用户名: 密码: 验证码:
人激活素受体结合蛋白2的克隆、鉴定及其与乳腺癌相关性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激活素(Activin)属于转化生长因子β(TGF-β)超家族成员的多功能生长和分化因子,激活素具有多种生物学功能及广泛的生物学活性,参与全身多种组织、细胞的生长调节,维持其正常功能。尤其是激活素A,对机体的整个生命过程均有重要的作用。激活素的生物学效应与其作用的靶细胞类型有关,具有明显的组织特异性。研究表明,激活素信号参与了乳腺细胞的生长并调节乳腺的发育。而且激活素的受体和它的信号分子存在于人的乳腺癌细胞系。这些结果提示激活素的表达可能与乳腺癌发生、发展具有密切的相关性。
     激活素的信号转导途径如下:激活素与其Ⅱ型受体(ActRⅡ)结合后,Ⅱ型受体磷酸化,磷酸化的Ⅱ型受体会进一步使受体Ⅰ磷酸化,磷酸化的受体Ⅰ进一步使细胞内的转录因子Smad2/3磷酸化,磷酸化的Smad2/3会进一步和Smad4结合,并进入细胞核,从而调控下游基因的转录。在激活素的信号转导途径中,激活素受体Ⅱ是直接和激活素结合的受体,其在膜上的表达量将直接影响激活素信号的强度。最近的研究结果表明,小鼠激活素受体相互作用蛋白(ARIPs)可通过调控激活素受体Ⅱ在膜上的表达量来调节激活素的信号,其中小鼠的ARIP2可通过与ActRⅡ结合抑制激活素信号。但目前为止,尚无人ARIP2的相关研究报道。
     本研究通过RT-PCR方法从人293细胞中钓取了人ARIP2的cDNA序列。该基因cDNA编码区长546bp,编码一个182个氨基酸的蛋白,与小鼠ARIP2有很高的同源性,在其N末端也有一个PDZ功能区,能特异性与激活素Ⅱ型受体相互作用。
     本研究进一步检测了hARIP2对激活素信号的影响。将激活素应答性报告载体CAGA-lux与pcDNA3-FLAG-hARIP2或pcDNA3质粒共转染乳腺癌细胞系MCF-7细胞和MDA-MB-231细胞。结果显示,过表达hARIP2可以抑制激活素应答性基因的转录,并且具有剂量依赖性。而通过RNA干涉方法下调hARIP2的表达,则可增强激活素应答性基因的转录。
     为了研究hARIP2对肿瘤细胞增殖的作用,我们分别在乳腺癌细胞系MCF-7细胞和MDA-MB-231细胞中过表达hARIP2或下调hARIP2的表达,之后利用MTT法和平板克隆形成实验检测了hARIP2对MCF-7细胞和MDA-MB-231细胞增殖能力的影响。结果表明,过表达hARIP2能够促进MCF-7细胞和MDA-MB-231细胞的增殖。反之,下调hARIP2基因的表达则抑制MCF-7细胞和MDA-MB-231细胞的增殖。同时,我们也研究了hARIP2对其它肿瘤细胞的作用,发现过表达hARIP2同样能够促进其它肿瘤细胞的增殖,下调hARIP2基因的表达则抑制肿瘤细胞的增殖。
     另外,本研究还自行制备了hARIP2多克隆抗体。并用此抗体通过免疫组织化学方法检测了hARIP2在乳腺良性增生组织、乳腺纤维腺瘤、乳腺单纯癌、乳腺浸润性导管癌及乳腺黏液癌组织中的表达情况,同时分析了hARIP2的表达与肿瘤的恶性度、肿瘤大小、肿瘤病理学等级及转移情况的关系。结果表明,hARIP2在乳腺良性增生组织及乳腺纤维腺瘤组织中不表达或低表达,而在乳腺癌组织中则高表达。此结果提示,hARIP2表达水平与乳腺癌的发生具有高度相关性。
     本研究为进一步探讨激活素信号的调控机制及其在乳腺癌等疾病的发生、发展中的作用奠定了实验基础。同时,对乳腺癌的诊断及治疗具有重要的指导意义。
Activins are member of the transforming growth factorβ(TGF-β) superfamily of growthand development of differentiation factors and have numerous biological functions and widelybiological actions. Activin regulates the development of cells and tissues and keep thehomeostasis of organisms. Especially activin A, always plays important roles for organismsfrom new born to adult. The biological actions of activin on target cells are tissue-specific,which included regulating the cell proliferation and inhibiting the development of tumor cells.Activin signaling has been associated with mammary cell growth inhibition as well asregulation of mammary glandular development.Studies showed that activin and its receptorsare expressed during postnatal mouse mammary development and glandular formation duringthe lactating phase. Activin receptors and signaling molecules are also present in humanbreast cancer cell lines. These results suggest that the expression of activin A has closerelationship with breast tumorigenesis and progression.
     Then signal transduction pathway is as followed: activin binds directly to its typeⅡreceptor, leading to the recruitment, phosphorylation and subsequent activation of the typeⅠreceptor. On activation, the type I receptor binds and then phosphorylates a subset ofcytoplasmic Smad protein-Smad 2/3. The phosphorylated Smad 2/3 can bind to Smad 4.These Smads translocate to the nucleus, where they control the transcription of target genes.In the course of signal transduction, the expression level of typeⅡreceptor in membrane willaffect the intensity of activin signal. The recent investigation indicated that mouse ARIPs canregulate activin signal through control the expression level of typeⅡreceptor on membrane.But to date, there is no report in this aspect.
     In this study, we obtained a novel member of ARIPs from 293 cells by RT-PCR. The novelcDNA clone encodes the full length is 546bp. The novel gene encodes a 182 amimo acidprotein. Because of high homology with mouse ARIP2, we named the novel protein as humanactivin receptor interacting protein 2. Like murine ARIP2, hARIP2 has a PDZ domain in itsNH2-terminal region and can interact specifically with ActRIIs.
     Our study further tested the effect of hARIP2 on activin-induced signal transductionpathway, the CAGA-lux construct which provides luciferase reporter gene and specificallyresponds to activin was selected. CAGA-lux, pcDNA3-FLAG-hARIP2 or pSilencer-hARIP2were co-transfected into human breast adenocarcinoma MCF-7 cells and MDA-MB-231 cellsin vitro. The results showed that the overexpression of hARIP2 decreased activin-inducedtranscriptional activity. However, inhibiting the expression of hARIP2 augmentedactivin-induced transcriptional activity.
     To determine a role of hARIP2 for the proliferation of tumor cells, the control,recombinant plasmid Flag-pcDNA3-hARIP2, control siRNA and pSilencer-hARIP2 weretransfected into human breast adenocarcinoma MCF-7 cells and MDA-MB-231 cellsrespectively. Through MTT assay and plate clonality formation assay, we found that thelevels of cell proliferation increased when hARIP2 was over-expressed compared with control. However, when the cells were transfected with pSilencer-hARIP2, the levels of cellproliferation decreased compared with control siRNA. Meanwhile, similar results wereobtained in other tumor cells. These results indicated that overexpressing hARIP2 promotedbreast tumor cell proliferation.
     Moreover, we prepared anti-hARIP2 polyclonal antibody by ourselves. Byimmunohistochemistry method, we determined the distribution of hARIP2 in the tissuesincluding breast benign hyperplasia, fibroadenoma, mucous adenocarcinoma, trachealcarcinoma and simple carcinoma using the antibody, and further investigated the associationof the expression of hARIP2 with malignant progression, tumor size, tumor grade andmetastases by Immunohistochemistry method. The result showed significant correlations inbreast cancer specimens between an increase of hARIP2 abundance and high tumor malignantprogression, high tumor grade, and high tumor metastases. Moreover, hARIP2 was expressedmore frequently and much more intensely in malignant breast tissues such as simplecarcinoma, invasive ductal carcinoma and mucinous adenocarcinoma than in benignhyperplasia or fibroadenoma cases. These results suggesting that the expression level ofhARIP2 has close relationship with breast tumorigenisis, tumor malignant progression, tumorgrade, and tumor metastases.
     This study strengthened the bases of activin-mediated breast cancer diseases development,progression and therapies with theoretical and experimental evidence. Further more, this studyhad a significant value for the diagnosis and treatment of breast cancer.
引文
[1] Feuer E J, Wun L M, Boring C C, et al. The lifetime risk of developing breast cancer. J Natl Cancer Inst, 1993, 85: 892—7.
    
