用户名: 密码: 验证码:
铅、镉诱导东北虎成纤维细胞凋亡及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东北虎,是世界上虎中体型最大的亚种,野生种群现主要分布于中国东北、俄罗斯远东和朝鲜北部。在我国,东北虎曾广泛分布于东北各林区,20世纪初受到人类的直接猎杀和生存环境的恶化,野生种群数量锐减,分布区逐渐缩小,现已成为世界上最为濒危的大型猫科动物之一。随着现代工农业和交通的快速发展,东北虎的生境受到严重的威胁,尤其是环境中的重金属铅、镉的污染,对东北虎的生长、发育和疾病的发生都会产生重要的影响。铅、镉可诱导各类细胞发生凋亡并对多个系统造成损伤。
     首先围绕东北虎成纤维细胞展开生物学特性研究。细胞复苏后进行了形态学、细胞活率、细胞生长动力学、同工酶酶谱分析以及荧光蛋白基因表达等细胞质量检测与生物学特性研究。结果显示,东北虎成纤维细胞具有典型的成纤维细胞形态特征,细胞冻存前和复苏后的活率分别为96.34%±2.24%,93.72%±2.77%,差异不显著(P>0.05)。细胞生长曲线呈“S”型曲线,同工酶酶谱表明该细胞和实验室其它物种细胞不存在交叉污染。细胞具有接受外源基因表达的能力。
     前期保存的东北虎成纤维细胞系为高质量的、符合标准的、典型的成纤维细胞,以此作为实验材料研究铅、镉对东北虎成纤维细胞的凋亡作用及其机制。通过细胞毒性分析,激光共聚焦显微镜和透射电了显微镜观察凋亡细胞显微及亚显微结构变化,彗星实验分析DNA损伤情况,流式细胞术检测细胞亚二倍体峰和凋亡率一系列实验,结果显示,35μM,64μM,125μM,250μM浓度的Pb(Ac)2和1.2μM,2.4μM,4.8μM,9.6μM浓度的CdCl2在12-48h时间内对东北虎成纤维细胞具有一定的毒性;东北虎成纤维细胞在铅、镉作用下发生特征性的凋亡形态学改变,如胞质固缩,染色质浓缩,核膜边缘化,线粒体肿胀,崩解等现象,但铅并未对细胞骨架微丝的分布、形态结构造成明显的损坏,而镉对东北虎成纤维细胞骨架微丝的分布、形态结构造成明显的损坏,微丝分布松散,顶端缩短、缺失:彗星实验表明铅、镉可使东北虎成纤维细胞DNA损伤,呈现出明显的拖尾现象;亚二倍体峰和细胞凋亡率检测结果表明,铅、镉可诱导东北虎成纤维细胞出现明显的二倍体峰,且表现出浓度依赖性,凋亡率也呈现出浓度依赖性。
     通过细胞周期的测定,线粒体膜电位的检测,胞内钙离子稳态分析,胞内活性氧的检测,胞外钙离子流速监测,胞外钾离子流速监测,Caspase-3、Caspase-8及Caspase-9酶活性的检测,RT-PCR检测等一系列实验,结果显示,铅、镉均可使细胞增殖阻滞在G0/G1期,干扰了细胞增殖活动从而诱导其凋亡;铅、镉可使东北虎成纤维细胞线粒体跨膜电位下降,结合电子显微镜观察结果可知线粒体肿胀,崩解,铅、镉破坏线粒体的功能,最终导致凋亡发生;铅、镉可打破胞内钙稳态,激活钙的凋亡信号转导作用,胞内钙离子浓度的的增加是由于内源性的钙库释放所引起的,而非吸收胞外的钙离子而升高的;铅、镉可破坏细胞氧化-抗氧化平衡,导致细胞氧化损伤;铅、镉处理东北虎成纤维细胞凋亡早期促使了钾离子外流,破坏胞质渗透压,这一研究结果为认识铅、镉诱导细胞凋亡的内在机制提供了新的证据。铅、镉诱导细胞凋亡过程中Caspase-3、Caspase-8及Caspase-9酶活性呈上升的趋势,呈浓度依赖性;基因Bax与Bcl-2表达量之比值随铅、镉浓度增加而上升,Caspase-3,Caspase-8, Fas, P53表达量也随铅、镉浓度增大呈上升趋势。铅、镉通过阻滞DNA合成,破坏线粒体的功能,干扰钙稳态,氧化损伤,破坏胞质渗透压以及基因调控,介导Caspase来诱导东北虎成纤维细胞凋亡的。
     一定浓度的铅、镉在一定的作用时间内均对东北虎成纤维细胞具有一定的细胞毒性,并可造成凋亡作用。铅、镉对东北虎成纤维细胞的凋亡作用机制也具有相似性。
The Siberian tiger was a subspecies of the largest size tiger in the world. Wild populations are mainly distributed in Northeast China, the northern part of the Russian Far East and North Korea. In China, the Siberian tiger has been widely distributed in the Northeast forest areas. The early20th century, because the human hunting and the deterioration of the living environment, the sharp drop in wild populations, distribution narrowing, it has become one of the world's most endangered felid. With the rapid development of modern industry, agriculture and transport, Siberian tiger has been suffered serious threat. Especially in the environment of the heavy metals lead, cadmium pollution, have an important impact on the growth, development of the Siberian tiger and the occurrence of the disease. Lead, cadmium can induce various types of cell apoptosis and cause damage of multiple systems.
