用户名: 密码: 验证码:
禽流感灭活疫苗主要生产工艺与原辅材料质量标准控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高致病性禽流感(High pathogenic avain influenza, HPAI)在全球范围的爆发和蔓延引起了世界各国的高度关注。为了有效防控HPAI,国际上主要采取隔离封锁疫点,扑杀销毁感染动物和受威胁动物,以及其他生物安全措施,许多发达国家和地区采用上述措施,扑灭了爆发的HPAI疫情。但当疫情面临大面积扩散,以上措施难以奏效、巨大经济损失难以承担时,免疫接种就成了控制疫情的关键措施之一。我们国家采取以禽流感疫苗免疫接种为主的综合防制措施。高致病性禽流感疫苗被纳入国家强制免疫品种,由农业部指定8家禽流感定点企业生产,执行政府招标采购制度。国家对于禽流感疫苗的研发、生产、销售、使用实施严格的监管措施,禽流感疫苗的质量受到了政府、生产企业、养殖户的高度关注。
     本研究正是在上述背景下,在执行第四届兽药典委员会下达的“注射用白油质量标准及检测规范”、“黏度计替代吸管法检测黏度标准及方法研究”两项项目基础上,以影响禽流感疫苗质量的三个关键因素种蛋、注射用白油、黏度标准的研究和制定为主线,针对禽流感疫苗原辅材料质量、生产工艺、质量检验、市场应用等关键环节中的质量控制点进行系统研究,以解决当前禽流感疫苗在安全、高效、稳定、均一方面存在的问题,同时制定与国际接轨的行业及国家标准,以全面提升我国禽流感疫苗的质量水平,满足国际、国内市场的需求。
     本研究内容分为三个主要部分:1禽流感病毒(AIV)增殖方法及生产用种蛋质量控制
     在不同种蛋母源抗体水平下,采用矩阵方法对AIV最佳接种稀释度、最佳接种胚龄进行研究,结果显示采用母源抗体≤21og2的禽流感非免疫种蛋,病毒最佳稀释度为1:10000(104EID50/0.1mL),最佳接种胚龄为10日龄,每胚收获量达到12.5mL,平均HA效价为11log2,病毒EIDs0为108.5EID50/0.1mL;采用母源抗体≤6log2的禽流感低免疫种蛋,病毒最佳稀释度为1:10000(104EID50/0.1mL),最佳接种胚龄为10日龄,每胚收获量达到12.8mL,但平均HA效价为10log2,病毒EID50为107.3EID50/0.1ml;采用母源抗体≤8log2的禽流感高免疫种蛋,病毒最佳稀释度为1:1000(105EID50/0.1mL),最佳接种胚龄为10日龄,每胚收获量达到12mL,但平均HA效价为9log2,病毒EID50为107.6EID50/0.1mL,同期比较的SPF鸡胚每胚收获量达到13mL,平均HA效价为12log2,病毒EID50为108.8EID50/0.1mL,为保证实验的准确性,所有鸡胚的接种和收获均采用自动接种收获机进行。综合分析以上试验数据,我们选择将AIV1:10000(104EID50/0.1mL)倍稀释,接种10日龄非免疫鸡胚(母源抗体≤2log2)为最佳病毒增殖条件。
     按照以上病毒增殖最佳条件,我们选择了国内14家主要禽流感灭活疫苗种蛋供应商提供的非免疫种蛋230万枚,生产重组AIV灭活疫苗14批共计5445万毫升。通过14批非免疫种蛋外观、重量、破损率、受精率、死胚率、利用率、每胚收获量统计,建立生产用种蛋内控质量标准。14批种蛋外观清洁、通过选蛋机保证蛋大小均匀、蛋重在50-60g之间,14批种蛋中,破损率在2%以下的有10批,受精率均在91%以上,接种前死胚率在4%以下的有11批,接种前种蛋利用率在85%以上的有8批。综合评价病毒接种后死胚率、每胚收获量、病毒效价指标,9批为接种后死胚率在10%以下,病毒每胚收获量在10mL以上、病毒效价在10log2以上,按照以上种蛋质量指标生产的禽流感疫苗14批中有11批HI平均抗体效价达到了8log2,高于禽流感疫苗成品效力检验6log2的指标,说明种蛋各项指标较为合理,能够有效保证产品质量。2注射用白油质量标准及操作规范研究
     选择国内禽流感定点企业普遍使用的一种进口白油MC及两种不同黏度国产白油LH、HZ,采用《中华人民共和国兽药典》(2005版)“注射用白油质量标准”及“食品级白油质量标准”(GB48532008)进行全项检测,三种来源白油在运动黏度、稠环芳烃含量、碳数分布方面存在差异,其中4组LH来源白油运动黏度、稠环芳烃含量最低,碳数分布最窄,各组分清晰,三种指标分别为4.37-5.7mm2/s、0.005-0.015、15-19; MC来源白油三种指标为7.26mm2/s、0.162、15-24; HZ来源白油三种指标为11.16mm2/S、0.037、15-24。用这三类白油制备成油乳疫苗后在SPF鸡体做了比较试验。从安全性试验结果看,疫苗吸收状况存在一定的个体差异。采用胸部肌肉途径接种后,吸收最好的运动黏度为5.7mm2/S的LH白油组,在免疫后48天基本吸收,其次为HZ组,48天后有1只鸡局部有少量未吸收干酪物。稠环芳烃含量超标的MC组,局部炎性反应严重,吸收稍差。从效力检验指标看,LH来源4组白油制备的AI疫苗诱生的HI抗体效价全部高于进口的MC及国产HZ来源白油,疫苗免疫2周后HI抗体效价即能达到7.6log2,三周达到9.5log2。从免疫保存期及持续期数据看,用LH白油批量生产的ZSLHAI疫苗免疫后产生的HI抗体显著高于ZSMC、ZSHZ疫苗,免疫130天后,HI抗体仍然维持在9.4log2,保存12个月,ZSLH疫苗抗体效价维持在8.51og2,而保存9个月时,ZSMC、ZSHZ疫苗已达不到成品效力检验6log2的标准。