Westerfield M. The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 4th ed., 2001, Univ.of Oregon Press, Eugene
    [65] Ding W X, Shen H M, Zhu H G. Studies on oxidative damage induced by cyanobacteria extract in primary cultured rat hepatocytes. Environ Res, 1998, 56: 12-18
    [66] 萨姆布鲁克,拉赛尔著,黄培堂等译.分子克隆实验指南(第三版).北京:科学出版社,2002
    [67] Fukuhara R, Kageyama T. Structure, gene expression, and evolution of primate glutathione peroxidases. Comparative Biochemistry and Physiology, Part B, 2005, 141: 428-436
    [68] Duffy L K, Scofield E, Rodgers T, et al. Comparative baseline levels of mercury, hsp70 and hsp60 in subsistence fish from the Yukon-Kuskokwim delta region of Alaska. Comp. Biochem. Physiol. Toxicol. Pharmacol., 1999, 124:181-186
    [69] Eriksson J E, Meriluoto J A, Kujari H P, et al. Preliminary charaeterization of toxin isolated from the cyanobaeterium Nodularias Pumigena. Toxicon, 1988, 26: 161-166
    [70] Xie L, Xie P, Ozawa K, et al. Dynamics of MC-LR and -RR in the phytoplanktivorous silver carp in a sub-chronic toxicity experiment. Environ Pollut, 2004, 127:431-439
    [71] Chen J, Xie P. Seasonal dynamics of the hepatotoxic microcystins in various organs of four freshwater bivalves from the large eutrophic Lake Taihu of the subtropical China and the risk to human consumption. Environ Toxicol, 2005, 20: 572-584
    [72] Walker C H. Biochemical and biomarkers in ecotoxicology-some recent development. Sci Total Environ, 1995, 171: 189-195
    [73] Georgopoulos K, Winandy S, Avitahl N. The role of the Ikaros gene in lymphocyte development and homeostasis. Annu Rev Immunol, 1997, 15:155-176
    [74] Greenhalgh P, Olesen C E M, Steiner L. Characterization and expression of recombination activating genes (RAG-1 and RAG-2) in Xenopus laevis. J Immunol, 1993, 151:3100-3110
    [75] Guzman R E, Solter P F. Hepatic oxidative stress following prolonged sub lethal microcystin-LR exposure. Toxicol Pathol, 1999, 27:582-588
    [76] 孟紫强,白巨利.二氧化硫吸入对小鼠9种脏器谷胱甘肽过氧化物酶活性的影响.环境与职业医学,2003,20(1):6-8
    [77] Hassanein H M A, Banhawy M A, Soliman F M, et al. Induction of Hsp70 by the herbicide oxyfluoren (goal) in the Egyptian Nile fish, Oreochromis niloticus. Arch Environ Contam Toxicol, 1999, 37:78-84
    [78] Andersen R J, Luu H A,Chen D Z, et al. Chemical and biological evidence links microcystins to salmon 'netpen liver disease'. Toxicon, 1993, 31: 1315-1323
    [79] 林立,张春之,张强等.低剂量混配农药对家兔血浆谷胱甘肽过氧化物酶和一氧化氮的影响.工业卫生与职业病,2003,29(2):75-77
    [80] Edwards E A, Enard C, Cresissen G P et al. Synthesis and properties of glutathione reductase in stressed peas.Planta, 1994, 192:137-143
    [81] Tutic M, Lu X, Schirmer R, et al. Cloning and sequencing of mammalian glutathione reductase cDNA. Eur J Biochem, 1990, 188:523-528
    [82] Perry A C F, Bhriain N N, Brown N L, et al. Molecular characterization of the gor gene encoding glutathione reductase from Pseudomonas aeruginosa:determinants of substrate specificity among pyridine nucleotidedisulphide oxidoreductases. Mol Microbiol, 1991, 5:163-171
    [83] 陈瑗,周玫.自由基医学基础与病理生理.北京:人民卫生出版社,2002,131-147
    [84] Janz D M, McMaster M E, Munkittrick K R, et al. Elevated ovarian follicular apoptosis and heat shock protein 70 expression in white sucker exposed to bleached kraft pulp mill effluent. Toxicol Appl Pharm, 1997, 147:391-398