     First expand the biological characteristics of the Siberian tiger fibroblasts. Cell quality detection and biological characteristics of study were completed after cell recovery, such as, cell morphology, cell survival rate, cell growth kinetics, isoenzyme fluorescent protein gene expression. The results show that the Siberian tiger fibroblast cells has typical fibroblast morphology characteristical, living cell rate before freezing and recovery were96.34%±2.24%,93.72%±2.77%, the difference was not significant (P>0.05). Cell growth curve was "S" shaped curve. Isoenzyme results show that the cells and other species cells there is no cross-contamination. Cell has the ability to accept the expression of foreign genes.
     After assurance pre-save the Siberian tiger fibroblast cell line was high-quality, standards-compliant, typical fibroblast, as experimental materials study apoptosis effects and mechanism for lead and cadmium on Siberian tiger fibroblast.
     Via ytotoxicity assay, confocal microscopy and transmission electron microscopy observation of apoptotic cells microscopic and submicroscopic structural changes, comet assay analysis of DNA damage, flow cytometry detect cell hypodiploid peaks and apoptosis rate. The results show that32μuM,64μM,125μM,250μM Pb(Ac)2and1.2μM,2.4μM,4.8μM,9.6μM CdCl2have a certain toxicity on Siberian tiger fibroblasts at12-48h.Occurrence of characteristic morphological changes of apoptosis, for example, cytoplasm pyknosis, chromatin condensation, nuclear membrane marginalized, mitochondrial swelling and disintegration. But the lead did not cause significant damage to cytoskeletal microfilaments distribution, morphology. While cadmium into the distribution of the fiber cell cytoskeletal filaments Siberian tiger, the morphology caused significant damage, microfilament distribution loose, top shortened and missing. The comet assay showed that lead and cadmium can be damage Siberian tiger fibroblast DNA, showing a significant tailing phenomenon. The detection results of hypodiploid peak and apoptosis rate show that lead and cadmium can induce the Siberian tiger fibroblast appear obvious diploid peak, and showed a concentration-dependent manner. The apoptosis rate also showed a concentration-dependent manner.
     Via determination of cell cycle, detection of mitochondrial membrane potential, steady-state analysis of intracellular calcium, detection of intracellular reactive oxygen species, monitor of extracellular calcium flow, monitor of extracellular potassium ions flow, detection of Caspase-3、Caspase-8and Caspase-9activity, RT-PCR analysis. The results show that lead and cadmium can arrest cell proliferation in G0/G1phase, interfere with cell proliferation thereby induced apoptosis. Mitochondrial membrane potential decline, combined electron microscopy results of mitochondrial swelling, disintegration, lead and cadmium destroy the mitochondrial function, ultimately lead to apoptosis. Lead and cadmium can break of intracellular calcium homeostasis, activated calcium signal transduction. The increase of intracellular calcium concentration was caused endogenous calcium store release, rather than absorption of the extracellular calcium ions elevated. Lead and cadmium can damage the cells oxidation-antioxidant balance, lead to cellular oxidative damage. The early apoptosis potassium ion efflux, destruction of cytoplasmic osmolality, the results provided new evidence for understanding of lead and cadmium induced apoptosis intrinsic mechanisms. Caspase-3, Caspase-8and Caspase-9activity showed an upward trend in a concentration-dependent manner. Gene Bax and Bcl-2expression amount ratio with lead and cadmium concentration increased rise. Caspase-3, Caspase-8, Fas, P53expression levels also increased with the concentrations of lead and cadmium upward trend. In short, lead and cadmium-induced apoptosis by block DNA synthesis, destruction of mitochondrial function, interfere with calcium homeostasis, oxidative damage, destruction of cytoplasmic osmolality and gene regulation, caspase-mediated induce Siberian tiger fibroblast apoptosis.