从不同品种鸡鸭免疫保护效力试验数据看,免疫7日龄商品肉鸡,免疫后28天,ZSLH疫苗抗体效价为7.81og2, ZSMC疫苗为6.71og2, ZSHZ疫苗为6.1log2;免疫18日龄蛋雏鸡,免疫后38天达到抗体高峰,ZSLH疫苗为8.21og2, ZSMC疫苗为7.0log2,ZSHZ疫苗为6.9log2;免疫18周龄蛋种鸡,免疫后1个月达到抗体峰值,ZSLH疫苗为10.8log2,ZSMC疫苗为9.91og2, ZSHZ疫苗为8.2log2;免疫10日龄商品肉鸭,一次免疫4周达到抗体峰值,ZSLH疫苗为7.11og2, ZSMC疫苗为5.41og2, ZSHZ疫苗为5.2log2;3周龄加强免疫后,在第5周达到抗体峰值,ZSLH疫苗为9.31og2, ZSMC疫苗为8.31og2, ZSHZ疫苗为7.9log2;免疫14日龄易感蛋鸭,一次免疫ZSLH疫苗5周达到抗体峰值,为8.51og2, ZSMC. ZSHZ疫苗免疫4周达到峰值,分别为5.31og2,5.11og2;3周龄加强免疫后,在第6周达到抗体峰值,ZSLH疫苗为10.81og2, ZSMC疫苗为9.41og2, ZSHZ疫苗为9.1log2。综合分析,低黏度、低稠环芳烃含量、高纯度的国产LH白油安全性及免疫保护效力均优于进口和国产同类产品。3黏度计替代吸管法检测禽流感灭活疫苗黏度研究
     研究发现,佐剂黏度是影响疫苗黏度的重要因素,在不改变生产工艺、配方的情况下,黏度范围为4.3-5.0mm2/s的LH来源白油制备的疫苗黏度最低,在40mPa.s以下,黏度范围为7.31-7.42mm2/s的MC来源白油制备的疫苗黏度在109mPa.s以内,黏度范围为8.48-11.29mm2/s的HZ来源白油制备的疫苗黏度最高为166mPa.s以内。通过改变佐剂黏度可显著降低疫苗黏度。
     工艺配方也是影响禽流感灭活疫苗黏度的重要因素,在佐剂不变的情况下,采用水相:油相1:3的配方,加硬脂酸铝,疫苗黏度不高于60mPa.s;采用水相:油相1:3的配方,不加硬脂酸铝,疫苗黏度不高于40mPa.s;采用水相:油相1:1.5的配方加硬脂酸铝,疫苗黏度最高,达到165mPa.s,采用水相:油相1:1.5的配方不加硬脂酸铝,疫苗黏度达到119mPa.s。
     不同禽流感疫苗生产企业生产相同品种的禽流感疫苗黏度存在差异,最低的为18.7mPa.s,最高的为91mPa.s,差异极显著,8个来源的相同品种疫苗中,有6个黏度在60mPa.s以下。综合统计所有品种禽流感疫苗黏度,60%产品黏度在60mPa.s以下,因此将禽流感灭活疫苗黏度企业内控标准定为不高于60mPa.s。
     以44对刻度吸管及黏度计检测数据建立油乳剂疫苗黏度检测刻度吸管法和黏度计法的回归模型,通过回归关系方差分析表证明刻度吸管法与黏度计法检测疫苗黏度有极显著的回归关系。
     本研究得出以下结论:(1)原辅材料质量是影响禽流感疫苗质量的关键因素,通过建立生产用种蛋内控质量标准及注射用白油质量标准,可保证禽流感疫苗的安全、稳定、高效、均一;(2)采用低黏度、低稠环芳烃、高纯度白油制备禽流感疫苗可在确保安全性的前提下显著提高疫苗免疫效价、延长免疫持续期,减少免疫次数并保证疫苗有效期内的抗原稳定性;(3)采用黏度计替代刻度吸管法检测疫苗黏度更加精确,并能够与国际接轨。在禽流感疫苗工艺研究中,佐剂黏度及工艺配方是影响疫苗黏度的重要因素。
It has been attracted high attention to the high pathogenic avian influenza (AI) broken out and spread in the world. The effective prevention and control methods for the disease generally include the quarantine blockade, killing the infected and threatened animals and other biological safety measures. At present, some countries and regions have eradicated m the epidemic high pathogenic AI by using those methods. However, when the epidemic disease spread wildly in some areas, it could not be prevented and controlled effectively by using the above measures, and it could cause great economic loss. And the vaccination management must become the one of the key measures to control the epidemic disease. In China, vaccination has been used as the one main measure of the comprehensive prevention system for avian influenza. The vaccine was produced by8bio-products factories and the marking of the products was arranged by Chinese government under the invited public bidding and stock system. The preparation, sale, administration of the vaccines and the development of the new vaccines against high pathogenic AI were administrated and inspected strictly by Chinese government. It has caused great attention to the quality of the vaccines from the state, the manufacturing enterprises and the animal breeders.