    [2] Sharkey F E, Allred DC, Valente P T, Breast. In: Dmjanov I, Linder J, eds. Anderson's pathology, 3rd ed. St. Louis: Mosby, 1996, 2354-2385.
    
    [3] Uzzan B, Nicolas P, Cucherat M, et al. Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res, 2004, 64: 2941—55.
    
    [4] Konstantinovsky S, Nielsen S, Vyberg M, et al. Angiogenic molecule expression is down regulated in effusion from breast cancer. Breast Cancer Res Treat, 2005, 94:71-80.
    
    [5] Fiegl H, MillingerS, Goebel G, et al. Breast cancer DNA methylation profiles in cancer cells and tumor stroma: association with HER-2/neu status in primary breast cancer. Cancer Res, 2006, 66: 29—33.
    
    [6] Jemal A, Siegel R, Ward E, et al. Cancer statistics. CA Cancer J Clin. , 2007, 57:43-66.
    
    [7] June C H, Bluestone J A, Nadler L M, et al. The B7 and CD28 rescptor families. Immunol Today, 1994, 15: 321—331.
    
    [8] Goldrath A W and Bevan M J, Selecting and maintaining a diverse T-cell repertoire. Nature, 1999, 402: 255—262.
    
    [9] Paster W, Kalat M, ZehetnerM, et al. Structural elements of a protein antigen determine iminunogenicity of the embedded MHC class I-restrichte T cell epitope J, Immunol, 2002, 169:2937-2946.
    
    [10] Salomon B and Bluestone J A. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu. Rev. Immunol, 2001, 19: 225-252.
    
    [11] Liu Q Y, Niranjan B, Gomes P, et al. Inhibitory effects of activin on the growth and morpholgenesis of primary and transformed mammary epithelial cells. Cancer Res, 1996, 56: 1155—1163.
    
    [12] Gorska A E, Joseph H, Derynck R, et al. Dominantnegative interference of the transforming growth factor β type Ⅱ receptor in mammary gland epithelium results in alveolar hyperplasia and differentiation in virgin mice. Cell Growth Differ, 1998, 9: 229—238.
    [13] Derynck R, AkhurstRJ, and Balmain A. TGF-β signaling in tumor suppression and cancer progression. Nat. Genet, 2001, 29: 117-129.
    
    [14] Di Loreto C, Reis F M, Cataldi P, et al. Human mammary gland and breast carcinoma contain immunoreactive inhibin/activin subunits: evidence for a secretion into cystic fluid. Eur J. Endocrinol, 1999, 141: 190-194.
    