     Considering, a certain concentration of lead and cadmium has certain cytotoxic on Siberian tiger fibroblasts in the role of time, and can cause apoptosis. Lead and cadmium also has similarities apoptosis mechanism on Siberian tiger fibroblast cells.
引文
[1]张志和.华南虎保护遗传学研究.杭州:浙江大学,2006:6.
    [2]孟宪林.虎及其保护.野生动物,1995,1:9-12.
    [3]Matyushkin, E.N., Pikunov, D.G., Dunishenko, Y.M. Distribution and numbers of Amur tigers in the Russian Far East in the mid-1990's. Rare mammal species of Russia and neighboring territories (in Russian). Aristova AA. Moscow:Russian Academy of Sciences of Therological Society,1999,242-271.
    [4]Miquelle, D.G., Pikunov, D.G. Status of the Amur tiger and Far Eastern leopard. The Russian Far East:A reference guide for conservation and development, ed. Newell J P. California: Daniel and Daniel Publishers,2003,106-109.
    [5]Michael, A. Russello, Eugene Gladyshev, Dale Miquelle, Adalgisa Caccone. Potential genetic consequences of a recent bottleneck in the Amur tiger of the Russian fareast. Conservation Genetics,2004,5:707-713.
    [6]张于光,李迪强,饶力群,肖启明,刘丹.东北虎微卫星遗传标记的筛选及在亲子鉴定中的应用.动物学报,2008,49(1):118-123.
    [7]张常智.黑龙江省完达山地区东北虎猎物种群现状及东北虎生境利用研究.哈尔滨.东北林业大学,2006:6.
    [8]Santiago, D., Motas-Guzman, M., Reja, A. Lead and cadm-ium in red deer and wild boar from Sierra Morena Mountains (Andalusia, Spain). Bulletin of Environmental Contamination and Toxicology,1998,61:730-737.
    [9]Leffler, P.E., Nyholm, N.E. Nephrotoxic effects in free-living bankvoles in a heavy metal polluted environment. Ambio,1996,25(6):417-420.
    [10]Roberts, R.D., Johnson, M.S, Hutton, M. Lead contamination of small mammals from abandoned metalliferous mines. Environmental pollution,1978,15:61-69.
    [11]Andrews, S.M., Johnson, M.S., Cooke, J.A. Cadmium in small mammals from grassland established on metalliferous minewaste. Environmental pollution,1984,33:153-162.
    [12]Bunzl, K., Kracke, W.,Vorwohl, G Transfer of Chernobyl-derived 134Cs,137Cs,1311 and 103 Ru from flowers to honey, and103Ru from flowers to honey and pollen. Journal of Environmental Radioactivity,1988,6:261-269.
    [13]Robertson, A.M., Bird, C.C., Waddell, A.W., Currie, A.R. Morphological aspects of glucocorticoid-induced cell death in human lymphoblastoid cells. J. Pathol,1978,126:181-187.
    [14]Williams, J.R., Little, J.B., Shipley, W.U. Association of mammalian cell death with a specific endonucleolytic degradation of DNA. Nature,1974,252:754-755.
    [15]Frank, S.The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell,2001,1:515-525.
    [16]Gallucci, S., Lolkema, M., Matzinger, P. Natural adjuvants:endogenous activators of dendritic cells. Nature Med,1999,5:1249-1255.
    [17]Shi, Y., Zheng, W., Rock, K.L. Cell injury releases endogenous adjuvants that stimulate cytotoxic T cell responses. Proc. Natl Acad. Sci,2000,97:14590-14595.
    [18]Shi, Y., Evans, J.E., Rock, K.L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature,2003,425:516-521.
    [19]Oppenheim, J.J., Yang, D. Alarmins:chemotactic activators of immune responses. Curr. Opin. Immunol,2005,17:359-365.
    [20]Chen, C.J.Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nature Med,2007,13:851-856.
    [21]Matzinger P. The danger model:a renewed sense of self. Science,2002,296:301-305.
    [22]Scaffidi, P., Misteli, T., Bianchi, M.E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature,2002,418:191-195.
    [23]Stennicke, H.R., Salvesen, G.S. Properties of the caspases. Biochim. Biophys Acta,1998,1387: 17-31.
    [24]Communal, C. Functional consequences of caspase activation in cardiac myocytes. Proc. Natl Acad. Sci,2002,99:6252-6256.
    [25]Gemer, C. The Fas-induced apoptosis analysed by high throughput proteome analysis. J. Biol. Chem,2000,275:39018-39026.
    [26]Martin, S.J. Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J. Biol. Chem, 1995,270:6425-6428.
    [27]Thiede, B., Treumann, A., Kretschmer, A., Sohike, J., Rudel, T. Shotgun proteome analysis of protein changes in apoptotic cells. Proteomics,2005,5:2123-2130.