    [85] 史仁玖,赵茂林,杨清.多枝赖草谷胱甘肽还原酶基因的克隆及分析口.西北农林科技大学学报(自然科学版),2006,34(2):61-67
    [86] Tissi(?)res A, Mitchell H K, Track U M. Protein synthesis in salivary glands of Drosophila melanogaster relation to chromosome puffs. Mol Biol, 1974, 84: 389-398
    [87] Steven R G, Cressen G P, Mullineaux P M. Cloning and characterization of a cytosolic glutathione reducase cDN A from pea and its expression in response to stress. Plant Mol boil, 1997, 35:641-654
    [88] Komarova E Y, Afanasyeva E A, Bulatova M M, et al. Downstream caspases are novel targets for the antiapoptotic activity of the molecular chaperone Hsp70. Cell Stress Chaperones, 2004, 9:265-275
    [89] Kenneth M M, Herman E F. A heavy mortality of fishes resulted from the decomposition of algae in the Yahava River, Wilsconson. Trans Amer Fish Soc, 1945, 75:175-180
    [90] Tang X, Webb M A. Soybean root nodule cDNA encoding glutathione reductase. Plant Physiol, 1994, 104:1081-1088
    [91] Bukau B, Horwich A. The hsp70 and hsp60 chaperone machines. Cell, 1998, 92:351-366
    [92] Basu N, Todgham A E, Ackerman P A, et al. Heat shock protein genes and their functional significance in fish. Gene, 2002, 295: 173-183
    [93] Kaminaka H, Morita S, Nakajima M, et al. Gene cloning and expression of glutathione reductase in rice. Plant Cell Physiol, 1998, 39(12): 1269-1280
    [94] Lee H, Won S H, Lee B H, et al. Genomic cloning and characterization of glutathione reductase gene from Brassica campestris var. pekinensis. Mol Cell,2002,13(2): 245-251
    [95] Magalhaes V F, Soares R M, Azevedo S M F O. Microcystin contamination in fishfrom the Jacarapagua Lagoon(RJ,Brazil):Ecological implication and humanhealth risk. Toxicon, 2001, 39: 1077-1108
    [96] Mohamed Z A, Carmichael W W, Hussein A A. Estimation of microcystins in the freshwater fish Oreoehromis nitoticus in an Egyptian fish farm containing a Microcystis bloom. Environ Toxicol, 18:137-141
    [97] Xie L Q, Xie P, Guo L G, et al.Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaohu,China. Environ Toxicol, 2005, 20: 293-300
    [98] Li X Y, Chung I K, Kim J I, et al. Subchronic oral toxicity of microcystin in common carp(Cyprinus carpio L.)exposed to Microcystis under laboratory conditions. Toxicon, 2004,44: 821-827
    [99] Jang M H, Ha K, Lucas M C,et al. Changes in microcystin production by Microcystis aeruginosa exposed to phytoplanktivorous and omnivorous fish.Aquat Toxicol, 2004, 68: 51-59
    [100] Ding W X, Shen H M, Ong C N. Critical role of reactive oxygen species and mitochondrial permeability transition in microcystin induced rapid apoptosis in rat hepatocytes. Hepatology, 2000, 32: 547-555
    [101] Weber L P, Janz D M. Effect of β-naphthoflavone and dimethylbenz[α]anthracene on apoptosis and HSP70 expression in juvenile channel catfish (Ictalurus punctatus) ovary. Aquatic. Toxicology, 2001, 54:39-50
    [102] McDermott C M, Nho C W, Howard W, et al. The cyanobacterial toxin,microcystin-LR, can induce apoptotic in a variety of cell types. Toxicon, 1998, 36:1981-1996
    [103] Downs C A, Fauth J E, Woodley C M. Assessing the Health of Grass Shrimp (Palaeomonetes pugio) Exposed to Natural and Anthropogenic Stressors: A Molecular Biomarker System. Mar Biotech, 2001, 3:380-397