    [15] Wakef ield L M, Piek E, and Bottinger E P. TGF- β signaling in mammary gland development and tumorigenesis. J. Mamm. Gland Biol. Neoplasia, 2001, 6: 67-82.
    [16] Xie W, Mertens J C, Reiss D J, et al. Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: a tissue microarray study. Cancer Res, 2002, 62: 497—505.
    
    [17] Vale W, Rivier J, Vaughan J, et al. Purification and characterization of an FSH releasing protein from porcine follicular fluid[J]. Nature, 1986, 321:776-779
    
    [18] Ling N, Ying S Y, Ueno N, et al. Pituitary FSH is released by a heterodimer of the β subunits of the two forms of inhibin[R]. Nature, 1986, 321: 779—782.
    
    [19] Lebrun J J, Chen Y, Vale W W. Receptor serine kinases and signaling by activins and inhibins. In: Aono T, Sugino H, Vale WW eds. Inhibin, activin and follistatin: Regulatory functions in system and cell biology, 1997, New York: Springer-Verlag; 1—21.
    
    [20] Massague J. TGF-beta signal transduction. Annu Rev Biochem, 1998, 67:753—791.
    [21] Fei jen A, Goumans MJ. Exporession of activin subunits, activin receptors and follistatin in postimplantation mouse embryos suggests specific developmental functions for different activins. Development, 1994, 120: 3621-3637.
    
    [22] Sugino H, Tsuchida K. Activin and follistatin. In Skeletal Growth Factors (E. Canalis Ed. ) Lippincott Williams&Wilkins, Philadelphia 2000, 251-263.
    
    [23] Tsuchida K, Current Drug Targets, Immune. Endocrine and Metabolic Disorders, 2004, 4(2), 157.
    
    [24]Bao YL, Tsuchida K, Liu B, et al. Synergistic activity of activin A and basic fibroblast growth factor on tyrosine hydroxylase expression through Smad 3 and ERK1/ERK2 MAPK signaling pathways, 2005, 184(3), 493.
    
    [25] Liu B, Bao Y L, Wei Z, et al. Isolation and Characterization of proteins interacting with activin type II receptors. CHEM. RES. CHINESE U. 2006, 22(2): 217-220.
    [26] Chen Y G, Wang Q, Lin S L, et al. Activin Signaling and Its Role in Regulation of Cell Proliferation, Apoptosis, and Carcinogenesis Experimental Biology and Medicine, 2006, 231:534—544.
    
    [27] Woodruff T K. Regulation of cellular and system function by activin Biochemical Pharmacology, 1998, 55 953 - 963.
    
    [28] Fang J, Yin W, Smiley E, et al. Molecular cloning of the mouse a ctivin beta-E subunit gene. Biochem Biophys. Res. Commun., 1996. 228: 669-674.
    
    [29] Hotten G, Neidhardt H, Schneider C, et al. Cloning of a new member of the TGF-beta family: a putative new activin beta C chain. Biochem Biophys Res. Commun., 1995.206:608 - 613.
    
    [30] Date M, Matsuzaki K, Matsushita M, et al. Differential regulation of activin Afor hepatocyte growth and fibronectin synthesis in rat liver injury [J]. J Hepatol, 2000, 32 (2): 2512260.
    
    [31]VejdaS, Cranfield M, Peter B, et al. Expression and dimerization of the rat activin subunits β C and β E:evidence for the formation of novel activin dimers. J Mol Endocrinol, 2002, 28, 137-148.
    
    [32] Ohnishi N, Miyata T, Ohnishi H, et al. Activin A is an autocrine activator of rat pancreatic stellate cells: otentialtherapeutic role of follistatin for pancreatic fibrosis [J]. Gut, 2003, 52(10): 148721493.
    
    [33] Kromm S, Rezunyk J, and Sparkes R. The Roles of Activin and the Type I Activin Receptor in Mesoderm Induction in Xenopus. In L. W. Browder (Ed.), Developmental Biology, 1997.
    [34] Findlay J K. An update on the roles of inhibin, activin, and follistatin as local regulators of folliculogenesis Biology of Reproduction, 1993, 48 15—23.
    
    [35] Nakamura M , Minegishi T , Hasegawa Y , et al. Effect of an activin A on follicle-stimulating hormone (FSH) receptor messenger ribonucleic 674 J-F Ethier and J K Findlay acid levels and FSH receptor expressions in cultured rat granulosa cells Endocrinology, 1993, 133 538-544.
    
    [36] Phillips D J and de Kretser D M. Follistatin: a multifunctional regulatory protein Frontiers in Neuroendocrinology, 1998, 19 287—322.
    
    [37] By M E, Mikko H, Ulf-HAkan S, et al. Activin A/Erythroid Differentiation Factor Is Induced during Human Monocyte Activation. J. Exp. Med. Volume 176 November 1992 1449-1452.
    [38] Alak B M, Coskun S, Friedman C I, et al. Activin A stimulates meiotic maturation of human oocytes and modulates granulosa cell steroidogenesis in vitro. Fertility and Sterility, 1998, 70 1126-1130.
    [39] Boitani C, Stefanini M, Fragale A, et al. Activin stimulates Sertoli cell proliferation in a defined period of rat testis development Endocrinology, 1995, 136 5438 - 5444.
    