    [28]Kothakota, S.Caspase-3-generated fragment of gelsolin:effector of morphological change in apoptosis. Science,1997,278:294-298.
    [29]Browne, K.A., Johnstone, R.W., Jans, D.A., Trapani, J.A. Filamin (280 kDa actin-binding protein) is a caspase substrate and is also cleaved directly by the cytotoxic T lymphocyte protease granzyme B during apoptosis. J. Biol. Chem,2000,275:39262-39266.
    [30]Rao, L., Perez, D., White, E.Lamin proteolysis facilitates nuclear events during apoptosis. J. Cell Biol,1996,135:1441-1455.
    [31]Croft, D.R. Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration. J. Cell Biol,2005,168:245-255.
    [32]Moss, D.K., Betin, V.M., Malesinski, S.D., Lane, J.D. A novel role for microtubules in apoptotic chromatin dynamics and cellular fragmentation. J. Cell Sci,2006,119:2362-2374.
    [33]Levkau, B., Hrren, B., Koyama, H., Ross, R., Raines, E.W. Caspase-mediated cleavage of focal adhesion kinase pp125FAK and disassembly of focal adhesions in human endothelial cell apoptosis. J. Exp. Med,1998,187:579-586.
    [34]Kim, W., Kook, S., Kim, D.J., Teodorof, C., Song, W.K. The 31 kDa caspase-generate cleavage product of p130cas functions as a transcriptional repressor of E2A in apoptotic cells. J. Biol. Chem,2004,279:8333-8342.
    [35]Kook, S. Caspase-dependent cleavage of tensin induces disruption of actin cytoskeleton during apoptosis. Biochem. Biophys. Res. Comm,2003,303:37-45.
    [36]Brancolini, C., Lazarevic, D., Rodriguez, J., Schneider, C. Dismantling cell-cell contacts during apoptosis is coupled to a caspase-dependent proteolytic cleavage of β-catenin. J. Cell Biol,1997,139:759-771.
    [37]Bannerman, D.D., Sathyamoorthy, M., Goldblum, S.E. Bacterial lipopolysaccharide disrupts endothelial monolayer integrity and survival signalling events through caspase cleavage of adherens junction proteins. J. Biol. Chem,1998,273:35371-35380.
    [38]Houge, G.., Doskeland, S.O., Boe, R., Lanotte, M. Selective cleavage of 28S rRNA variable regions V3 and V13 in myeloid leukaemia cell apoptosis. FEBS Lett,1993,315:16-20.
    [39]Wyllie, A.H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature,1980,284:555-556.
    [40]Schulze-Osthoff, K., Walczak, H., Droge, W., Krammer, P.H. Cell nucleus and DNA fragmentation are not required for apoptosis. J. Cell Biol,1994,127:15-20.
    [41]Wu, Y.C., Stanfield, G.M., Horvitz, H.R. NUC-1, a caenorhabditis elegans DNase Ⅱ homolog, functions in an intermediate step of DNA degradation during apoptosis. Genes Dev,2000,14: 536-548.
    [42]Kawane, K. Impaired thymic development in mouse embryos deficient in apoptotic DNA degradation. Nature Immunol,2003,4:138-144.
    [43]Napirei, M.T. Features of systemic lupus erythematosus in DNase 1-deficient mice. Nature Genet,2000,25:177-181.
    [44]Samejima, K., Tone, S., Earnshaw, W.C. CAD/DFF40 nuclease is dispensable for high molecular weight DNA cleavage and stage I chromatin condensation in apoptosis. J. Biol. Chem,2001,276:45427-45432.
    [45]Liu, X., Zou, H., Slaughter, C., Wang, X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell,1997,89:175-184.
    [46]Samejima, K., Earnshaw, W.C. Trashing the genome:the role of nucleases during apoptosis. Nature Rev. Mol. Cell Biol,2005,6:677-688.
    [47]Ura, S., Masuyama, N., Graves, J.D., Gotoh, Y. Caspase cleavage of MST1 promotes nuclear translocation and chromatin condensation. Proc. Natl Acad. Sci,2001,98:10148-10153.
    [48]Ahn, S.H. Sterile 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in Scerevisiae. Cell,2005,120:25-36.
    [49]Mancini, M. Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J. Cell Biol,2000,149:603-612.
    [50]Chiu, R., Novikov, L., Mukherjee, S., Shields, D. A caspase cleavage fragment of p115 induces fragmentation of the Golgi apparatus and apoptosis. J. Cell Biol,2002,159:637-648.
