用户名: 密码: 验证码:
靶向肝脏基因组位点特异性整合治疗血友病B的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分靶向肝脏基因组位点特异性整合治疗血友病B的初步研究
     研究背景和目的:血友病B是一种由于凝血因子Ⅸ缺乏导致的严重出血性疾病,为X染色体连锁隐性遗传。主要临床表现是不可预测的、反复自发性软组织及大关节出血。临床上乙型血友病的严重程度与循环中FIX (coagulation factor IX)的水平相关。目前的替代疗法已经在很大程度上降低了出血发生的频率以及继发的关节疾病,并大大的提高了血友病病人的生存期。但是血浆浓缩FIX可能引起传染性疾病,而纯化FIX所需费用巨大。血友病B是很好的基因治疗研究模型。一般来说,hFIX (human FIX)基因可以通过病毒或非病毒载体进行输送。近年来,非病毒载体的研究越来越受到重视。噬菌体整合酶phiC31可以在哺乳动物细胞内发挥作用,被应用与基因工程包括基因治疗的研究。在哺乳动物细胞,这种酶介导带有attB位点的质粒整合入宿主基因组中的假attP位点。Aneja及其同事发现外来质粒与整合酶编码质粒共注射才能实现外源基因在肺脏持续表达,而单独注射外来质粒则不能。本研究的主要目的是通过高压尾静脉注射把携带attB和hFIX的质粒与表达phiC31的质粒共同导入肝脏细胞,检测目的质粒能否整合入小鼠基因组并持续表达。
     方法:首先构建表达hFIX并携带attB核心序列的真核表达载体attB-hFIX-pIRES2-EGFP并在体外验证该载体能否表达目的基因。然后用高压尾静脉注射的方法将该载体与表达phiC31的质粒CMV-int共注射血友病B小鼠,attB-hFIX-pIRES2-EGFP单独注射为对照。用ELISA的方法检测hFIX在其体内的表达;用出血时间评价血友病小鼠出血症状是否改善;用巢式PCR检测attB-hFIX-pIRES2-EGFP是否整合到基因组的整合热点mpsLl(mouse pseudo-site from liver 1)位点。
     结果:经鉴定,attB-hFIX-pIRES2-EGFP载体构建成功,并在体外表达hFIX。高压尾静脉注射血友病B小鼠后24小时,hFIX血清水平达到最高值,为正常水平的30%,此时小鼠的出血症状明显改善。但是不论是否与CMV-int共注射,此后hFIX水平迅速下降,在注射后10天内降到本底水平。巢式PCR的结果证实,attB-hFIX-pIRES2-EGFP整合到了小鼠肝脏基因组的mpsL1位点。结论:phiC31可以将34bp的attB最短序列整合到小鼠基因组的整合热点mpsL1;由CMV启动hFIX的能够瞬间高表达并有效改善血友病小鼠的出血症状;但是外来DNA进入细胞后,无论是否整合到基因组均被迅速沉默,说明肺脏和肝脏对整合入基因组的CMV启动子表达调控的机制不尽相同,因此对用于基因治疗的裸DNA进行改进使其适合在靶器官表达是十分必要的。
     第二部分一种新的用于血友病B基因治疗的腺病毒-整合酶嵌合系统的构建及其体外表达鉴定
     研究背景和目的:目前用于血友病基因治疗的载体主要分为两大类:病毒载体和非病毒载体。这两类载体各有优缺点。病毒载体基因传递的效率高,但容易产生免疫反应和插入突变;非病毒载体制备简单,安全性好,但是基因转导的效率低。因此我们试图构建一种即可高效感染靶细胞又能实现安全定点整合入宿主基因组的腺病毒嵌合载体。
     方法:通过一系列DNA操作构建腺病毒-整合酶嵌合系统。该系统包含两个腺病毒载体:一个携带转基因表达框,表达框内有hFIX,红色荧光蛋白编码序列以及attB (phiC31识别位点),表达框两侧各有一个loxp (Cre识别位点)。另一个腺病毒载体携带Cre和phiC31基因。同时构建只表达Cre和只表达phiC31的载体作为对照载体。在体外分别用脂质体转染293A细胞,用荧光显微镜观察荧光蛋白的表达,用RT-PCR鉴定各个基因的表达。
     结果:经PCR,酶切及测序方法鉴定,该腺病毒-整合酶嵌合系统构建成功。体外分别用脂质体转染293A细胞后,可见绿色荧光蛋白和红色荧光蛋白表达。经RT-PCR鉴定,该系统能够成功表达各种目的蛋白。
     结论:经初步鉴定,我们的腺病毒-整合酶嵌合系统构建成功,为进一步研究其治疗作用打下良好基础。
     第三部分Th1 (CXCL10)和Th2 (CCL2)趋化因子在原发性免疫性血小板减少症中的表达及其临床意义的初步研究
     研究背景:原发性免疫性血小板减少症(primary immune thrombocytopenia primary,ITP)是一种以血小板破坏加速为主的器官特异性自身免疫性疾病,具体发病机制未完全清楚。Th1/Th2极化失衡在ITP的发病机制中起了非常重要的作用。Th1趋化因子CXCL10和Th2趋化因子CCL2在其他自身免疫性疾病的发病机制中发挥一定的作用,但在ITP中是否发挥作用仍然未知。
     目的:明确CXCL10, CCL2以及它们的受体CXCR3, CCR4和CCR2在ITP中的表达情况,对这些因子在ITP发病机制中的作用进行初步研究。
     方法:用ELISA方法检测49份ITP病人以及24份正常人的血浆标本中CXCL10和CCL2的浓度。用实时定量PCR的方法检测趋化因子及其受体在24例正常人和28例活动期ITP患者外周血单个核细胞以及9例ITP患者的脾细胞中的表达。用实时定量PCR的方法检测10例ITP患者和10例正常人CD4+细胞中CCR4和CXCR3的表达。
     结果:活动期ITP患者血浆样品中CXCL10的水平与正常人相比显著升高(p=0.007),缓解ITP患者降至正常水平。CCL2的水平在活动组,缓解组和正常组没有统计学差异。与正常对照相比,活动期患者外周血单个核细胞的CXCL10 mRNA水平显著升高(p=0.031),但CCR2的mRNA水平显著降低(p=0.005)。ITP患者外周血小板计数与CXCL10的水平及CXCL10/CCL2比值呈负相关。结论:活动期ITP患者的血浆CXCL10水平和CXCL10/CCL2比值与正常人相比显著升高,CXCL10可能在ITP的发病机制中发挥一定的作用。
Preliminary study of Correction of Murine Hemophilia B by Hydrodynamic Gene Dlivery and Site-specific Genomic Integration
     Background and Objective:Hemophilia B is a sex-linked hemorrhagic disease resulting from deficiency in coagulation factor IX. The main clinical manifestation of the disease is unpredictable, recurrent, spontaneous bleeding in soft tissues and/or major joints. Recurrent bleeding in large joints usually leads to crippling arthropathies in a majority of severely affected patients. The clinical severity of hemophilia B corresponds to the level of circulating FIX. Current replacement therapy has significantly reduced the frequency of bleeding episodes and subsequent joint disease, and markedly improved the life expectancy of patients with hemophilia. However, the high cost of purified factor products makes life long prophylactic infusion impractical, and plasma-derived FIX would enable the patients to be at high risk for infection from contaminant viral pathogens. Generally, the FIX gene can be delivered via either non-viral or viral mediation. Recently, researchers pay more and more attention to non-viral vector. The site-specific integrase from phiC31 bacteriophage functions in mammaliancells and is being applied for genetic engineering, including gene therapy. In mammalian cells, the enzyme mediates integration of plasmids bearing attB into pseudo attP sites in host genome. Aneja and coworkers found that foreign plasmid expression in lung could be persistent when it co-injected with the phiC31-encoding plasmid. The purpose of our current study is to determine whether the plasmid bearing attB and hFIX coding sequence could insert into mice genome and persistently express hFIX when co-injected with the integrase.