    [40] Mohan A, Asselin J, Sargent I L, et al. Effect of cytokines and growth factors on the secretion of inhibin A, activin A and follistatin by term placental villous trophoblasts in culture [J]. Eur J Endocrinol, 2001, 145(4): 5052511.
    
    41] Yasuda H, Mine T, Shibata H, et al. Activin A: an autocrine inhibitor of initiation of DNA synthesis in rat hepatocytes. J Clin Invest, 1993, 92, 1491-1496.
    
    [42] Schwall R H, Robbins K, Jardieu P, et al. Activin induces cell death in hepatocytes in vivo and in vitro. Hepatology. 1993, 18: 347—356.
    
    [43] Hully J R, Chang L, Schwall R H, et al. Induction of apoptosis in the murine liver with recombinant human activin A. Hepatology, 1994, 20: 854—862.
    
    [44] Chen W, Woodruff T K, Mayo K E. Activin A induced Hep G2 liver cell apoptosis: involvement of activin receptors and smad proteins [J]. Endo2 crinology, 2000, 141 (3): 126321272.
    
    [45] Vejda S, Erlach N, Peter B, et al. Expression of activins C and E induces apoptosis in human and rat hepatoma cells. Carcinogenesis, 2003, 24(11): 1801—1809.
    
    [46] Schubert D, Kimura H, LaCorbiere M, et al. Activin is a nerve cell survival molecule Nature, 1990, 344, 868—870.
    
    [47] Phillips DJ, Jones KL, Scheerlinck J Y, et al. Evidence for activin A and follistatin involvement in the systemic inflammatory response [J]. Mol Cell Endocrinol, 2001, 180 (122):1552162.
    
    [48] Peng C, Ohno T, Loo Y K, et al. Human ovary and placenta express messenger RNA for multiple activin receptors [J]. Life Sci, 1999, 64 (12): 9832994.
    
    [49] Hü Bner G, Hu Q, Smola H, et al. Strong induction of activin expression after injury suggests an important role of activin in wound repair. Dev Biol, 1996, 173: 490—498.
    
    [50] Seishema M, Nojiri M, Esaki C, et al. Activin A induces terminal differentiation of cultured human keratinocytes.J Invest Dermatol, 1999, 112: 432—436.
    
    [51] Shimizu A, Kato M, Nakao A, et al. Identification of receptors and Smad proteins involved in activin signaling in a human epidermal keratinocyte cell line. Genes Cells, 1998, 3: 125—134.
    [52] Wankell M, Munz B, Hü Bner G, et al. Impaired wound healing in transgenic mice overexpressing the activin antagonist follistatin in the epidermis. EMBO J, 2001, 20: 5361—5372.
    
    [53] Mathews L S. Activin receptors and cellular signaling by the receptor serine kinase family. Endocr Rev, 1994, 15: 310—325.
    
    [54] Tsuchida K, Vaughan JM, Wiater E, et al. Inactivation of activin-dependent transcription by kinase-deficient activin receptors. Endocrinology, 1995, 136: 5493—5503.
    [55] Shoji H, Nakamura T, van den Eijnden-van Raaij A J, et al. Identification of a Novel Type Ⅱ Activin Receptor, Type IIA-N, Induced during the Neural Differentiation of Murine P19 Embryonal Carcinoma Cells. Biophys. Res. Commun, 1998, 246, 320—324.
    [56] Ethier JF, LussierJG, and Silversides D W. Bovine Activin Receptor Type IIB Messenger Ribonucleic Acid Displays Alternative Splicing Involving a Sequence Homologous to Src-Homology 3 domain Binding Sites. Endocrinology, 199, 138, 2425—2434.
    [57] Batres Y, Zhang Z, Ying S Y. Expression of activins and activin receptor messenger RNAs in LNCaP cells, a human prostatic adenocarcinoma cell line. Int J Oncol, 1995, 6:1185—1188.
    
    [58] Ying SY, Zhang Z, Huang G, et al. Inhibin/activin subunits and activin receptors in human breast cell lines and lactating rat mammary glands. Int J Oncology. 1995, 7: 481—485.
    
    [59] Hilden K, Tuuri T, Eramaa M, et al. Expression of type Ⅱactivin receptor genes during differentiation of human K562 cells and cDNA cloning of the human type Ⅱactivin receptor. Blood, 1994, 83: 2163-2170.
    
    [60] Shuto T, SarkarG, Bronk JK, et al. Osteoblasts express types Ⅰ andⅡ activin receptors during early intramembranous and endochondral bone formation. J Bone Mineral Res, 1997, 12: 403—411.
    
    [61] de Jong F H, de Winter J P, Wesseling J G, et al. Inhibin subunits, follistatin and activin receptors in the human teratocarcinoma cell line Tera-2. Biochem Biophys Res Commun, 1993, 192: 1334—1339.
    
    [62] Thomas T Z, Wang H, Niclasen P, et al. Expression and localization of activin subunits and follistatins in tissues from men with high-grade prostate cancer. J Clin Endocrinol Metabol, 1997, 82: 3851-3858.
    
    [63]Demura R, Tajima S, Suzuki T, et al. Inhibin α , β A subunit and activin type Ⅱ receptor mRNAs are expressed in human brain tumors. Endocr J, 1995, 42: 307—313.
    [64] Sidis Y, Fujiwara T, Leykin L, et al. Characterization of inhibin/activin subunit, activin receptor, and follistatin messenger ribonucleic acid in human and mouse oocytes: evidence for activin' s paracrine signaling from granulose cells to oocytes. Biol Repod, 1998, 59: 807—812.
    