     In order to improve the problems in safety, protective efficacy, stability and homogeneity of the current vaccine against AI, it was firstly studied on the quality criterion of seed eggs, paraffin injected and viscosity in this study by followed the two items administrated by the4th Veterinary Medicine Pharmacopoeia Committee, the quality criterion and inspection criterion for the injected paraffin and the criterion and the method for a substitute viscometer for straw. And the criterion of the vaccine production in the biological industry and state was formulated. It should be helpful for increasing the quality of the AI vaccine and satisfying the need of the internal and international markets. The content of the study are composed of three parts as following:
     1. Studying on the method for propagation of avian influenza virus and the quality control of the seed eggs for production
     Based on the levers of the maternal antibodies against AI of the seed egg from the chickens unvaccinated with AI vaccine, the optical concentration of the virus and the optical egg-embryo age for inoculation were titrated by the matrix method. The result showed that:(1) when the titer of the maternal antibody against AI was less than2Iog2, the optical diluted concentration of virus was1:1000(10EID50), the optical egg-embryo age for inoculation was10days old, the quantity of the harvested allanoic liquid for each egg was up to12.5ml, the average HA titer was111og2, and the virus titre was108.5EID50/0.1ml;(2)when the titer of the maternal antibody against AI was less than6log2, the optical diluted concentration of the virus was1:10000(104EID50), the optical egg-embryo age for inoculation was10days old, the volume of the harvested allanoic liquid for each egg is up to12ml, the average HA titer was121og2, and the virus content was108.8EID50/0.1ml. To make sure that the accuracy of the experiment, all the inoculation and harvest of the egg-embryos allanoic liquid were conducted by the automatic inoculation and harvest machine system. Analyzing the above data comprehensively, the best method for the propagation of the virus was selected as:the10days old egg embryos was inoculate by using virus dilution of1:10000(104EID50).
     According to the above optical condition for virus propagation,14batches of the inactivated vaccine was produced in total5.445billion milliliter, by using2300thousand eggs provided by14main seed egg supplier for making AI inactivated vaccine. By the statistic analysis of the appearance,weight, dilapidation rate, the fertilized rate, dead embryo rate, utilization ratio and harvesting quantity14seed eggs unvaccinated, the internal quality control criterion of the seed eggs for production was established. The14batches of seed eggs appeared clean, homogenized in size chosen by chosen machine, weight of50-60grams, the dilapidation rate being lower than2%for10of14batches, the fertilized rate of all the eggs being over91%, dead embryo rate before inoculation being lower than4%for11of14, utilization ratio being over85%for8of14batches. Making a comprehensive evaluation of the dead embryo rate post inoculation, harvesting quantity per embryo, and the virus titer index, it showed that the dead embryo rate was below10%, harvesting quantity per embryo was above10ml, the virus titer was over101og2. Among the14batches of vaccine against avian influenza, llbatches had the HA titer of81og2, which being higher than the criterion of61og2. It indicated that the various indexes of the seed eggs were reasonable, which being available to guarantee the quality of the vaccine.
     2. The study of the quality criterion and the Standard Operation Procedure of the paraffin injected
     One type of imported paraffin oil MC, used popularly in the8fixed manufacturing enterprises of vaccine against AI, and two types of paraffin, LH and HZ, made in China with different viscosity are chosen and the quality was detected as the method for the quality criterion of the paraffin injected and the paraffin oil for food in China Veterinary Pharmacopoeia (2005edition), GB48532008. The results showed that the3different sources of paraffin had different movable viscosity, the content of condensed aromatics, and the distribution of the carbon numbers. The4LH with different origination had the lowest movable viscosity and the content of condensed aromatics, the least narrow of distribution of the carbon numbers and the distinct of each component, which being4.37-5.7mm2/s、0.005-0.015and15-19, respectively. The3indexes of the paraffin in MC were7.26mm2/s、0.162and15-24, respectively. The3indexes of the paraffin in HZ were11.16mm2/s、0.037and15-24, respectively. The result of the safety experiment demonstrated that the absorbing of the vaccines with different origin paraffin were different. When inoculation via muscle route, the vaccine with LH which originated with5.7mm2/s of movable viscosity could be best absorbed completely48days post inoculation. Meanwhile, the vaccine with HZ was less absorbed. And one bird had a few unabsorbed dry cheeses like materials in the injection area. In the group MC with over the standard of the content of the condensed aromatics, the vaccine with HZ was also less absorbed and there were severe local inflammation. The result of the efficacy test indicated that the levels of HI antibodies to AI in LH groups were higher than those in the MC and HZ groups, which being7.61og2and9.51og2at2and3weeks post inoculation. The HI antibody titer was dramatically higher from ZSLHAI vaccine than that from ZSMC、ZSHZ vaccines, which remaining9.41og2at130days post immunization. After the vaccines was stored for12months and inoculated with chicken, the HI antibody titer from ZSLH vaccine was8.5log2. But when ZSMC、 ZSHZ vaccines were preserved for9months, they only could provide61og2HI antibody to AI.