     Methods:Firstly, we constructed the plasmid attB-hFIX-pIRES2-EGFP which bears attB site and hFIX coding sequence. It was proved that this plasmid could express hFIX through in vitro experiments. Then plasmid attB-hFIX-pIRES2-EGFP and CMV-int expressing integrase was co-injected by rapid infusion of a large-volume solution into the tail vein of hemophilia B mice. The mice injected attB-hFTX-pIRES2-EGFP alone served as controls. ELISA was performed to determine hFIX serum levels of hemophilia B mice. Correction of coagulation in vivo after plasmids injection was assessed by bleeding time assay. Genomic integration of foreign plasmid was determined by nested PCR.
     Results:The plasmid attB-hFIX-pIRES2-EGFP was successfully constructed and could express hFIX in vitro. The hemophilia B mice produced 1533±239 ng/ml hFIX 1 day after injection of the hFIX encoding plasmid and human FIX significantly corrected the bleeding diathesis of hemophilia B mice as measured by in vivo clotting assays. But, no matter co-injected with CMV-Int or not, the hFIX levels decreased to background level in 10 days after injection. Nested-PCR results indicated that the integrase phiC31 resulted in the integration of the plasmid in mouse liver chromosomes.
     Conclusion:Integrase phiC31 can catalyze recombination between 34bp attB and pseudo-attP. Human FIX driven by CMV promoter can be transiently and highly expressed afer hydrodynamic injection, but rapidly silenced no matter the insertion into genome or not. So, it is necessary to optimize the plasmid used in gene therapy according the target organ.
     Construction and Identification of a Novel Adeno-Integrase Hybrid System for Hemophilia B
     Background and Objective:There are two kinds of vectors for hemophilia gene therapy:viral vector and non-viral vector. Viral vectors usually display high transduction efficiency of the target cell in vitro and in vivo, but generate humoral immune response and insertional mutagenesis. In contrast, non-viral vector systems are less immunogenic and easy to prepare, but delivery efficiency of foreign DNA is low. So we try to construct an adenovirus hybrid system with high transduction efficiencies and site-specific integration.
     Methods:By a serious of DNA manipulation, we constructed the hybrid system, including two adenovirus vectors. One vector contains loxp flanked transgene expression cassette, in which there are hFIX and DsRed coding sequences and attB for phiC31 recognization. The other vector carries Cre and phiC31 gene. We also constructed vectors only expressing Cre or phiC31 as controls.293A cells were transfected with the adenoviral vectors by Lipofectamine 2000 and the expression of target genes was identified by fluorescence microscope and RT-PCR.
     Results:After being identified by PCR, restriction enzyme digestion and sequencing, the adeno-integrase hybrid system was successfully constructed. The system can express RFP, GFP, hFIX, Cre and phiC31 in 293A cells in vitro.
     Conclusion:The adeno-integrase hybrid system was successfully constructed, which lay a good foundation for further investigation of its treatment effect.
     Thl (CXCL10) and Th2 (CCL2) Chemokine Expression in Patients with Primary Immune Thrombocytopenia and their Clinical Implications
     Background:Immune thrombocytopenia (ITP) is an organ-specific autoimmune disorder characterized by accelerated platelet destruction. The pathophysiology of ITP remains unclear. The imbalance of Thl/Th2 polarization might play important role in the pathogenesis of ITP. Th1 chemokine CXCL10 and Th2 chemokine CCL2 have been studied in several autoimmune diseases, but the status of these chemokines in ITP is still unknown.
     Objective:To determine the expression of CXCL10 and CCL2, and their receptors, CXCR3, CCR4 and CCR2 in ITP patients, and make a preliminary study of the pathogenic roles of these factors in ITP.
     Methods:Plasma samples from 49 patients with ITP, and 24 normal healthy subjects were assayed for CXCL10 and CCL2 plasma concentration by enzyme linked immunosorbent assay. Real-time quantitative PCR was performed to determine the mRNA expression of these chemokine and their receptors in the PBMNC of 24 normal controls and 28 active ITP patients as well as splenocytes of 9 ITP patients. The expression of CCR4 and CXCR3 in CD4+T cells from 10 ITP patients and 10 normal controls was compared by Real-time quantitative PCR.