    [65] Shinozaki H, Minegishi T, Nakamura K, et al. Type Hand type IIB activin receptors in human placenta. Life Sci. 1995, 56: 1699—1706.
    
    [66] Massague J. The transforming growth factor-beta family. Annu Rev Biochem, 1998, 67: 753—791.
    [67] Massague J, and Chen Y G. Controlling TGF-beta signaling [J]. Genes Dev, 2000, 14 (6): 627—644.
    
    [68]Jonk L J, Itoh S, Heldin C H, et al. Identification and functional characterization of Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor β, activin , and bone morphogenetic protein-inducible enhancer. J Biol Chem, 1998, 400: 687—693.
    
    [69]LagnaG, Hata A, Hemmati-Brivanlou A, et al. Partnership between DPC4 and SMAD proteins in TGFβ signaling pathways. Nature. 1996, 383: 832—836.
    
    [70] Attisano L, Wrana J L, Montalvo E, et al. Activation of signaling by the activin receptor complex. Mol Cell Biol, 1996, 16: 1066—1073.
    
    [70] Vale W, Hsueh A, Rivier C, et al. The inhibin/activin family of hormones and growth factors. In: Sporn MB , Roberts AB , Eds. Peptide Growth Factors and Their Rcecptors. Heidelberg: Springer-Verlag. 1999, pp211—248.
    
    [72] Hemmati-Brivanlou A, Kelly 0 G, Melton D A. Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell, 1994, 77: 283—295.
    
    [73] Dalkin A C, Haisenleder D J, GilrainJT, et al. Regulation of pituitary follistatin and inhibin/activin subunit messenger ribonucleic acids (mRNAs) in male ahd female rats: evidence for inhibin regulation of follistatin mRNA in females. Endocrinology, 1998, 139: 2818-2823.
    
    [74] Bilezikjian L M, Corrigan A Z, Blount A L, et al. Pituitary follistatin and inhibin subunit messenger ribonucleic acid levels are differentially regulated by local and hormonal factors. Endocrinology, 1996, 137: 4277-4284.
    
    [75] Munz B, Hubner G, Tretter Y, et al. A novel role of activin in inflammation and repair. J Endocrinol, 1999, 161: 187—193.
    
    [76] Yu J, Shao LE, Lemas V, et al. Importance of FSH-releasing protein and inhibin in erythrodifferentiation. Nature, 1987, 300: 765—767.
    
    [77] Lebrum J J , Vale W W. Activin and inhibin have antiagonistic effects on ligand-dependent heterpmerization of the type I and type Ⅱactivin receptors and human erythroid differentiation. Mol Cell Biol, 1997, 17: 1682—1691.
    
    [78] Chen P, YuYM, Reddi A H. Chondrogenesis in chick limb bud mesodermal cells: reciprocal modulation by activin and inhibin. Exp Cell Res, 1993, 206: 119—127.
    [79] Woodruff T K. Hope, hypothesis, and the inhibin receptor: does specific inhibin binding suggest there is a specific inhibin receptor? Endocrinology, 1999, 140: 3—5.
    [80] Draper L B, Matzuk M M, Roberts V J, et al. Identification of an inhibin receptor in gonadal tumors from inhibin β-subunit knockout mice. J Biol Chem. 1998, 273: 398—403.
    
    [81] Robertson D M, Burger H G, Fuller P J. Inhibin/activin and ovarian cancer. Endocrine-related Cancer, 2004 11 (1): 35—49.
    
    [82] Martens J W, de Winter J P, Timmerman M A, et al. Inhibin interferes with activin signaling at the level of the activin receptor complex in Chinese hamster ovary cells. Endocrinology, 1997, 138: 2928—2936.
    [83] Lewis K A, Gray P C, Blount A L, et al. β -Glycan binds inhibin and can mediate functional
    antagonism of activin signaling. Nature, 2000, 404: 411—414.
    
    [84] Lopez-Casillas F , Wrana J L , Massague J. β -glycan presents ligand to the TGF-β signaling receptor. Cell, 1993, 73: 1435—1444.
    
    [85] Barbara N P, Wrana J L, Letarte M. Endglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem, 1999, 274: 584—594.
    
    [86] Letamendia A, Lastres P, Botella L M, et al. Role of endoglin in cellular responses to transforming growth factor-beta: A comparative study with betaglycan. J Biol Chem, 1998, 273: 33011—33019.
    
    [87] Lastres P, Letamendia A, Zhang H, et al. Endoglin modulates cellular responses to TGF-beta 1. J Cell Biol, 1996, 133: 1109—1121.
    
    [88] Guerrero-Esteo M, Lastres P, Letamendia A, et al. Endoglin overexpression modulates cellular morphology, migration, and adhesion of mouse fibroblasts. Eur J Cell Biol. 1999, 78: 614—623.
    
    [89] Li C, Hampson I N, Hampson L, et al. CD105 antagonizes the inhibitory signaling of transforming growth factor beta 1 on human vascular endothelial cells. FASEB J, 2000, 14: 55—64.
    
    [90] Francisco S R, Mercedes G E, Botella L M, et al. Endoglin Regulates Cytoskeletal Organization through Binding to ZRP-1, a Member of the Lim Family of Proteins. J. Biol. Chem. 2004, 279 (31): 32858—68.
    
    [91] RoelenB A, vanRooijenM A, Mummery CL. Expression of ALK-1, A type 1 serine/threonine kinase receptor, coincides with sites of vasculogenesis and angiogenesis in early mouse development. Dev Dyn, 1997, 209: 418—430.
    