     The results of immunological protection efficiency for different strains of chickens and ducks indicated as following:(1) when the commercial7days old broilers were vaccinated with ZSLH, ZSMC, ZSHZ, respectively, the antibodies were detected at28days post inoculation, which being7.81og2for the ZSLH group,6.71og2for the ZSMC group, and6.11og2for the6.11og2group.(2) When the18days old egg-laying chickens were vaccinated, the antibody reached the peak at4weeks post inoculation (wpi), which values for ZSLH, ZSMC, ZSHZ being7.11og2,5.41og2and5.21og2, respectively.(3)When the18weeks old breed layers were vaccinated, the antibody reached the peak at1month post inoculation, which values for ZSLH, ZSMC, ZSHZ being10.81og2,9.91og2and8.21og2, respectively.(4)When the commercial10days old meat-type ducks were firstly vaccination, the antibody reached the peak at4wpi, which values for ZSLH, ZSMC, ZSHZ being7.11og2,5.41og2and5.21og2, respectively. As the second enhancement at3weeks old, the antibody reached the peak5wpi, the values being9.31og2,8.31og2and7.91og2for ZSLH, ZSMC, ZSHZ, respectively.(5)When the susceptible14days old egg-laying ducks were vaccinated, the antibody reached the peak at5wpi, the value being8.51og2for the ZSLH group, but in ZSMC and ZSHZ groups, the antibody reached the peak at4wpi, which value being5.31og2and5.11og2, respectively. After the second enhanced vaccination at3weeks old, the antibody reached the peak at6wpi, which values being10.81og2,9.41og2and9.11og2for ZSLH, ZSMC, ZSHZ, respectively. It indicated that the low viscosity, low content of condensed aromatics and the purity of paraffin LH made in China were superior to those of the imported and the similar product made in China. The vaccine made with paraffin LH had higher safety and immunological protective efficiency than those with other oil adjuvant.
     3. Studies on the method of a substitute viscometer for straw for detecting the viscosity of inactivated avian influenza vaccine
     The viscosity of the adjuvant was the key factor affecting the viscosity of the vaccine. In this study, the viscosity of the vaccines made with3different paraffins was detected by using a method of a substitute viscometer for straw. The results showed that when no change on the manufacturing procedure and the prescription, the viscosity of the vaccine made with paraffin LH, which viscosity being4.3-5.0mm2/s, was the lowest (≤40mPa.s). Meanwhile, the viscosity of the vaccine made with paraffin MC, which viscosity being7.31-7.42mm2/s mm2/s, was less109mPa.s. And the viscosity of the vaccine made with paraffin HZ, which viscosity being8.48-11.29mm2/s, was lower than166mPa.s. It indicated that viscosity of the vaccine could be decreased dramatically by changing the viscosity of the oil adjuvant.
     The prescription was also the important factor for the viscosity of the inactivated avian influenza vaccine. By using the same oil adjuvant, when the volume rate of the water phase to the oil phase was1:3, the viscosity of the vaccine was not higher than60mPa.s by using aluminium stearate, but not higher than40mPa.s without aluminium stearate. When the volume rate of the water phase to the oil phase was1:1.5, the viscosity of the vaccine was the highest,165mPa.s, by using aluminium stearate, but119mPa.s without aluminium stearate. After detection of8commercial vaccines, the results showed that the viscosity of the vaccines produced by different manufacturers were different. The lowest of the viscosity was18.7mPa.s and the highest was91mPa.s. Moreover, among the8commercial vaccines,6types of vaccines had low viscosity of less60mPa.s. It indicated that no more than60mPa.s could be used as the internal viscosity criterion for the inactivated avian influenza vaccine in industry. Finally, after the viscosity of64oil-emulsified vaccines samples were detected with the method of viscometer and the straw, the regression model was established. And it was found that there were significant regression relation between the method of viscometer and the straw.