     Results:The CXCL10 levels in the plasma samples from patients with active ITP were significantly higher than those from healthy controls (p=0.007), and decreased to normal levels in remission ITP. In contrast, CCL2 levels were similar in active patients, remission and control subjects. PBMNC of active patients expressed more CXCLIO mRNA (p=0.031) but less CCR2 mRNA (p=0.005). Lower peripheral platelet count correlated with higher CXCL10 levels and CXCL10/CCL2 ratios.
     Conclusion:Our study demonstrates that plasma levels of CXCL10 and CXC10/CCL2 ratio are higher in patients with active ITP than in healthy donors, and that CXCL10 might be a pathogenic factor of this disorder.
引文
[1]Hedner U, Ginsburg D, Lusher JM, High KA. Congenital Hemorrhagic Disorders:New Insights into the Pathophysiology and Treatment of Hemophilia. Hematology Am Soc Hematol Educ Program 2000:241-65.
    [2]Kurachi K, Davie EW. Isolation and characterization of a cDNA coding for human factor IX. Proc Natl Acad Sci U S A 1982;79:6461-4.
    [3]Choo KH, Gould KG, Rees DJ, Brownlee GG. Molecular cloning of the gene for human anti-haemophilic factor IX. Nature 1982;299:178-80.
    [4]Kaufman RJ. Advances toward gene therapy for hemophilia at the millennium. Hum Gene Ther 1999;10:2091-107.
    [5]Lofqvist T, Nilsson IM, Berntorp E, Pettersson H. Haemophilia prophylaxis in young patients--a long-term follow-up. J Intern Med 1997;241:395-400.
    [6]Lee C. Recombinant clotting factors in the treatment of hemophilia. Thromb Haemost 1999;82:516-24.
    [7]Herzog RW, Yang EY, Couto LB, Hagstrom JN, Elwell D, Fields PA, Burton M, Bellinger DA, Read MS, Brinkhous KM, Podsakoff GM, Nichols TC, Kurtzman GJ, High KA. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nat Med 1999;5:56-63.
    [8]Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL. Direct gene transfer into mouse muscle in vivo. Science 1990;247:1465-8.
    [9]Roth DA, Tawa NE, Jr., O'Brien JM, Treco DA, Selden RF. Nonviral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia A. N Engl J Med 2001;344:1735-42.
    [10]Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 1999;6:1258-66.
    [11]Zhang G, Budker V, Wolff JA. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther 1999;10:1735-7.
    [12]Zhang G, Gao X, Song YK, Vollmer R, Stolz DB, Gasiorowski JZ, Dean DA, Liu D. Hydroporation as the mechanism of hydrodynamic delivery. Gene Ther 2004; 11:675-82.
    [13]Thorpe HM, Smith MC. In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl
    Acad Sci U S A 1998;95:5505-10.
    [14]Groth AC, Olivares EC, Thyagarajan B, Calos MP. A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci U S A 2000;97:5995-6000.
    [15]Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP. Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol 2001;21:3926-34.
    [16]Groth AC, Calos MP. Phage integrases:biology and applications. J Mol Biol 2004;335:667-78.
    [17]Aneja MK, Imker R, Rudolph C. Phage phiC31 integrase-mediated genomic integration and long-term gene expression in the lung after nonviral gene delivery. J Gene Med 2007;9:967-75.
    [18]Kurachi S, Hitomi Y, Furukawa M, Kurachi K. Role of intron I in expression of the human factor IX gene. J Biol Chem 1995;270:5276-81.
    [19]Jiang J, Yamato E, Miyazaki J. Intravenous delivery of naked plasmid DNA for in vivo cytokine expression. Biochem Biophys Res Commun 2001;289:1088-92.
    [20]Kobayashi N, Nishikawa M, Hirata K, Takakura Y. Hydrodynamics-based procedure involves transient hyperpermeability in the hepatic cellular membrane:implication of a nonspecific process in efficient intracellular gene delivery. J Gene Med 2004;6:584-92.
    [21]Herweijer H, Zhang G, Subbotin VM, Budker V, Williams P, Wolff JA. Time course of gene expression after plasmid DNA gene transfer to the liver. J Gene Med2001;3:280-91.
    [22]Marx I, Lenting PJ, Adler T, Pendu R, Christophe OD, Denis CV. Correction of bleeding symptoms in von Willebrand factor-deficient mice by liver-expressed von Willebrand factor mutants. Arterioscler Thromb Vase Biol 2008;28:419-24.
    [23]Feng DM, He CX, Miao CY, Lu B, Wu WJ, Ding YF, Xue JL. Conditions affecting hydrodynamics-based gene delivery into mouse liver in vivo. Clin Exp Pharmacol Physiol 2004;31:850-5.
    [24]Chen ZY, He CY, Meuse L, Kay MA. Silencing of episomal transgene expression by plasmid bacterial DNA elements in vivo. Gene Ther 2004;11:856-64.
    [25]Chen ZY, He CY, Ehrhardt A, Kay MA. Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther 2003;8:495-500.
    [26]Gill DR, Smyth SE, Goddard CA, Pringle IA, Higgins CF, Colledge WH, Hyde SC. Increased persistence of lung gene expression using plasmids containing the ubiquitin C or elongation factor 1 alpha promoter. Gene Ther 2001;8:1539-46.
    [27]Bertoni C, Jarrahian S, Wheeler TM, Li Y, Olivares EC, Calos MP, Rando TA. Enhancement of plasmid-mediated gene therapy for muscular dystrophy by directed plasmid integration. Proc Natl Acad Sci U S A 2006; 103:419-24.
    [28]Hodges BL, Taylor KM, Joseph MF, Bourgeois SA, Scheule RK. Long-term transgene expression from plasmid DNA gene therapy vectors is negatively affected by CpG dinucleotides. Mol Ther 2004; 10:269-78.
    [29]Yoshino H, Hashizume K, Kobayashi E. Naked plasmid DNA transfer to the porcine liver using rapid injection with large volume. Gene Ther 2006;13:1696-702.