    [92] Cheifetz S, BellonT, Cales C, et al. Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem, 1992, 267: 19027—19030.
    
    [93] Attisano L, Carcamo J, Ventura F, et al. Identification of human activin and TGF beta type I receptors that form heteromeric kinase complexes with type Ⅱ receptors. Cell, 1993, 75: 671—680.
    
    [94] Shen M M, Schier A F. The EGF-CFC gene family in vertebrate development. Trends Genet, 2000, 16: 303—309.
    
    [95] Yeo C, Whitman M. Nodal signals to Smads through Cripto-dependent and Cripto-indenpent mechanisms. Mol Cell, 2001, 7: 949—957.
    
    [96] Schier A F, Shen M M. Nodal signaling in vertebrate development. Nature, 2000, 403: 385—389.
    
    [97] Onichtchouk D, Chen YG, Dosch R, et al. Silencing of TGF-beta signaling by the pseudoreceptor BAMBI. Nature. 1999, 401: 480—485.
    
    [98] Degen W G, Weterman M A, van Groningen J J, et al. Expression of nma, a novel gene, inversely correlates with the metastatic potential of human melanoma cell lines and xenografts. Int J Cancer, 1996, 65: 460—465.
    
    [99] Yao D Y, Dore JJ Jr, Leof E B. FKBP12 Is a Negative Regulator of Transforming Growth Factor-beta Receptor Internalization The Journal of Biological Chemistry Vol. 275, No. 17, Issue of April 28, pp. 13149-13154, 2000.
    [100] Wang T, Li B Y, Danielson P D, et al. The immunophilin FKBP12 function as a common inhibintor of the TGFβ family type I receptors. Cell, 1996, 86: 435—444.
    
    [101] Chen Y G, Liu F, Massague J. Mechanism of TGFP receptor inhibition by FKBP12. EMBO J, 1997, 16: 3866—3876.
    
    [102] Okadome T, Oeda E, Saitoh M, et al. Characterization of the interaction of FKBP12 with the transforming growth factor- β type Ⅰ receptor in vivo. J Biol Chem, 1996, 271: 21687—21690.
    
    [103] Heldin C, Miyazono K, Ten Dijke P. TGF-beta signaling from cell membrane to nucleus through SMAD proteins. Nature, 1997, 390: 465—471.
    
    [104] Chen R H, Miettinen P J, Maruoka E M, et al. A WD-domain protein that is associated with and phosphorylated by the type Ⅱ TGF-beta receptor. Nature, 1995, 377: 548—552.
    
    [105] Choy L , Derynck R. The type Ⅱ transforming growth factor (TGF)-beta receptor-interacting protein TRIP-1 acts as a modulator of the TGF-beta response. J Biol Chem, 1998, 273: 31455—31462.
    
    [106] Datta P K, Moses H L. STRAP and Smad7 synergize in the inhibition of transforming growth factor beta signaling. Mol Cell Biol, 2000, 20: 3157—3167.
    
    [107] Griswold-Prenner I , Kamibayashi C, Maruoka E M, et al. Physical and functional interactions between type I transforming growth factor beta receptors and Balpha, a WD-40 repeat subunit of phosphatase 2A. Mol Cell Biol, 1998, 18: 6595—6604.
    
    [108] Charng M J, Zhang D, KinnunenP, et al. A novel protein distinguishes between quiescent and activated forms of the type I transforming growth factor beta receptor. J Biol Chem, 1998, 273: 9365—9368.
    
    [109] Wurthner J U, Frank D B, Felici A, et al. Transforming growth factor-beta receptor-associated protein 1 is a Smad4 chaperone. J Biol Chem, 2001, 276: 19495—19502.
    
    [110] Cho K 0, Hunt C A, et al. The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron, 1992, 9: 929—942.
    
    [111] Cohen N A, Brenman J E, et al. Binding of the inward rectifier K+ channel Kir 2.3 to PSD-95 is regulated by protein kinase A phosphorylation. Neuron. 1996, 17: 759—767.
    
    [112] Juan F L, Anna M S, et al. A role for a PDZ protein in the early secretory pathway for the targeting of pro TGF-α to the cell surface. Molecular cell, 1999, 3: 423—433.
    
    [113] Kuo A, Zhong C L, et al. Transmembrane transforming growth factor-α tethers to the PDZ domain-containing, Golgi membrane-associated ptotein p59/GRASP55. The EMBO Journal, 2000, 19(23): 6427—6439.
    
    [114] Tomita S, Nicoll R A, Bredt D S. PDA protein interactions regulating glutamate receptor function and plasticity. J Cell Biol. 2001, 153 (5): 19-24.
    
    [115] Sheng M. PDZs and receptor/channel clustering: rounding up the latest suspects. Neuron, 1996, 17: 575—578.
    
    [116] Sheng M, Sala C. PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci, 2001, 24: 1—29.
    
    [117] Fanning A S, Anderson J M. Protein-protein interactions: PDZ domain networks. Curr. Biol, 1996, 6: 1385—1388.
    
    [118] Fanning A S, Anderson J M. PDZ domains and the formation of protein networks at the plasma membrane. Curr Top Microbiol Immumol. 1998, 228: 209—33.
    
    [119] Milewski M I, Michle J E, et al. A PDZ-binding motif is essential but not sufficient to localize the C terminus of CFTR to the apical membrane. J Cell Sci, 2001, 114(4): 719—726.
    