    [51]Lowe, M., Lane, J.D., Woodman, P.G., Allan, V.J. Caspase-mediated cleavage of syntaxin 5 and giantin accompanies inhibition of secretory traffic during apoptosis. J.Cell Sci,2003,117:1139-1150.
    [52]Letai, A. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell,2002,2:183-192.
    [53]Kuwana, T.BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol.Cell,2005,17:525-535.
    [54]Ricci. J.E. Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell,2004,117:773-786.
    [55]Sun, X.M. Caspase activation inhibits proteasome function during apoptosis. Mol. Cell,2004, 14:81-93.
    [56]Adrain, C., Creagh, E.M., Cullen, S.P., Martin, S.J. Caspase-dependent inactivation of proteasome function during programmed cell death in Drosophila and man. J. Biol. Chem, 2004,279:36923-36930.
    [57]Voll, R.E, Hermann, M., Roth, E.A., Stach, C., Kalden, J.R. Immunosupressive effects of apoptotic cells. Nature,1997,390:350-351.
    [58]Fadok, V. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF. J. Clin. Invest,1998.101:890-898.
    [59]Bellone, M. Processing of engulfed apoptotic bodies yields T-cell epitopes. J. Immunol, 1997,159:5391-5399.
    [60]Albert, M.I., Sauter, B., Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class-restricted CTLs. Nature,1998,392:86-89. ISteinman, R.M., Turley, S., Mellman, I., Inaba, K. The induction of tolerance by dendritic cells at have captured apoptotic cells. J. Exp. Med,2000,191:411-416.
    [62]Orlando, K.A., Stone, N.L., Pittman, R.N. Rho kinase regulates fragmentation and phagocytosis of apoptotic cells. Exp. Cell Res,2006,312:5-15.
    [63]Lauber, K. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell,2003,113:717-730.
    [64]Fadok, V.A. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol,1992,148:2207-2216.
    [65]Martin, S.J., Finucane, D.M., Amarante-Mendes, G.P., O'Brien, G.A., Green. D.R. Phosphatidylserine externalization during CD95-induced apoptosis of cells and cytoplasts requires ICE/CED-3 protease activity. J. Biol. Chem,1996,271:28753-28756.
    [66]Hamon, Y. ABC1 promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidlyserine. Nature Cell Biol,2000,2:399-406.
    [67]Fadok, V.A. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature, 2000,405:85-90.
    [68]Mitchell, J.E. The presumptive phosphatidylserine receptor is dispensable for innate anti-inflammatory recognition and clearance of apoptotic cells. J. Biol. Chem,2006.281:5718-5725.
    [69]Manodori. A.B., Barabino, G.A., Lubin, B.H., Kuypers, F.A. Adherence of phosphatidylserine-exposing erythrocytes to endothelial matrix thrombospondin. Blood,2000,95:1293-1300.
    [70]Greenberg, M.E. Oxidized phosphatidylserine-CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. J. Exp. Med,2006,203:2613-2625.
    [71]Chang, M.K. Monoclonal antibodies against oxidised low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages:evidence that oxidation-specific epitopes mediate macrophage recognition. Proc. Natl Acad. Sci,1999,96:6353-6358.
    [72]Oka, K. Lectin-like oxidised low-density lipoprotein receptor 1 mediates phagocytosis of aged/apoptotic cells in endothelial cells. Proc. Natl Acad. Sci,1998,95:9535-9540.
    [73]Hall, S.E., Savill, J.S., Henson, P.M., Haslett, C. Apoptotic neutrophils are phagocytosed by fibroblasts with participation of the fibroblast vitronectin receptor and involvement of a mannose/fucose-specific lectin. J. Immunol,1994,153:3218-3227.
    [74]Ogden, C.A. C1q and mannose-binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J. Exp. Med,2001,194:781-795.
    [75]Savill, J., Hogg, N., Ren, Y., Haslett, C. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J. Clin. Invest,1992,90:1513-1522.
    [76]Takizawa, F., Tsuji, S., Nagawa, S. Enhancement of macrophage phagocytosis upon iC3b deposition on apoptotic cells. FEBS Lett,1996,397:269-272.
    [77]Karin, M., Lin, A. NF-kappa B at the crossroads of life and death. Nature Immunology,2002, 3(3):221-227.
    [78]Fox, D.A., He, L., Poblenz A.T. Lead induced alterations in retinal cGMP phosphodiesterase trigger calcium over load, mitochondrial dysfunction and rod photor eceptor apoptosis. Toxicol Letter,1998, (102/103):359-361.
    [79]Shabani, A., Rabbani, A. Lead nitrate induced apoptosis in alveolar macrophages from rat lung. Toicology,2000,149(2/3):109-114.