    [30]Alino SF, Herrero MJ, Noguera I, Dasi F, Sanchez M. Pig liver gene therapy by noninvasive interventionist catheterism. Gene Ther 2007;14:334-43.
    [1]Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002;110:521-9.
    [2]Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, Bousso P, Deist FL, Fischer A. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000;288:669-72.
    [3]Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint Basile G, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana-Calvo M. LM02-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003;302:415-9.
    [4]Hasbrouck NC, High KA. AAV-mediated gene transfer for the treatment of hemophilia B:problems and prospects. Gene Ther 2008;15:870-5.
    [5]Nakai H, Montini E, Fuess S, Storm TA, Grompe M, Kay MA. AAV serotype 2 vectors preferentially integrate into active genes in mice. Nat Genet 2003;34:297-302.
    [6]Ivies Z, Hackett PB, Plasterk RH, Izsvak Z. Molecular reconstruction of Sleeping Beauty, a Tel-like transposon from fish, and its transposition in human cells. Cell 1997;91:501-10.
    [7]Kuhstoss S, Rao RN. Analysis of the integration function of the streptomycete bacteriophage phi C31. J Mol Biol 1991;222:897-908.
    [8]Hackett PB, Ekker SC, Largaespada DA, Mclvor RS. Sleeping beauty transposon-mediated gene therapy for prolonged expression. Adv Genet 2005;54:189-232.
    [9]Yant SR, Wu X, Huang Y, Garrison B, Burgess SM, Kay MA. High-resolution genome-wide mapping of transposon integration in mammals. Mol Cell Biol 2005;25:2085-94.
    [10]Groth AC, Calos MP. Phage integrases:biology and applications. J Mol Biol 2004;335:667-78.
    [11]Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP. Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol 2001;21:3926-34.
    [12]St George JA. Gene therapy progress and prospects:adenoviral vectors. Gene Ther 2003;10:1135-41.
    [13]Lieber A, Steinwaerder DS, Carlson CA, Kay MA. Integrating adenovirus-adeno-associated virus hybrid vectors devoid of all viral genes. J Virol 1999;73:9314-24.
    [14]Murphy SJ, Chong H, Bell S, Diaz RM, Vile RG Novel integrating adenoviral/retroviral hybrid vector for gene therapy. Hum Gene Ther 2002;13:745-60.
    [15]Soifer H, Higo C, Logg CR, Jih LJ, Shichinohe T, Harboe-Schmidt E, Mitani K, Kasahara N. A novel, helper-dependent, adenovirus-retrovirus hybrid vector:stable transduction by a two-stage mechanism. Mol Ther 2002;5:599-608.
    [16]Yant SR, Ehrhardt A, Mikkelsen JG, Meuse L, Pham T, Kay MA. Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo. Nat Biotechnol 2002;20:999-1005.
    [17]Picard-Maureau M, Kreppel F, Lindemann D, Juretzek T, Herchenroder O, Rethwilm A, Kochanek S, Heinkelein M. Foamy virus--adenovirus hybrid vectors. Gene Ther 2004; 11:722-8.
    [18]Soifer HS, Kasahara N. Retrotransposon-adenovirus hybrid vectors:efficient delivery and stable integration of transgenes via a two-stage mechanism. Curr Gene Ther 2004;4:373-84.
    [19]Thorpe HM, Smith MC. In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci U S A 1998;95:5505-10.
    [20]Belteki G, Gertsenstein M, Ow DW, Nagy A. Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat Biotechnol 2003;21:321-4.
    [1]Semple JW. Immune pathophysiology of autoimmune thrombocytopenic purpura. Blood Rev 2002;16:9-12.
    [2]Chong BH, Ho SJ. Autoimmune thrombocytopenia. J Thromb Haemost 2005;3:1763-72.
    [3]Olsson B, Andersson PO, Jernas M, Jacobsson S, Carlsson B, Carlsson LM, Wadenvik H. T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat Med 2003;9:1123-4.
    [4]Zhang F, Chu X, Wang L, Zhu Y, Li L, Ma D, Peng J, Hou M. Cell-mediated lysis of autologous platelets in chronic idiopathic thrombocytopenic purpura. Eur J Haematol 2006;76:427-31.
    [5]Kuwana M, Okazaki Y, Kaburaki J, Kawakami Y, Ikeda Y. Spleen is a primary site for activation of platelet-reactive T and B cells in patients with immune thrombocytopenic purpura. J Immunol 2002; 168:3675-82.
    [6]Kuhne T, Elinder G, Blanchette VS, Garvey B. Current management issues of childhood and adult immune thrombocytopenic purpura (ITP). Acta Paediatr Suppl 1998;424:75-81.
    [7]Wang T, Xu M, Ji L, Han ZC, Yang R. Splenectomy for adult chronic idiopathic thrombocytopenic purpura:experience from a single center in China. Eur J Haematol 2005;75:424-9.
    [8]Mosmann TR, Coffman RL. TH1 and TH2 cells:different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989;7:145-73.
    [9]Semple JW, Milev Y, Cosgrave D, Mody M, Hornstein A, Blanchette V, Freedman J. Differences in serum cytokine levels in acute and chronic autoimmune thrombocytopenic purpura:relationship to platelet phenotype and antiplatelet T-cell reactivity. Blood 1996;87:4245-54.
    [10]Panitsas FP, Theodoropoulou M, Kouraklis A, Karakantza M, Theodorou GL, Zoumbos NC, Maniatis A, Mouzaki A. Adult chronic idiopathic thrombocytopenic purpura (ITP) is the manifestation of a type-1 polarized immune response. Blood 2004; 103:2645-7.
    [11]Baggiolini M. Chemokines in pathology and medicine. J Intern Med 2001;250:91-104.
    [12]Zlotnik A, Yoshie O. Chemokines:a new classification system and their role in immunity. Immunity 2000;12:121-7.
    [13]Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol 2000; 18:217-42.