    [120] Ponting C P, Phillips C, DaviesKE, et al. PDZ domains: Targeting signal ing molecules to sub-membranous sites. Bioessays, 1997, 19: 469—479.
    
    [121] Garner C C, Nash J, Huganir R L. PDZ domains in synapse assembly and signaling. Trends Cell Biol, 2000, 10: 274—280.
    
    [122] Shoji H, Tsuchida K, Kishi H, et al. Identification and Characterization of a PDZ Protein That Interacts with Activin Type Ⅱ Receptors The Journal of Biological Chemistry,2000, Vol. 275, No. 8, Issue of February 25, pp. 5485—5492.
    
    [123] Matsuzaki T, Hanai S, Kishi H, et al. Regulation of Endocytosis of Activin Type Ⅱ Receptors by a Novel PDZ Protein through Ral/Ral-binding Protein 1-dependent Pathway The Journal of Biological Chemistry, 2002, Vol. 277, No. 21, Issue of May 24, pp. 19008—19018.
    [124] Liu Z H, Tsuchida K, Matsuzaki T, et al. A Kurisaki and H Sugino Characterization of isoforms of activin receptor-interacting protein 2 that augment activin signaling Journal of Endocrinology, 2006, 189, 409—421.
    
    [125] Ebisawa T, Fukuchi M, Murakami G, et al. Smurfl interacts with transforming growth factor-β type Ⅰ receptor through Smad 7 and induces receptor degradation. J Biol Chem, 2001, 276: 12477—12480.
    
    [126] Tsukazaki T, Chiang T A, Davison A F, et al. SARA, a FYVE domain protein that recruits Smad2 to the TGF beta receptor. Cell, 1998, 95: 779—791.
    
    [127] Goto D, Nakajima H, Mori Y, et al. Interaction between Smad anchor for receptor activation and Smad3 is not essential for TGF-beta/Smad-mediated signaling. Biochem Biophys Res Commun, 2001, 281: 1100—1105.
    
    [128] Wurmser A E, Gary J D, Emr S D. Phosphoinositide 3-kinases and their FYVE domain-containing effcetors as regulators of vacuolar/lysosomal membrane tranffiching pathways. J Biol Chem, 1999, 274: 9129—9132.
    
    [129] Miura S, Takeshita T, Asao H, et al. Hgs(Hrs), a FYVE domain ptotein, is involved in Smad signaling through cooperation with SARA. Mol Cell Biol, 2000, 20: 9346—9355.
    
    [130] Massague J. How cells read TGF-beta signals. Nat Rev Mol Cell Biol, 2000, 1: 169—178.
    
    [131] Zhang Y, Derynck R. Regulation of Smad signaling by ptotein associations and signaling crosstalk. Trends Cell Biol, 1999, 9: 274—279.
    
    [132] Ulloa L, Doody J, Massague J. Inhibition of transforming growth factor-beta/SMAD signaling by the interferon-gamma/STAT pathway. Nature, 1999, 397: 710—713.
    
    [133] BitzerM, von Gersdorff G, Liang D, et al. A mechanism of suppression of TGF-beta/SMAD signaling by NF-kappa B/RelA. Genes Dev, 2000, 14: 187—197.
    
    [134] Kanamaru C, YasudaH, TakedaM, et al. Smad7 is induced by norepinephrine and protects rat hepatocytes from activin A-induced growth inhibition. J Biol Chem, 2001, 276: 45636—45641.
    
    [135] Kretzschmar M, Liu F, Hata A, et al. The TGF-beta family mediator Smadl is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev, 1997, 11: 984—995.
    
    [136] Kretzschmar M, Doody J, Timokhinal, et al. A mechanism of repression of TGF-beta/Smad signaling by oncogenic Ras. Genes Dev, 1999, 13: 804—816.
    
    [137] Yakymovych I, Ten Dijke P, Heldin CH, et al. Regulation of Smad signaling by protein kinase C. FASEB J, 2001, 15: 553—555.
    
    [138] Corson S L, Gutmann J, Batzer F R, et al. Inhibin-B as a test of ovarian reserve for infertile women. Hum Reprod, 1999, 14: 2818—2821.
    
    [139] Brown J D, DiChiARA Mr, Anderson K R, et al. MEKK-1, A component of the stress (stress-activated protein kinase/c-Jun N-terminal kinase) pathway , can selectively activate Smad2-mediated transcriptional activation in endothelial cells. J Biol Chem. 1999,274: 8797—8805.
    
    [140] Scherer A, Graff J M. Calmodulin differentially modulates Smadl and Smad2 signaling. J Biol Chem, 2000, 275: 41430—41438.
    
    [141] Matsuda T, Yamamoto T, Muraguchi A, et al. Cross-talk between transforming growth factor-beta and extrogen receptor signaling through Smad3. J Biol Chem, 2001, 276: 42908—42914.
    
    [142] Yamaguchi K, Nagai S, Ninomiya-Tsuji J, et al. XIAP, a cellular member of the inhibitor of apoptosis ptotein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J, 1999, 18: 179—187.
    
    [143] Yamaguchi K, Shirakabe K, Shibuya H, et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science, 1995, 270: 2008—2011.
    
    [144] Shibuya H, Yamaguchi K, Shirakabe K, et al. TAB1: An activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science, 1996, 272: 1179—1182.
    
    [145] Shibuya H, Iwata H, Masuyama N, et al. Role of TAK1 and TAB1 in BMP signaling in early Xenopus development. EMBO J, 1998, 17: 1019—1028.
    