    [80]Columbano, A., Leddacolumbano, G.M., Coni, P.P. Occurrence of cell death (apoptosis) during the involution of liver hyperplasia. Lab Invest,1985,52(6):670-675.
    [81]Cheng, Y.J., Yang, B.C., Hsieh, W.C. Enhancement of TNF-a expression does not t rigger apoptosis upon exposure of glial cells to lead and lipopolysaccharide. Toxicology,2002, 178(3):183-191.
    [82]Oberto, A., Marks, N., Evans, H.L. Lead (Pb2+) promotes apoptosis in newborn rat cerebellar neurons:pathologic implications.J Pharmacol Exp Ther,1996,279(1):435-442.
    [83]张荣,牛玉杰,程云会.醋酸铅对大鼠脑细胞凋亡及bcl-2基因表达的影响.中华劳动卫生职业痫杂志.2000,18(8):232-234.
    [84]杨建明,金泰,蒋学之.铅诱导大鼠肝肾细胞凋亡的研究.中华预防医学.1998,32(1):152.
    [85]Chen, L., Yang, X., Jiao, H. Tea catechins protect against lead-induced ROS formation, mitochondrial dysfunction, and calcium dysregulation in PC 12 cells. Chem Res Toxicol,2003, 16(9):1155-1161.
    [86]逯晓波,陈葆春,王丽华.铅致新生大鼠脑氧化损伤及细胞凋亡的某些改变.中国职业医学,2002,29(3):34-35.
    [87]胡锦东,高秋华,余灯广.牛磺酸对铅脂质过氧化损伤的拮抗作用.中国职业医学.2004,31(2):38-40.
    [88]梁建成,汪春红,张妍.醋酸铅染毒小鼠DNA损伤及体内抗氧化酶变化.中国公共卫生.2006,22(4):457-458.
    [89]Xin, M.G., Deng, X.M. Protein phosphatase aenhances the proapoptotic function of bax through dephosphorylation. J Biol Chem,2006,281:18859-18867.
    [90]Shapifi, A.M., Baniasadi, S., Jorjani, M. Investigation of acute lead poisoning on apoptosis in rat hippocampus in vivo. Neurosci Lett,2002,329:45-48.
    [91]He, L., Poblenz, A.T, Medrano, C.J. Lead and calcium produce rod photoreceptor cell apoptosis by opening the mitochondrial permeability transition pore. J Biol Chem,2000, 275:12175-12184.
    [92]Cappello, F., Bellafiore, M., Palma, A. Defective apoptosis and tumorigenesis:role of p53 mutation and Fas/FasL system dysregulation. Eur J Histochem,2002,46:199-208.
    [93]Fehse, K., Kroncke, K.D., Meyer, K.L. Nitric oxideinduces apoptosis in mouce thymocytes. J Immunol,1995,155:2858-2865.
    [94]Azzouri, B., Tsangaris, G.T., Pellegrini, O. Cadmium induces apoptosis in a human T cell lines. Toxicology,1994,88(1-3):127-389.
    [95]Matsuoka, M., Call, K.M. Cadmium induced expression of immediate early genes in LLC-DK1 cells. Kidney Int,1995,48(2):383-389.
    [96]Hamado, T., Tanimoto, A., Iwal, S. Cytopathological changes induced by Cadmium expossure in canine proxima, tubular cells:a cytochemical and ult trastructureal study. Nephron,1994, 68(1):104-111.
    [97]Xu, G.G., Zhou, G.O., Jin, T.Y. Apoptosis and P53 gene expression in male reproductive tissues of cadmium exposed rats. Biometals,1998,12:131-139.
    [98]赵敏,杨杏芬,魏青.氯化镉诱发肾上腺皮质细胞凋亡与应激活化蛋白激酶活性的研究.中华预防医学杂志.2000,34(6):342-344.
    [99]Achanzer, W.E., Achanzar, K.B., Lewis, J.G. Cadmium induces cmyc and cjun expression in Human Prostate Epithelial Cells as a prelude as a prelude to apoptosis.Toxicol Appl Pharmacol, 2000,164(3):291-300.
    [100]Beyersmann, D. Toxicol Appl Pharmacol,1997,144:247-261.
    [101]Shi, Y. Science,1992,257:212-214.
    [102]Orrenius, S. Adv Exp Med Biol,1991,283:419-425.
    [103]Slater, A. Toxicol Letter,1995,82-83:149-153.
    [104]薛庆善.体外培养的原理与技术.北京,科学出版社,2001,432-444.
    [105]王蒂.细胞工程学.北京,中国农业出版社,2003:14-15.
    [106]鄂征.组织培养技术及其在医学研究中的应用.北京,中国协和医科大学出版社2004,9-41.