    [14]Nakajima H, Fukuda K, Doi Y, Sugino M, Kimura F, Hanafusa T, Ikemoto T, Shimizu A. Expression of TH1/TH2-related chemokine receptors on peripheral T cells and correlation with clinical disease activity in patients with multiple sclerosis. Eur Neurol 2004;52:162-8.
    [15]Lee EY, Lee ZH, Song YW. CXCL10 and autoimmune diseases. Autoimmun Rev 2009;8:379-83.
    [16]Nakajima H, Kobayashi M, Pollard RB, Suzuki F. Monocyte chemoattractant protein-1 enhances HSV-induced encephalomyelitis by stimulating Th2 responses. J Leukoc Biol 2001;70:374-80.
    [17]Bonecchi R, Bianchi G, Bordignon PP, D'Ambrosio D, Lang R, Borsatti A, Sozzani S, Allavena P, Gray PA, Mantovani A, Sinigaglia F. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (This) and Th2s. J Exp Med 1998; 187:129-34.
    [18]Rodeghiero F, Stasi R, Gernsheimer T, Michel M, Provan D, Arnold DM, Bussel JB, Cines DB, Chong BH, Cooper N, Godeau B, Lechner K, Mazzucconi MG, McMillan R, Sanz MA, Imbach P, Blanchette V, Kuhne T, Ruggeri M, George JN. Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children: report from an international working group. Blood 2009;113:2386-93.
    [19]Guidelines for the investigation and management of idiopathic thrombocytopenic purpura in adults, children and in pregnancy. Br J Haematol 2003;120:574-96.
    [20]Eden OB, Lilleyman JS. Guidelines for management of idiopathic thrombocytopenic purpura. The British Paediatric Haematology Group. Arch Dis Child 1992;67:1056-8.
    [21]Olsson B, Ridell B, Carlsson L, Jacobsson S, Wadenvik H. Recruitment of T cells into bone marrow of ITP patients possibly due to elevated expression of VLA-4 and CX3CR1. Blood 2008; 112:1078-84.
    [22]Dolhain RJ, ter Haar NT, Hoefakker S, Tak PP, de Ley M, Claassen E, Breedveld FC, Miltenburg AM. Increased expression of interferon (IFN)-gamma together with IFN-gamma receptor in the rheumatoid synovial membrane compared with synovium of patients with osteoarthritis. Br J Rheumatol 1996;35:24-32.
    [23]Hueber W, Tomooka BH, Zhao X, Kidd BA, Drijfhout JW, Fries JF, van Venrooij WJ, Metzger AL, Genovese MC, Robinson WH. Proteomic analysis of secreted proteins in early rheumatoid arthritis:anti-citrulline autoreactivity is associated with up regulation of pro inflammatory cytokines. Ann Rheum Dis 2007;66:712-9.
    [24]Bauer JW, Baechler EC, Petri M, Batliwalla FM, Crawford D, Ortmann WA, Espe KJ, Li W, Patel DD, Gregersen PK, Behrens TW. Elevated serum levels of interferon-regulated chemokines are biomarkers for active human systemic lupus erythematosus. PLoS Med 2006;3:e491.
    [25]Antonelli A, Ferri C, Fallahi P, Ferrari SM, Giuggioli D, Colaci M, Manfredi A, Frascerra S, Franzoni F, Galetta F, Ferrannini E. CXCL10 (alpha) and CCL2 (beta) chemokines in systemic sclerosis--a longitudinal study. Rheumatology (Oxford) 2008;47:45-9.
    [26]Fujii H, Shimada Y, Hasegawa M, Takehara K, Sato S. Serum levels of a Thl chemoattractant IP-10 and Th2 chemoattractants, TARC and MDC, are elevated in patients with systemic sclerosis. J Dermatol Sci 2004;35:43-51.
    [27]Shigihara T, Oikawa Y, Kanazawa Y, Okubo Y, Narumi S, Saruta T, Shimada A. Significance of serum CXCL10/IP-10 level in type 1 diabetes. J Autoimmun 2006;26:66-71.
    [28]Luther SA, Cyster JG. Chemokines as regulators of T cell differentiation. Nat Immunol 2001;2:102-7.
    [29]Distler O, Pap T, Kowal-Bielecka O, Meyringer R, Guiducci S, Landthaler M, Scholmerich J, Michel BA, Gay RE, Matucci-Cerinic M, Gay S, Muller-Ladner U. Overexpression of monocyte chemoattractant protein 1 in systemic sclerosis:role of platelet-derived growth factor and effects on monocyte chemotaxis and collagen synthesis. Arthritis Rheum 2001;44:2665-78.
    [30]Lit LC, Wong CK, Tam LS, Li EK, Lam CW. Raised plasma concentration and ex vivo production of inflammatory chemokines in patients with systemic lupus erythematosus. Ann Rheum Dis 2006;65:209-15.
    [31]Antonelli A, Fallahi P, Ferrari SM, Pupilli C, d'Annunzio G, Lorini R, Vanelli M, Ferrannini E. Serum Th1 (CXCL10) and Th2 (CCL2) chemokine levels in
    children with newly diagnosed Type 1 diabetes:a longitudinal study. Diabet Med 2008;25:1349-53.
    [32]Antonelli A, Rotondi M, Fallahi P, Romagnani P, Ferrari SM, Paolicchi A, Ferrannini E, Serio M. Increase of interferon-gamma inducible alpha chemokine CXCL10 but not beta chemokine CCL2 serum levels in chronic autoimmune thyroiditis. Eur J Endocrinol 2005;152:171-7.
    [33]Diagnosis and treatment of idiopathic thrombocytopenic purpura: recommendations of the American Society of Hematology. The American Society of Hematology ITP Practice Guideline Panel. Ann Intern Med 1997; 126:319-26.
    [34]Fujita H, Asahina A, Sugaya M, Nakamura K, Gao P, Fujiwara H, Tamaki K. Differential production of Th1-and Th2-type chemokines by mouse Langerhans cells and splenic dendritic cells. J Invest Dermatol 2005;124:343-50.
    [35]Narumi S, Kaburaki T, Yoneyama H, Iwamura H, Kobayashi Y, Matsushima K. Neutralization of IFN-inducible protein 10/CXCL10 exacerbates experimental autoimmune encephalomyelitis. Eur J Immunol 2002;32:1784-91.