    [146] Sano Y, Harada J, Tashiro S, et al. ATF-2 is a common nuclear target of Smad and TAK1 pathway in transforming growth factor-beta signaling. J Biol Chem, 1999, 274: 8949—8957.
    
    [147] Cocolakis E, Lemay S, Ali S, et al. The p38 MAPK pathway is required for cell growth inhibition of human breast cancer cells in response to activin. J Biol Chem, 2001, 276: 18430—18436.
    
    [148] Welt C, Sidis Y, Keutmann H, et al. Activins, inhibins, and follistatins: from endocrinology to signaling. A paradigm for the new millennium. Exp Bio Med(Maywood), 2002,227(9): 724—52.
    
    [149] Ivan, Roitt, Jonathan, Brostoff, David, Male, Immunology, Fifth Edition, Mosby, London, Philadelphia, St. Louis, Sydney, Tokyo, 1998.
    
    [150] Matzuk M M, Kumar T R, Shou W, et al. Transgenic models to study the rolesof inhibins and activins in reproduction, oncogenesis, and development. Recent Prog Horm Res, 1996,51: 123—54.
    
    [151] Yoshinaga K, Mimori K, Yamashita K, et al. Clinical significance of the expression of activin A in esophageal carcinoma. Int J Oncol, 2003, 22(1): 75—80.
    [152] Jeruss J S, Santiago J Y, Woodruff T K. Localization of activin and inhibin subunits, receptors and SMADs in the mouse mammary gland. Mol Cell Endocrinol, 2003, 203: 185—96.
    
    [153] Wakefield L M, Piek E, and Bottinger EP. TGF-β signaling in mammary gland development and tumorigenesis. J Mamm. Gland Biol. Neoplasia, 2001, 6: 67—82.
    
    [154] Xie W, Mertens J C, Reiss, D J, et al. Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: a tissue microarray study. Cancer Res, 2002, 62: 497—505.
    
    [155] Jeruss J S, Santiago J S, and Woodruff T K. Localization of activin and inhibin subunits, receptors and Smads in the mouse mammary gland. Mol. Cell. Endocrinol, 2003, 203: 185—196.
    
    [156] Ying S Y, Zhang Z. Expression and localization of inhibin/activin subunits and activin receptors in MCF-7 cells, a human breast cancer cell line. Breast Cancer Res Treat, 1996, 37: 151—60.
    
    [157]ReisFM, Luisi S, CarneiroMM, et al. Activin, inhibin and the human breast. Molecular and Cellular Endocrinology, 2004, 225 77—82.
    
    [158] Robinson G W and Hennighausen L. Inhibins and activins regulate mammary epithelial cell differentiation through mesenchymal - epithelial interactions. Development, 1997, 124 2701—2708.
    
    [159] Bussmann U A, Lanuza G M and Bussmann L E. Activin and follistatin in rat mammary gland. Molecular and Cellular Endocrinology, 2004, 221 9—19.
    
    [160] DiLoreto C, Reis F M, Cataldi P, et al. Human mammary gland and breast carcinoma contain immunoreactive inhibin/activin subunits: evidence for a secretion into cystic fluid. European Journal of Endocrinology, 1999, 141 190—194.
    
    [161] Leto G, Incorvaia L, Badalamenti G, et al. Activin A circulating levels in patients with bone metastasis from breast or prostate cancer. Clinical & Experimental Metastasis, 2006, 23 117—122.
    
    [162] Woodruff T K, Mather J P. Inhibin, activin and the female reproductive axis. Annu Rev Physiol, 1995, 57: 219—244.
    
    [163] Yasuhisa F, Satoru K, Yohei 0, et al. Regulation of prostate-specific antigen by activin A in prostate cancer LNCaP cells Am J Physiol Endocrinol Metab, 2004, 286: E927—E931.
    
    [164] Jaffe G J, Harrison C E, Lui G M, et al. Activin expression by cultured human retinal pigment epithelial cells.Invest Ophthal Visual Sci, 1994, 35: 2924—2931.
    
    [165] Welt C K, Crowley Jr W F. Activin: an endocrine or paracrine agent? Eur J Endocrinol, 1998, 139: 469—471.
    
    [166] Burger H G. Inhibin as a tumor marker. Clinical Endocrinology, 1994, 41 151 - 153.
    
    [167] Yohkaiichiya T, Fudaya T, Hoshiai H, et al. Inhibin, a new circulating marker in hydatiform mole. British Medical Journal, 1989, 298 1684—1686.
    
    [168] Ball E M, Risbridger G P. Activins as regulators of branching morphogenesis. Dev Biol, 2001, 238: 1—12.
    
    [169] Jacqueline S, Jeruss, Charles D, et al. Down-Regulation of Activin, Activin Receptors, and Smads in High-Grade Breast Cancer Cancer Research, 2003, July 1, 63, 3783-3790.
    
    [170] Matsuzaki T, Hanai S, Kishi H, et al. Regulation of Endocytosis of Activin Type Ⅱ Receptors by a Novel PDZ Protein through Ral/Ral-binding Protein 1-dependent Pathway. The Journal of Biological Chemistry, Vol. 277, No. 21, Issue of May 24, 2002, pp. 19008—19018.
    
    [171] Zimmers T A, Davies M V, Koniaris L G, et al. Induction of cachexia in mice by systemically administered myostatin. Science, 2002, 296, 1486—1488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700