    [104] Mueller W E G, koziol C, Kurelee B, et al. Combinatory effects of temperature stress and nonionic pollutants on stress protein (hsp70) gene expression in the freshwater sponge, Ephydatla flu-viatilis. Environ Toxical Chem, 1995, 14(7): 1203-1208
    [105] Hausladen A, Alscher R G, Purificatio and chracterisation of glutathione reductase isozymes specific for the state of cold hardiness of red spruce. Plant Physiol, 1994, 105:205-213
    [106] Mankiewicz J, Tarczynska M, Fladmark KE, et al. Apoptotic effect of cyanobacterial extract on rat hepatocytes and human lymphocytes. Environ Toxicol, 2001, 16:225-233
    [107] Sander B M, Nguyen J, MartinL S, et al. Induction and sub cellular localization of two major stress proteins in responses to copper in the fat head minnow Pimephales promelas. Comp Biochem Physiol, 1995, 112:335-343
    [108] 张绍浩,邬红娟,崔博等.利用三角帆蚌控制水华的初步研究.水生生物学报,2007,31(5):760-762
    [109] Zhao Y, Xie P, Zhang X. Oxidative stress response after prolonged exposure of domestic rabbit to a lower dosage of extracted microcystins. Environ Toxicol Pharmacol. 2009, 27:195-199
    [110] Mankiewicz J, Walter Z, Tarczynska M, et al. Genotoxicity of cyanobacterial extracts containing microcystins from Polish water reservoirs as determined by SOS chromotest and comet assay. Environ Toxicol, 2002, 17:341-350
    [111] Marta C, Esther W, Joseph K, et al. Control of lymphocyte development by the lkaros gene family. Curr Opin Immunol, 1999, 11: 167-171
    [112] McConkey D J. Biochemical determinants of apoptosis and necrosis. Toxicol Lett, 1998, 99:157-168
    [113] Ding W X, Shen H M, Shen Y, et al. Microcystic cyanobacteria canses mthochondrial membrane potential alteration and reactive oxygen species formation. 1998.
    [114] Pinho G L L, Rosa M C, Maciel F E, et al. Antioxidant responses and oxidative stress after microcystin exposure in the hepatopanereas of an estuarine crab species. Ecotox. Environ. Saf, 2005, 61:353-360
    [115] Moreno I, Piehardo S, Jos A, et al. Antioxidant enzyme activity and lipid peroxidation in liver and kidney of rats exposed to microcystin-LR administered intraperitoneally. Toxicon, 2005,45: 395-402
    [116] Jos A, Piehardo S, Prieto A I,et al. Toxic cyanobacterial cells containing microcystins in duce oxidative stress in exposed tilapia fish(Oreochromis sp.) under laboratory conditions. Aquat. Toxicol. 2005, 72: 261-271
    [117] Prieto A I, Jos A, Piehardo S, et al. Differential oxidative stress responses to microcystins-LR and -RR in intraperitoneally exposed tilapia fish (Oreochromis sp.). Aquat Toxicol. 2006, 77: 314-321
    [118] Prieto A I, Piehardo S, Jos A, et al. Time-dependent oxidative stress responses after acute exposure to toxic cyanobacterial cells containing microcystins in tilapia fish(Oreochromis niloticus)under laboratory conditions, Aquat Toxicol,2007, 84: 337-345
    [119] Wilhelm D. Fish antioxidant defenses. A comparative approach. Braz. J. Med.Biol.Res. 1996, 29: 1735-1742
    [120] Packer J E. Oxidative stress, antioxidants, aging and disease. In: Gulter R G,Packer L B, Eratum J, et al. (Eds.), Oxidative Stress and Aging. Birkhauser Veriag,Basle, 1995: 152-163
    [121] Huang C H, Chang R J, Huang S L, et al. Dietary vitamin E supplementation affects tissue lipid peroxidation of hybrid tilapia Oreochromis nitotieusx O.aureus.Comp Biochem Physiol B, 2003,134: 265-270