    [36]Qin S, Rottman JB, Myers P, Kassam N, Weinblatt M, Loetscher M, Koch AE, Moser B, Mackay CR. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest 1998; 101:746-54.
    [37]Flier J, Boorsma DM, van Beek PJ, Nieboer C, Stoof TJ, Willemze R, Tensen CP. Differential expression of CXCR3 targeting chemokines CXCL10, CXCL9, and CXCL11 in different types of skin inflammation. J Pathol 2001;194:398-405.
    [38]Gu L, Tseng S, Homer RM, Tam C, Loda M, Rollins BJ. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 2000;404:407-11.
    [39]Gong JH, Ratkay LG,Waterfield JD, Clark-Lewis I. An antagonist of monocyte chemoattractant protein 1 (MCP-1) inhibits arthritis in the MRL-lpr mouse model. J Exp Med 1997; 186:131-7.
    [40]Brodmerkel CM, Huber R, Covington M, Diamond S, Hall L, Collins R, Leffet L, Gallagher K, Feldman P, Collier P, Stow M, Gu X, Baribaud F, Shin N, Thomas B, Burn T, Hollis G, Yeleswaram S, Solomon K, Friedman S, Wang A, Xue CB, Newton RC, Scherle P, Vaddi K. Discovery and pharmacological characterization of a novel rodent-active CCR2 antagonist, INCB3344. J Immunol 2005;175:5370-8.
    [41]Vergunst CE, Gerlag DM, Lopatinskaya L, Klareskog L, Smith MD, van den Bosch F, Dinant HJ, Lee Y, Wyant T, Jacobson EW, Baeten D, Tak PP. Modulation of CCR2 in rheumatoid arthritis:a double-blind, randomized, placebo-controlled clinical trial. Arthritis Rheum 2008;58:1931-9.
    [42]Bruhl H, Cihak J, Schneider MA, Plachy J, Rupp T, Wenzel I, Shakarami M, Milz S, Ellwart JW, Stangassinger M, Schlondorff D, Mack M. Dual role of CCR2 during initiation and progression of collagen-induced arthritis:evidence for regulatory activity of CCR2+T cells. J Immunol 2004;172:890-8.
    [1]Getaz EP, Staples WQ Lurie A. Haemophilia. S Afr Med J 1977;52:595-601.
    [2]Viiala NO, Larsen SR, Rasko JE. Gene therapy for hemophilia:clinical trials and technical tribulations. Semin Thromb Hemost 2009;35:81-92.
    [3]Monahan PE, White GC,2nd. Hemophilia gene therapy:update. Curr Opin Hematol 2002;9:430-6.
    [4]Bolton-Maggs PH, Pasi KJ. Haemophilias A and B. Lancet 2003;361:1801-9.
    [5]Eaton DL, Wood WI, Eaton D, Hass PE, Hollingshead P, Wion K, Mather J, Lawn RM, Vehar GA, Gorman C. Construction and characterization of an active factor Ⅷ variant lacking the central one-third of the molecule. Biochemistry 1986;25:8343-7.
    [6]Higuchi M, Kochhan L, Schwaab R, Egli H, Brackmann HH, Horst J, Olek K. Molecular defects in hemophilia A:identification and characterization of mutations in the factor Ⅷ gene and family analysis. Blood 1989;74:1045-51.
    [7]Shapiro SS. Characterization of factor Ⅷ antibodies. Ann N Y Acad Sci 1975;240:350-61.
    [8]Allain IP. [Natural history of anti-factor Ⅷ antibodies in hemophilia A patients]. Rev Fr Transfus Immunohematol 1985;28:581-9.
    [9]Choo KH GK, Rees DJ, Brownlee GG. Molecular cloning of the gene for human anti-haemophilic factor IX. Nature 1982;299:178-80.
    [10]Kurachi K, Kurachi S, Furukawa M, Yao SN. Biology of factor Ⅸ. Blood Coagul Fibrinolysis 1993;4:953-73.
    [11]Mahasandana C, Pung-Amritt P, Treesucon A, Petrarat S, Veerakul G, Visudhiphan S, Yenchitsomanus PT. Carrier detection by DNA linkage analysis in eighty Thai hemophilia A families. J Med Assoc Thai 2002;85 Suppl 2:S513-21.
    [12]Karimipoor M, Zeinali S, Lak M, Safaee R. Carrier testing and prenatal diagnosis of haemophilia B by SSCP in an Iranian family. Haemophilia 2003;9:116-8.
    [13]Xuefeng W, Yuanfang L, Zhiguang L, Haiyan C, Xiaojie S, Yishi F, Hongli W. Carrier detection and prenatal diagnosis of hemophilia A. Clin Chem Lab Med 2001;39:1204-8.
    [14]Choi YM, Hwang D, Choe J, Jun JK, Kim EJ, Moon SY, Cho S. Carrier detection and prenatal diagnosis of hemophilia A in a Korean population by PCR-based analysis of the BclⅠ/intron 18 and St14 VNTR polymorphisms. J Hum Genet 2000;45:218-23.
    [15]DIN G Pei-Fang SW-S, WAN G Qin-You, LIU De-Chun, ZHAN G Xue-Qin,TEN G Bin, SHEN Fa-Kui. Long Distance-PCR for Detection of Factor Ⅷ Gene Inversion in Patients with Severe Hemophil ia A. J Ex p Hematol 2003;11:390-2.
    [16]Bril WS, Turenhout EA, Kaijen PH, van den Brink EN, Koopman MM, Peters M, Voorberg J. Analysis of factor Ⅷ inhibitors in a haemophilia A patient with an Arg593-->Cys mutation using phage display. Br J Haematol 2002;119:393-6.
    [17]Fidanci ID, Kavakli K, Ucar C, Timur C, Meral A, Kilinc Y, Sayilan H, Kazanci E, Caglayan SH. Factor 8 (F8) gene mutation profile of Turkish hemophilia A patients with inhibitors. Blood Coagul Fibrinolysis 2008;19:383-8.