     In summary, because the quality of the raw materials was the key factor affecting the quality of the avian influenza vaccines, it was necessary to establish the internal control quality criterion of the seed eggs and the quality criterion of the paraffin injected for making sure the vaccine safe, stable, highly efficient and homogeneous. Secondly, the low viscosity, content of the condensed aromatics and high purity of the paraffin were helpful for producing the influenza vaccines with high safety and immune efficiency, antigen stability and the period of immunity. Third, the method viscometer could substitute for the method straw for detecting accurately the viscosity of the vaccine, which being in line with the international standards. The viscosity of the adjuvant and the prescription were the important factors in affecting the viscosity of the inactivated avian influenza vaccine.
引文
[1]包红梅,陈国彬,陈化兰,等.禽流感的诊断技术与防制措施[J].中国兽医科技,2003,33(4):75.
    [2]王新,刘虹,刘贺,等.A型AIV跨膜蛋白M2的研究进展[J].黑龙江畜牧兽医,2007,9:26-27.
    [3]杨振华,陶攀,周思榆,等.H5N1亚型AIV神经氨酸酶的表达及抗体制备[J].武汉大学学报(理学版),2007,53(4):481-484.
    [4]黄淑坚,龚中贵,陈秀玲,等.H5、H9亚型AIV快速鉴别诊断方法的建立[J].中国兽医学报,2007,27(4):448-450.
    [5]Peyre M, Fusheng G, Desvaux S, et al. Avian influenza vaccines:a practical review in relation to their application in the field with a focus on the Asian experience[J]. Epidemiol Infect,2009, 137(1):1-21.
    [6]徐之勇,仲崇岳,李军民,等.禽流感疫苗的研究概况[J].家禽科学,2007,11:39-42.
    [7]Swayne D E. Avian influenza vaccines and therapies for poultry[J]. Comp Immunol Microb,2008, 26.
    [8]唐秀英,田国斌,于康震,等.禽流感油乳剂灭活疫苗的研究[J].中国预防兽医学报,1999,21(6):401-405.
    [9]Lee C W, Senne D A, Suarez D L. Generation of reassortant influenza vaccines by reverse genetics that allows utilization of a DIVA (Differentiating Infected from Vaccinated Animals) strategy for the control of avian influenza[J]. Vaccine,2004,22(23-24):3175-3181.
    [10]Shi H, Liu X F, Zhang X, et al. Generation of an attenuated H5N1 avian influenza virus vaccine with all eight genes from avian viruses[J]. Vaccine,2007,25(42):7379-7384.
    [11]Qiao C, Tian G, Jiang Y, et al. Vaccines developed for H5 highly pathogenic avian influenza in China[J]. Ann NY Acad Sci,2006,1081:182-192.
    [12]Horimoto T, Takada A, Fujii K, et al. The development and characterization of H5 influenza virus vaccines derived from a 2003 human isolate[J]. Vaccine,2006,24(17):3669-3676.
    [13]Horimoto T, Yoshihiro K. Strategies for developing vaccines against H5N1 influenza A viruses[J]. TRENDS Mol Med,2006,12(11):506-514.
    [14]乔传玲.H5亚型AIV不同毒株及抗原含量对灭活疫苗效果的影响[J].预防兽医学进展,2001,3(1):57-59.
    [15]Wilson I A, Skehel J J, Wiley D C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution[J]. Nature,1981,289:366-373.
    [16]Colman P M. Structure of the catalytic and antigen site in influenza virus neuraminidase[J]. Nature,1983,303:41-43.
    [17]Lentz M R. Site-directed mutation of the active site of the influenza neuraminidase and implication for the catalytic mechanism[J]. Biochemistry,1987,26:5351-5360.
    [18]Portela A, Digard P. The influenza virus nucleoprotein:a multifunctional RNA-binding protein pivotal to virus replication[J]. J Gen Virol,2002,83:723-734.
    [19]刘胜旺,孔宪刚,王玮,等.鸡传染性支气管炎病毒核蛋白基因的克隆及在杆状病毒系统中的表达[J].中国预防兽医学报,2001,23(6):401-403.
    [20]Shu L L, Bean W J, Webster R G. Analysis of the evolution and variatin of the human influenza A Virus nucleoprotein gene from 1933 to 1990[J]. J Virol,1993,67(5):2723-2729.
    [21]Ruigrok R W, Calder L J, Wharton S A. Electron microscopy of the influenza virus submembrane structure[J]. Virology,1989,173(1):311-316.
    [22]Hankins R W, Nagata K, Bucher D J, et al. Monoclonal antibody analysis of influenza virus matrix protein epitopes involved in transcription inhibition[J]. Virus Genes,1989,3(2):111-126.
    [23]Hankins R W, Nagata K, Kato A, et al. Mechanism of influenza virus transcription inhibition by matrix(M1)protein[J]. Res Virol,1990,141(3):305-314.
    [24]Martin K, Helenius A. Nuclear transport of influenza virus ribonucleoproteins:the viral matrix protein(M1)promotes export and inhibits import[J]. Cell,1991,67(1):117-130.
    [25]Zebedee S L, Lamb R A. Influenza A virus M2 protein:monoclonal antibody restriction of virus growth and detection of M2 in virions[J]. J Virol,1988,62(8):2762-2672.