    [107]曾科文,陈凤英.脊椎动物乳酸脱氢酶同工酶.哈尔滨,哈尔滨工业大学出版社,1997,1-245.
    [108]Oberto, A., Marks, N., Evans, H.L. Lead (Pb2+) promotes apoptosis in newborn rat cerebellar neurons:pathologic implications. J Pharmacol Exp Ther,1996,279(1):435-442.
    [109]Restrepo, H.G., Sicard, D., Torres, M.M. DNA damage and repair in cells of lead exposed people. Am J Ind Med,2000,38(3):330-334.
    [110]梁建成,汪春红,张妍.醋酸铅染毒小鼠DNA损伤及体内抗氧化酶变化.中国公共卫生,2006,22(4):457-458.
    [111]Iavicoli, I., Carelli, G., Sgambato, A. Lead inhibits growth and induces apoptosis in normal rat fibroblasts. Altern Lab Anim,2001,29(4):461-469.
    [112]张荣,牛玉杰,程云会.醋酸铅对大鼠脑细胞凋亡及bcl-2基因表达的影响.中华劳动卫生职业病杂志,2000,18(8):232-234.
    [113]Kulms, D., Schwarz, T. Independent contribution of three different pathways toultraviolet-B-induced apoptosis. Biochem Pharmacol,2002,64(5-6):837-841.
    [114]Ashkenazy-Shahar, M., Beitner, R. Effects of Ca(2+)-ionophore A23187 and calmodulin antagonists on regulatory mechanisms of glycolysis and cell viabilityof NIH-3T3 fibroblasts. Mol Genet Metab,1999,67(4):334-342.
    [115]杜海科.铅与基因表达.国外医学,卫生学分册,2002,29(2):93-96.
    [116]Chen, L., Yang, X., Jiao, H. Tea catechins protect against lead-induced ROS formation, mitochondrial dysfunction, and calcium dysregulation in PC 12 cells.Chem Res Toxicol,2003, 16(9):1155-1161.
    [117]El-Sokkary, G.H., Kamel, E.S., Reiter, R.J. Prophylactic effect of melatonin in reducing lead-induced neurotoxicity in the rat. Cell Mol Biol Lett,2003,8(2):461-470.
    [118]刘素媛,孙黎光,刑伟.不同浓度染铅大鼠海马神经元浓度与LTP关系的研究.中国医科大学学报,2000,29(3):182-183.
    [119]Hengartner. M.O. The biochemistry of apoptosis. Nature,2000,407:770-776.
    [120]Okada, Y. Apoptosis, cell volume regulation and volume regulatory chloride channels. Maeno E Comp Biochem Physiol A Mol Integr Physiol.2001,130(3):377-383.
    [121]Yu, H.B. Role of potassium channels in Abeta(1-40) activated apoptotic pathway in cultured cortical neurons. Li ZB Zhang HX J Neurosci Res.2006; 84(7):1475-1484.
    [122]Fischer, H., Stenling. R. Differential expression of aquaporin 8 in human colonic epithelial cells and colorectal tumors. BMC Physiol,2001,1:1.
    [123]徐进.乙酸铅诱导PC 12细胞调立的信号途径研究.浙江大学.博士学位论文,2008.
    [124]Yu, X., Kubota, H., Wang, R. Involvement of Bcl-2 family genes and Fas signaling system in pr imary and seconda ry male g erm cell apoptosis induced by 2-bromoprapane in rat. Tox ical Appl Pharmacol,2001,174(1):35-48.
    [125]Friesen, C., Fulda, S. Deficient activation of the CD 95(Apol/Fas) system in drug resistant cells. Leukemia,1997,11:1822-1841.
    [126]Fehse, K., Kroncke, K.D., Meyer, K.L. Nitric oxideinduces apoptosis in mouce thymocytes. J Immunol,1995,155:2858-2865.
    [127]Xu, J., Ji L.X., Li H. Lead-induced apoptosis in PC 12 cells:Involvement of p53, Bcl-2 family and caspase-3. Toxicology Letters,2006,166(2):160-167.
    [128]靳翠红,蔡原,刘秋芳.铅对大鼠成骨细胞Fas和Bcl-2基因表达的影响.卫生研究,2006,23(8):58-59.
    [129]吴晓刚.镉致心肌细胞线粒体损伤的研究.现代预防医学,2006,33(9):1623-1625.
    [130]韦小敏,陆继培,雷珍莲.镉对体外培养淋巴细胞免疫毒性的研究.工业卫生与职业病.2006,32(4):209-211.
    [131]彭黎明,王曾礼.细胞凋亡的基础与临床.北京,人民卫生出版社,2000,198-200.