    [18]Hoyer LW, Carta CA, Golbus MS, Hobbins JC, Mahoney MJ. Prenatal diagnosis of classic hemophilia (hemophilia A) by immunoradiometric assays. Blood 1985;65:1312-7.
    [19]Larner AJ. The molecular pathology of haemophilia. Q J Med 1987;63:473-91.
    [20]Morales-Machin A, Borjas-Fajardo L, Zabala W, Alvarez F, Fernandez E, Zambrano M, Delgado W, Hernandez ML, Solis-Anez E, Chacin JA. Indirect prenatal molecular diagnostic of haemophilia A and B. Invest Clin 2008;49:289-97.
    [21]Holoshitz N, Kurachi K, Kurachi S. Carrier analysis of a moderately affected haemophilia B family. Haemophilia 2000;6:713-4.
    [22]Vidal F, Farssac E, Altisent C, Puig L, Gallardo D. Implications of gene sequencing in the direct diagnosis of hemophilia by PCR-RFLP. Haematologica 2002;87:109-10.
    [23]Tasleem Raza S, Husain N, Kumar A. Screening for hemophilia A carriers: utility of PCR-RFLP--based polymorphism analysis. Clin Appl Thromb Hemost 2009; 15:78-83.
    [24]Saksova L, Gecz J, Kadasi L, Ferak V. TaqI digestion of PCR product increases the informativity of St14 VNTR for the diagnosis of hemophilia A. Dis Markers 1993;11:139-41.
    [25]Klein I, Andrikovics H, Bors A, Nemes L, Tordai A, Varadi A. A haemophilia A and B molecular genetic diagnostic programme in Hungary:a highly informative and cost-effective strategy. Haemophilia 2001;7:306-12.
    [26]Vidal F, Farssac E, Altisent C, Puig L, Gallardo D. Rapid hemophilia A molecular diagnosis by a simple DNA sequencing procedure:identification of 14 novel mutations. Thromb Haemost 2001;85:580-3.
    [27]Watzke HH. [Gene therapy of hemophilia]. Internist (Berl) 2001;42:1366-8, 71-3.
    [28]Nour-Eldin F. Haemophilia:does the future lie in replacement therapy or auto-supply? J R Soc Med 1998;91:399.
    [29]Margaritis P, Roy E, Aljamali MN, Downey HD, Giger U, Zhou S, Merricks E, Dillow A, Ezban M, Nichols TC, High KA. Successful treatment of canine hemophilia by continuous expression of canine FVIIa. Blood 2009;113:3682-9.
    [30]Hermans C, Altisent C, Batorova A, Chambost H, De Moerloose P, Karafoulidou A, Klamroth R, Richards M, White B, Dolan G. Replacement therapy for invasive procedures in patients with haemophilia:literature review, European survey and recommendations. Haemophilia 2009; 15:639-58.
    [31]Dargaud Y, Negrier C. Haemophilia therapies. Expert Opin Biol Ther 2007;7:651-63.
    [32]Murphy SL, High KA. Gene therapy for haemophilia. Br J Haematol 2008;140:479-87.
    [33]Kay MA, Rothenberg S, Landen CN, Bellinger DA, Leland F, Toman C, Finegold M, Thompson AR, Read MS, Brinkhous KM, et al. In vivo gene therapy of hemophilia B:sustained partial correction in factor IX-deficient dogs. Science 1993;262:117-9.
    [34]Greengard JS, Jolly DJ. Animal testing of retroviral-mediated gene therapy for factor VIII deficiency. Thromb Haemost 1999;82:555-61.
    [35]Roehl HH, Leibbrandt ME, Greengard JS, Kamantigue E, Glass WG Giedlin M, Boekelheide K, Johnson DE, Jolly DJ, Sajjadi NC. Analysis of testes and semen from rabbits treated by intravenous injection with a retroviral vector encoding the human factor VIII gene:no evidence of germ line transduction. Hum Gene Ther 2000;11:2529-40.
    [36]Chuah MK, Vandendriessche T, Morgan RA. Development and analysis of retroviral vectors expressing human factor Ⅷ as a potential gene therapy for hemophilia A. Hum Gene Ther 1995;6:1363-77.
    [37]VandenDriessche T, Vanslembrouck V, Goovaerts I, Zwinnen H, Vanderhaeghen ML, Collen D, Chuah MK. Long-term expression of human coagulation factor VIII and correction of hemophilia A after in vivo retroviral gene transfer in factor VIII-deficient mice. Proc Natl Acad Sci U S A 1999;96:10379-84.
    [38]Xu L, Gao C, Sands MS, Cai SR, Nichols TC, Bellinger DA, Raymer RA, McCorquodale S, Ponder KP. Neonatal or hepatocyte growth factor-potentiated adult gene therapy with a retroviral vector results in therapeutic levels of canine factor IX for hemophilia B. Blood 2003;101:3924-32.
    [39]Smith TA, Mehaffey MG, Kayda DB, Saunders JM, Yei S, Trapnell BC, McClelland A, Kaleko M. Adenovirus mediated expression of therapeutic plasma levels of human factor IX in mice. Nat Genet 1993;5:397-402.
    [40]Kay MA. Adenoviral vectors for hepatic gene transfer in animals. Chest 1997;111:138S-42S.
    [41]Connelly S, Gardner JM, Lyons RM, McClelland A, Kaleko M. Sustained expression of therapeutic levels of human factor VIII in mice. Blood 1996;87:4671-7.
    [42]Connelly S, Gardner JM, McClelland A, Kaleko M. High-level tissue-specific expression of functional human factor VIII in mice. Hum Gene Ther 1996;7:183-95.
    [43]Connelly S, Mount J, Mauser A, Gardner JM, Kaleko M, McClelland A, Lothrop CD, Jr. Complete short-term correction of canine hemophilia A by in vivo gene therapy. Blood 1996;88:3846-53.
    [44]Connelly S, Kaleko M. Gene therapy for hemophilia A. Thromb Haemost 1997;78:31-6.