    [26]Treanor J J, Tierney E L, Zebedee S L, et al. Passively transferred monoclonal antibody to the M2 protein inhibits influenza A virus replication in mice[J]. J Virol,1990,64(3):1375-1377.
    [27]Hughey P G, Roberts P C, Holsinger L J, et al. Effects of antibody to the influenza A virus M2 protein on M2 surface expression and virus assembly[J]. Virology,1995,212(2):411-421.
    [28]Liu W, Zou P, Ding J, et al. Sequence comparison between the extracellular domain of M2 protein human and avian influenza A virus provides new information for bivalent influenza vaccine design[J]. Microbes Infect,2005,7(2):171-177.
    [29]Kodihalli S, Sivanandan V, Nagaraja K V, et al. A type-specific avian influenza virus subunit vaccine for turkeys:induction of protective immunity to challenge infection[J]. Vaccine,1994, 12(15):1467-1472.
    [30]Crawford J, Wilkinson B, Vosnesensky A, et al. Baculovirus derived hemagglutin in vaccines protect against lethal influenza infections by avian H5 and H7 subtypes[J].Vaccine,1999,17(18): 2265-2274.
    [31]Moran T M, Park H, Fernandez-sesma A, et al. Th2 response to inactivated influenza virus can be converted to Th1 response and facilitate recovery from heterosubtypic virus infection[J]. J Infect Dis,1999,180(3):579-585.
    [32]Pushko P, Tumpey T M, Van Hoeven N, et al. Evaluation of influenza virus-like particles and Novasome adjuvant as candidate vaccine for avian influenza[J]. Vaccine,2007,25(21): 4283-4290.
    [33]Prel A, Le Gall-Recule G, Jestin V. Achievement of avian influenza virus-like particles that could be used as a subunit vaccine against low-pathogenic avian influenza strains in ducks[J]. Avian Pathol,2008,37(5):513-520.
    [34]van den Berg T, Lambrecht B, Marche S, et al. Influenza vaccines and vaccination strategies in birds[J]. Comp Immunol Microb,2008,31(2-3):121-165.
    [35]Swayne D E, Beck J R, Mickle T R. Efficacy of recombinant fowl poxvirus vaccine in protecting efficacy of a recombinant fowl pox-based Newcastle disease virus vaccine candidate against velogenic and respiratory challenge[J]. Avian Dis,1996,40(1):173-180.
    [36]Beard C W, Schnitzlein W M, Tripathy D N. Protection of chickens against highly pathogenic avian influenza virus (H5N2) by recombinant fowlpox viruses[J]. Avian Dis,1991,35(2): 356-359.
    [37]Tripathy D N, Schnitzlein W M. Expression of avian influenza virus hemagglutinin by recombinant fowlpox virus[J]. Avian Dis,1991,35(1):186-191.
    [38]Boyle D B, Selleck P, Heine H G. Vaccinating chickens against avian influenza with fowlpox recombinants expression the H7 haemagglutinin[J]. Aust Vet J,2000,78(1):44-48.
    [39]Qiao C, Jiang Y, Tian G, et al. Recombinant fowlpox virus vector-based vaccine completely protects chickens from H5N1 avian influenza virus[J]. Antivir Res,2009,81(3):234-238.
    [40]Nakaya T, Cros J, Park M-S, et al. Recombinant Newcastle disease virus as a vaccine vector[J]. J Virol,2001,75:11868-11873.
    [41]Man-Seong P, John S, Adolfo G S, et al. Engineered viral vaccine constructs with dual specificity:Avian influenza and Newcastle disease[J]. PNAS,2006,103(21):8203-8208.
    [42]Veits J, Wiesner D, Fuchs W, et al. Newcastle disease virus expressing H5 hemagglutinin gene protects chickens against Newcastle disease and avian influenza[J]. PNAS,2006,103(21): 8197-8202.
    [43]Ge J, Deng G, Wen Z, et al. Newcastle disease virus-based live attenuated vaccine completely protects chickens and mice from lethal challenge of homologous and heterologous H5N1 avian influenza viruses[J]. J Virol,2007,81(1):150-158.
    [44]Swaye D E, Beck J k, Kinney N. Failure of a recombinant fowlpox virus vaccine containing an avian influenza hemagglutinin gene to provide consistent protection against influenza in chickens reimmuized with a fowlpox vaccine[J]. Avian Dis,2000,44(1):132-137.
    [45]Jiang Y, Yu K, Zhang H, et al. Enhanced protective efficacy of H5 subtype avian influenza DNA vaccine with codon optimized HA gene in a pCAGGS plasmid vector[J]. Antivir Res,2007,75(3): 234-241.
    [46]Cherbonnel M, Rousset J, Jestin V. Strategies to improve protection against low-pathogenicity H7 avian influenza virus infection using DNA vaccines[J]. Avian Dis,2003,47(3 Suppl): 1181-1186.
    [47]Suarez D L, Schultz-Cherry S. The effect of eukaryotic expression vectors and adjuvants on DNA vaccines in chickens using an avian influenza model[J]. Avian Dis,2000,44(4):861-868.