    [122] Blalla L, Kopp R, Simkov(?) K, et al. Oxidative stress biomarkers are modulated in silver carp(Hypophthalmichthys molitrx Val.) exposed to microcystin-producing cyanobacterial water bloom. Acta Vet Brno, 2004, 73: 477-482
    [123] Cazenave J, Bistoni M A, Pesce S F, et al. Differential detoxification and antioxidant response in diverse organs of Corydoras paleatus experimentally exposed to microcystin-RR. Aquat Toxicol, 2006, 76:1-12
    [124] Creissen G P, Mullineaux P M. Cloning and characterization of glutathione reductase cDNAs and identification of two genes encoding the tobacco enzymes.Planta, 1995,197: 422-425
    [125] Cossu C, Doyotte A, Babut M, et al. Antioxidant biomarkers in freshwater bivalves, Unio tumidus, in response to different contamination profiles of aquatic sediments. Ecotoxicol Environ Saf, 2000,45: 106-121
    [126] Pannunzio T M, Storey K B. Antioxidant defenses and lipid peroxidation during anoxia stress and aerobic recovery in the marine gastropod Littorina littorea. J Exp Mar Biol Ecol, 1998, 221: 277-292
    [127] Xu L, Zhou B, Xu L. In vivo protein phosphatase 2A inhibition and glutathione reductionby MC-LR in grass carp (Ctenopharyngodon idellus). Proceedings,Ninth International Conference on Harmful Algal Blooms, 2000, Hobart,Australia
    [128] Gehringer M M, Shephard E G, Downing T Q et al.An investigation into the detoxification of microcystin-LR by the glutathione pathway in Balb/c mice. Int J Biochem Cell Biol, 2004, 36: 931-941
    [129] Li X Y, Liu Y D, Song L R, et al.Responses of antioxidant systems in the hepatocytes of common carp (Cyprinus carpio L.) to the toxicity of microcystin-LR. Toxicon, 2003,42: 85-89
    [130] Carbis C R, Rawlin G T, Mitchell G F, et al. The histopathology of carp, Cyprinus carpio L., exposed to MCs by gavage, immersion and intraperitoneal administration. J Fish Dis, 1996,19: 199-207
    [131] Bury N R, McGeer J C, Eddy F B, et al. Liver damage in brown trout, Salmo trutta L.,and rainbow trout, Oncorhynchus mykiss(Walbaum), following administration of the cyanobacterial hepatotoxin MC-LR via the dorsal aorta. J Fish Dis, 1997,20:209-215
    [132] Fischer W J, Dietrich D R. Pathological and biochemical characterization of MC-induced hepatopancreas and kidney damage in carp (Cyprinus carpio).Toxicol Appl Pharmacol, 2000,16: 73-81
    [133] Fischer W J, Hitzfeld B C, Tencalla F, et al. MC-LR toxicodynamics, induced pathology, and immunohistochemical localization in livers of blue-green algae exposed rainbow trout (Oncorhynchus mykiss). Toxicol Sci, 2000, 54: 365-373
    [134] Regoli F, Principatob G Glutathione, glutathione-dependent and antioxidant enzymes in mussel, Mytilus galloprovincialis, exposed to metals under field and laboratory conditions: implications for the use of biochemical biomarkers. Aquat Toxicol, 1995, 31: 143-164
    [135] R(?)bergh C M I, Bylund G, Eriksson J E.Histopathological effects of MC-LR, a cyclic peptide toxin from the cyanobacterium(blue-green alga)Microcystis aeruginosa, on common carp(Cyprinuscarpio L.). Aquat Toxicol, 1991, 20:131-146
    [136] Li X, Liu Y, Song L. Cytological alterations in isolated hepatocytes from common carp(Cyprinus carpio L.) exposed to MC-LR. Environ Toxicol, 2001, 16: 517-522
    [137] Kotak B G, Semalulu S, Friytz D L, et al. Hepatic and renal pathology of intraperitoneally administered microcystin-LR in rainbow trout (Oncorhynchus mykiss). Toxicon, 1996, 34:517-525