    [45]Lozier JN, Metzger ME, Donahue RE, Morgan RA. Adenovirus-mediated expression of human coagulation factor IX in the rhesus macaque is associated with dose-limiting toxicity. Blood 1999;94:3968-75.
    [46]Lozier JN, Metzger ME, Donahue RE, Morgan RA. The rhesus macaque as an animal model for hemophilia B gene therapy. Blood 1999;93:1875-81.
    [47]Nakai H, Yant SR, Storm TA, Fuess S, Meuse L, Kay MA. Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. J Virol 2001;75:6969-76.
    [48]Herzog RW, Hagstrom JN, Kung SH, Tai SJ, Wilson JM, Fisher KJ, High KA. Stable gene transfer and expression of human blood coagulation factor IX after intramuscular injection of recombinant adeno-associated virus. Proc Natl Acad Sci U S A 1997;94:5804-9.
    [49]Youjin S, Jun Y. The treatment of hemophilia A:from protein replacement to AAV-mediated gene therapy. Biotechnol Lett 2009;31:321-8.
    [50]Miller DG, Stamatoyannopoulos G. Gene therapy for hemophilia. N Engl J Med 2001;344:1782-4.
    [51]Xiao X, Li J, Samulski RJ. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 1996;70:8098-108.
    [52]Walter J, High KA. Gene therapy for the hemophilias. Adv Vet Med 1997;40:119-34.
    [53]Monahan PE, Samulski RJ, Tazelaar J, Xiao X, Nichols TC, Bellinger DA, Read MS, Walsh CE. Direct intramuscular injection with recombinant AAV vectors results in sustained expression in a dog model of hemophilia. Gene Ther 1998;5:40-9.
    [54]Manno CS, Chew AJ, Hutchison S, Larson PJ, Herzog RW, Arruda VR, Tai SJ, Ragni MV, Thompson A, Ozelo M, Couto LB, Leonard DG, Johnson FA, McClelland A, Scallan C, Skarsgard E, Flake AW, Kay MA, High KA, Glader B. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 2003;101:2963-72.
    [55]Snyder RO, Miao CH, Patijn GA, Spratt SK, Danos O, Nagy D, Gown AM, Winther B, Meuse L, Cohen LK, Thompson AR, Kay MA. Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nat Genet 1997; 16:270-6.
    [56]Herzog RW, High KA. Adeno-associated virus-mediated gene transfer of factor IX for treatment of hemophilia B by gene therapy. Thromb Haemost 1999;82:540-6.
    [57]Herzog RW, Yang EY, Couto LB, Hagstrom JN, Elwell D, Fields PA, Burton M, Bellinger DA, Read MS, Brinkhous KM, Podsakoff GM, Nichols TC, Kurtzman GJ, High KA. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nat Med 1999;5:56-63.
    [58]Kay MA, Manno CS, Ragni MV, Larson PJ, Couto LB, McClelland A, Glader B, Chew AJ, Tai SJ, Herzog RW, Arruda V, Johnson F, Scallan C, Skarsgard E, Flake AW, High KA. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 2000;24:257-61.
    [59]Manno CS. The promise of third-generation recombinant therapy and gene therapy. Semin Hematol 2003;40:23-8.
    [60]Sarkar R, Tetreault R, Gao G, Wang L, Bell P, Chandler R, Wilson JM, Kazazian HH, Jr. Total correction of hemophilia A mice with canine FVIII using an'AAV 8 serotype. Blood 2004;103:1253-60.
    [61]Miao CH, Thompson AR, Loeb K, Ye X. Long-term and therapeutic-level hepatic gene expression of human factor IX after naked plasmid transfer in vivo. Mol Ther 2001;3:947-57.
    [62]Hortelano G, Xu N, Vandenberg A, Solera J, Chang PL, Ofosu FA. Persistent delivery of factor IX in mice:gene therapy for hemophilia using implantable microcapsules. Hum Gene Ther 1999; 10:1281-8.
    [63]Kren BT, Bandy opadhyay P, Steer CJ. In vivo site-directed mutagenesis of the factor IX gene by chimeric RNA/DNA oligonucleotides. Nat Med 1998;4:285-90.
    [64]Gallo-Penn AM, Shirley PS, Andrews JL, Kay da DB, Pinkstaff AM, Kaloss M, Tinlin S, Cameron C, Notley C, Hough C, Lillicrap D, Kaleko M, Connelly S. In vivo evaluation of an adenoviral vector encoding canine factor VIII: high-level, sustained expression in hemophiliac mice. Hum Gene Ther 1999;10:1791-802.
    [65]Kundu RK, Sangiorgi F, Wu LY, Kurachi K, Anderson WF, Maxson R, Gordon EM. Targeted inactivation of the coagulation factor IX gene causes hemophilia B in mice. Blood 1998;92:168-74.
    [66]Kung SH, Hagstrom JN, Cass D, Tai SJ, Lin HF, Stafford DW, High KA. Human factor IX corrects the bleeding diathesis of mice with hemophilia B. Blood 1998;91:784-90.
    [67]Lu DR, Zhou JM, Zheng B, Qiu XF, Xue JL, Wang JM, Meng PL, Han FL, Ming BH, Wang XP, et al. Stage I clinical trial of gene therapy for hemophilia B. Sci China B 1993;36:1342-51.
    [68]Chen H, Yao H, Huang L, Shen Q, Jia W, Xue J. Expression of human factor IX gene in murine plasma through lentiviral vector-infected haematopoietic stem cells. Clin Exp Pharmacol Physiol 2006;33:1196-201.
    [69]Ghosh K, Shetty S. Immune Response to FⅧ in Hemophilia A:An Overview of Risk Factors. Clin Rev Allergy Immunol 2009.
    [70]Powell JS, Ragni MV, White GC,2nd, Lusher JM, Hillman-Wiseman C, Moon TE, Cole V, Ramanathan-Girish S, Roehl H, Sajjadi N, Jolly DJ, Hurst D. Phase 1 trial of FⅧ gene transfer for severe hemophilia A using a retroviral construct administered by peripheral intravenous infusion. Blood 2003;102:2038-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700