    [132]Pawert, M., Triebskorn, R., Grff S. Cellular Alterations in Collembolan Midgut Cells as a Marker of Heavy Metal Exposure:Ultrastructure and Intracellular Metal Distribution. The Science of Total Environment,1996,181 (3):187-200.
    [133]张莉,朱伟杰.氯化镉对大鼠睾丸超微结构的损伤.生殖与避孕.2006,26(9):526-530.
    [134]余日安.镉与DNA损伤、癌基因表达、细胞凋亡.国外医学卫生学分册,2000,27(6):359-63.
    [135]Fotakis, G., Cemeli, E., Anderson, D. Cadmium chloride induced DNA and lysosomal damage in a hepatoma cell line. Toxicol in Vitro,2005,19:481-489.
    [136]张敏,陈腾祥,胡晓霞.慢性染砷对大鼠大脑皮层组织细胞DNA损伤及细胞凋亡的影响.贵州医学院学报,2007,32(4):390-392.
    [137]张春红.镉致体外培养鸡支持-生精细胞凋亡机理的研究.东北农业大学,2006.
    [138]Prozialeck, W.C., Niewenhuis, R.J. Toxical Appl Phamacol,1991,107:81-97.
    [139]Prozialeck, W.C., Niewenhuis R J. Biochem Biophys Res Commun,1991,181:1118-1123.
    [140]魏荣慧,黄燕萍,李琳.光动力过程中线粒体膜表面电位和细胞存活关系.生物物理学报,2005,03:182-186.
    [141]Ishisaka, R., Utsumi, K., Utsumi, T. Involvement of lysosomal cysteine proteases in hydrogen peroxide-induced apoptosis in HL-60 cells. Biosci Biotechnol Biochem,2002, 66(9):1865-1872.
    [142]马军,斯颀,叶广俊.镉对神经细胞内游离钙浓度的影响.中国公共卫生学报,1996,15(1):21-23.
    [143]Smith, J.B., Dwyer, S.D., Smith, L. Cadmium Evok Esinositol Polyphosphate Formation and Calciummobilization. J Biol Chem,1989,264:7115-7118.
    [144]Sharma, G., Nath, R., Gill, K.D. Effect of ethanol on cadmium induced lipid perxidation and antioxidant enzymes in ratliver. Biochemical Pharmacology,1991,42:9-16.
    [145]Joseph, P. Mechanisms of cadmium carcinogenesis.Toxicol Appl Pharmacol,2009, doi:10.1016/j.taap.2009.01.011
    [146]Pelicano, H., Carney, D., Huang, P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat,2004,7:97-110.
    [147]敖琳.细胞凋亡中Ca2+稳态失调机制的研究进展.国外医学分子生物学分册,2001,23(2):106-108.
    [148]Shen, H., Dong, S., Dong, C. Criticalrole of calcium over lo ading in cadmium-induced apoptosis in mouse thymocy tes. Tox icol Appl Pharmacol,2001,171(1):12-19.
    [149]Hengartner, M.O. The biochemistry of apoptosis. Nature,2000,407:770-776.
    [150]Okada, Y. Apoptosis, cell volume regulation and volume regulatory chloride channels. Maeno E Comp Biochem Physiol A Mol Integr Physiol,2001,130(3):377-383.
    [151]Fischer, H., Stenling, R. Differential expression of aquaporin 8 in human colonic epithelial cells and colorectal tumors. BMC Physiol,2001,1:1.
    [152]Kim, M.S., Kim, B.J., Woo, H.N. Cadmium induces caspase-mediated cell death: suppression by Bcl-2. Toxicology,2000,145(1):27-37.
    [153]Watjen, W. Calmium-Induced Apoptosis in C6 Glioma Cells Mediation by 28 Carcion E. Trends Endocrinol Mecab,2002,13:100-105.
    [154]朱伟,杨杏芬,魏青.镉诱导腺垂体细胞凋亡与半胱天冬酶信号变化初探.中华预防医学杂志,2005,39(2):115-116.
    [155]Friesen, C, Fulda, S. Deficient activation of the CD 95(Apol/Fas) system in drug resistant cells. Leukemia,1997,11:1822-1841.
    [156]Fehse, K., Kroncke, K.D., Meyer, K.L. Nitric oxideinduces apoptosis in mouce thymocytes. J Immunol,1995,155:2858-2865.
    [157]Nicotera, P. Cell Calcium,1994,16:279-288.
    [158]Zhou, T. Cadm ium induced apopt osis and relat ed changes in expression of p53, c-jun and MT-I genes in t est es and vent ralprost at e of rat s. Licent iat e T hesis in Medical Science in Umea University. Umea. Sweden,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700