    [138] Francesca G T, Daniel R D, Christian S. Toxicity of Microcystis areuginosa peptide toxin to yealing rainbow trout(Oncorhynchus mykiss). Aquatic Toxicol, 1994, 30:215-224
    [139] 周炳升,徐立红,张甬元.微囊藻毒素LR对草鱼肝脏超微结构影响的研究.水生生物学报,1998,22:90-92
    [140] Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res, 2002, 29:2002-2007
    [141] Secombes C J, Wang T, Hong S, et al. Cytokines and innate immunity of fish. Dev Comp Immunol, 2001, 25:713-723
    [142] Rao, P.V.L. Cyanobacterial toxins: effects and control measures. In: Flora S J S, Romano J A, Baskin, S I, et al. (Eds.), Pharmacological perspectives of toxic chemicals and their antidotes. Narosa Publishing House, New Delhi, pp. 2004, 179-196
    [143] Rai R, Richardson C, Flecknell P, et al. Study of apoptosis and heat shock protein (HSP) expression in hepatocytes following radiofrequency ablation (RFA). J Surg Res, 2005, 129:147-151
    [144] Ravagnan L, Gurbuxani S, Susin S A. Heat-shock protein70 antagonizes apoptosis-inducing factor. Nat Cell Biol, 2001, 9:839-843
    [145] Rymuszka A, Sieroslawska A, Bownik A, et al. In vitro effects of pure microcystin-LR on the lymphocyte proliferation in rainbow trout. Fish Shellfish Immunol, 2007, 22:289-292
    [146] Sanders B M. Stress proteins in aquatic organisms: An environmental perspective. Crit Rev Toxicol, 1993, 23: 49-75
    [147] Sφrensen J G, Kristensen T N, Loeschcke V. The evolutionary and ecological role of heat shock proteins. Ecology Letters, 2003, 6:1025-1037
    [148] Danes V, Alhama J, Navas J I, et al. Ecotoxicological effects of metal pollution in two mollusc species from the Spanish South Atlantic littoral. Environ Poll, 2006, 139:214-223
    [149] Burlando B, Viarengo A, Pertica M, et al. Effects of Hg on Ca2 dynamics in the scallop sarcoplasmic reticulum (Pectenjacobaeus): protective role of glutathione. Comp Biochem Physiol, 1997, 116(1):77-83
    [150] Lima I, Moreira S M, Osten J R V, et al. Biochemical responses of the marine mussel Myfilus gallopro vincialis to petrochemical environmental contamination along the North-western coast of Portugal. Chemosphere, 2006, 66(7): 1230-1242
    [151] 陈荣,郑微云,余群,等.石油污染对僧帽牡蛎谷光甘肽含量及相关酶活性的影响.海洋学报,2003,25(2):226-30
    [152] Sabbattini P, Lundgren M, Georgiou A, et al. Binding of Ikaros to the lambda5 promoter silences transcription through a mechanism that does not require heterochromatin formation. EMBO J, 2001, 20:2812-2822
    [153] Fladmark K E, Serres M H, Larsen N L, et al. Sensitive detection of apoptogenic toxins in suspension cultures of rat and salmon hepatocytes. Toxicon, 1998, 36: 1101-1114
    [154] Vijayan M M, Pereira C, Kruzynski G, et al. Sublethal concentrations of contaminant induce the expression of hepatic heatshock protein 70 in two salmonids. Aquat Toxicol, 1998, 40:101-108
    [155] 张甬元,徐立红,周炳升等.鱼体中谷胱甘肽对微囊藻毒素的解毒作用的初步研究.水生生物学报,1996,20:284-286
    [156] Levin S D, Anderson S J, Forbush K A, et al. A dominant-negative transgene defines a role for p561ck in thymopoiesis. EMBO J. 1993, 12, 4:1671-1680
    [157] Kono T, Ponpompisit A, Sakai M. The analysis of expressed genes in head kidney of common carp Cyprinus carpio L. stimulated with peptidoglycan. Aquaculture, 2004, 235:37-52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700