    [48]Kodihalli S, Kobasa D L, Webster R G. Strategies for inducing protection against avian influenza A virus subtypes with DNA vaccines[J]. Vaccine,2000,18(23):2592-2599.
    [49]Fynan E F, Robinson H L, Webster R G. Use of DNA encoding influenza hemagglutinin as an avian influenza vaccine[J]. DNA Cell Biol,1993,12(9):785-789.
    [50]Kodihalli S, Haynes J R, Robinson H L, et al. Cross-protection among lethal H5N2 influenza viruses induced by DNA vaccine to the hemagglutinin[J]. J Virol,1997,71(5):3391-3396.
    [51]何宏轩,秦曦明,张强哲,等.H9N2亚型AIVHA基因的克隆及其DNA疫苗的动物免疫试验[J].生物化学与生物物理进展,2004,31(2):163-166.
    [52]刘丽平,焦新安,张小荣,等.减毒沙门氏菌运送的H9N2亚型AIVDNA疫苗的研制及其免疫试验[J].动物医学进展,2007,28(9):1-6.
    [53]潘志明,程宁宁,刘蓓蓓,等.减毒沙门氏菌介导H9亚型禽流感DNA疫苗与灭活疫苗联合应用研究[J].扬州大学学报(农业与生命科学版),2007,28(4):1-4.
    [54]Ulmer J B, Donnelly J J, Parker S E, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein[J]. Science,1993,259:1745-1749.
    [55]Justewicz D M, Webster R G. Long term maintenance of Bcell immunity of influenza virus hemagglutinin in mic following DNA based immuniztion[J]. Virology,1996,224:10-17.
    [56]Webster R G, Kawaoka Y. Efficacy of nucleoprotein and hemagglutinin antigens expressed in fowlpox virus as vaccine for inflenza in chickens[J]. Vaccine,1991,9:303-308.
    [57]Neirynck S, Derro T, Saelens X, et al. A universal influeza A vaccine based on the extracelluar domain of the M2 protein[J]. Nat Med,1999,5:1157-1163.
    [58]Mozdzanowska K, Feng J Q, Mark E, et al. Induction of influenza type A virus specific resistance by immunization of mice with a synthetic multiple antigenic peptide vaccine that contains ectodmains of matrix protein 2[J]. Vaccine,2003,21:2616-2626.
    [59]Li J, Chen S, Evans D H. Typing and subtyping influenza virus using DNA microarrys and multiplex reverse transcriptase PCR[J]. J Virol,2001,39:696-704.
    [60]Swayne D E, Perdue M L, Beck J R, et al. Vaccines protect chickens against H5 highly pathogenic avian influenza in the face of genetic changes in field viruses over multiple years[J]. Vet Microbiol,2000,74:165-172.
    [61]Smirnov Y A, Kaverin N V, Govorkova E A, et al. Cross-protection studies with H5 influenza viruses[J]. International Congress Series,2001,1219:767-773.
    [62]Sturm-Ramirez K M, Ellis T, Bousfield B, et al.2004. Reemerging H5N1 influenza Viruses in Hong Kong in 2002 are highly pathogenic to ducks[J]. J Virol,78,4892-4901.
    [63]Steensels M, Van Borm S, Lambrecht B, et al. Efficacy of an inactivated and a fowlpox-vectored vaccine in Muscovy ducks against an Asian H5N1 highly pathogenic avian influenza viral challenge[J]. Avian Dis,2007,51(1 Suppl):325-31.
    [64]Pan Z, Zhang X, Geng S, et al. Priming with a DNA vaccine delivered by attenuated Salmonella typhimurium and boosting with a killed vaccine confers protection of chickens against infection with the H9 subtype of avian influenza virus [J]. Vaccine,2009,27(7):1018-1023.
    [65]Lazarowitz S G, Compans R W, Choppin P W. Influenza virus structural and nonstructural proteins in infected cells and their plasma membranes[J]. Virology,1971,46(3):830-843.
    [66]Qian X Y, Alonso-Caplen F, Krug R M.Two functional domains of the infuenza virus NS1 protein are required for regulation of nuclear export of mRNA[J]. J Virol.1994,68(4):2433-2441.
    [67]Tumpey T M, Alvarez R, Swayne D E, et al. Diagnostic approach for differentiating infected from vaccinated poultry on the basis of antibodies to NS1, the nonstructural protein of influenza A virus[J]. J Clin Microbiol,2005,43(2):676-683.
    [68]Zhao S, Jin M, Li H, et al. Detection of antibodies to the nonstructural protein (NS1) of avian influenza viruses allows distinction between vaccinated and infected chickens[J]. Avian Dis,2005, 49(4):488-493.
    [69]Webster R G, Bean W J, Gorman O T, et al. Evolution and ecology of influenza A viruses[J]. Microbiol Rev,1992,56(1):152-179.
    [70]Capua I, Terregino C, Cattoli G, et al. Development of a DIVA (Differentiating Infected from Vaccinated Animals) strategy using a vaccine containing a heterologous neuraminidase for the control of avian influenza[J]. Avian Pathol,2003,32(1):47-55.
    [71]Cattoli G, Milani A, Bettini F, et al. Development and validation of an anti-N3 indirect immunofluorescent antibody test to be used as a companion diagnostic test in the framework of a "DIVA" vaccination strategy for avian influenza infections in poultry[J]. Avian Pathol,2006, 35(2):154-159.
    [72]Medema J K, Meijer J, Kersten A J, et al. Safety assessment of Madin Darby canine kidney cells as vaccine substrate[J]. Dev Biol (Basel).2006,123:243-250.
    [73]柴丽娜,杨大光,郝春丽,等.禽流感疫苗研究进展[J].上海畜牧兽医通讯,2007,1:12-13.
    [74]Kistner O, Barrett N, Mundt W, et al. Development of a novel influenza vaccine derived from a continuous cell line[J]. ALTEX,2001,18 (1):50-54.
    [1]Dotsika E,Karagouni E,Sundquist B,et al,Influence of Quillaja saponaria triterpenoid content on the immunomodul-atory capacity of Epstein Barr virus ISCOMs[J],Scand J Immunol,1997,45:261-265.
    [2]Rimaniol A C, Gras G, Verdier F, et al. Aluminum hydroxide adjuvant induces macrophage differentiation towards a specialized antigen-presenting cell type[J]. Vaccine,2004,13; 22(23-24): 3127-3135.
    [3]Schultze V, D'Agosto V, Wack A, et al. Safety of MF59 adjuvant[J]. Vaccine,2008,19; 26(26): 3209-3222.
    [4]沈志强.家禽疫苗的发展概况与展望[J].动物医学进展,2002,23(4):1-5.
    [5]de Vries J J, Bungener L, TerVeer W, et al. Incorporation of LpxLl, a detoxified lipopolysaccharide adjuvant, in influenza H5N1 virosomes increases vaccine immunogenicity[J]. Vaccine,2009,27(6):947-955.
    [6]Gustafson G L, Rhodes M J. Bacterial cell wall p roducts as adjuvants:Early interferon gamma as a marker for adjuvant that enhance protective immuneity[J]. Res Immunol,1992,143(5):483-488.
    [7]McCluskie M J, Davis H L. Cutting Edge:CpG DNA is a potent enhancer of systemic and mucosal immune responses against hepatitis B surface antigen with intranasal administration to mice[J]. J Immunol,1998,161(9):4463-4466.
    [8]Pearse M J, Drane D. ISCOMATRIX adjuvant:a potent inducer of humoral and cellular immune responses[J]. Vaccine,2004,23; 22(19):2391-2395.
    [9]Calarota S A, Dai A, Trocio J N, et al. IL-15 as memory T-cell adjuvant for topical HIV-1 DermaVir vaccine[J]. Vaccine,2008,19; 26(40):5188-5195.
    [10]Logan K E, Chambers M A, Hewinson R G, et al. Frequency of IFN-gamma producing cells correlates with adjuvant enhancement of bacille Calmette-Guerin induced protection against Mycobacterium bovis[J]. Vaccine,2005,23(48-49):5526-5532.
    [11]Min W, Lillehoj H S, Burnside J, et al. Adjuvant effects of IL-1beta, IL-2, IL-8, IL-15, IFN-alpha, IFN-gamma TGF-beta4 and lymphotactin on DNA vaccination against Eimeria acervulina[J]. Vaccine,2001,20(1-2):267-274.
    [12]Sakure S, Negi V D, Mitra S K, et al. Vaccine with herbal adjuvant--a better cocktail to combat the infection[J]. Vaccine,2008,26(27-28):3387-3388.
    [13]Mosman T R, Cherwinski H, Bond M W, et al. Two types of murine helper T cell clone 1 definition to profiles of lymphokine activities and secreted proteins[J]. J Immunol,1998,136: 2348-2357.
    [14]Lohoff M, Mak T W. Roles of interferon regulatory factors in T-helper-cell differentiation[J]. Nat Rev Immunol,2005,5(2):125-135.
    [15]吴亚娣,孙兵.Thl和Th2细胞的表面受体及其功能调节[J].上海免疫学杂志,2000,20(5):318-320.
    [16]Klinman D M, Yi A K, Beaucage S L, et al. CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma[J]. Proc Natl Acad Sci USA,1996,93 (7):2879-2883.
    [17]Xie Y, Pan H. A promising balanced Thl and Th2 directing immunological adjuvant, saponins from the root of Platycodon grandiflorum[J].2008, Vaccine,26(31):3937-3945.
    [18]Pearse M J, Drane D. ISCOMATRIX adjuvant:a potent inducer of humoral and cellular immune responses [J]. Vaccine,2004,22(19):2391-2395.
    [19]Demento S L, Eisenbarth S C, Foellmer H G, et al. Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy[J]. Vaccine,2009,27:3013-3021.
    [20]Ozinsky A, Underhill D M, Fontenot J D, et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors[J]. Proc. Natl. Acad. Sci. USA,2000,97:13766-13771.
    [21]Creagh E M, O'Neill L A. TLRs, NLRs and RLRs:A trinity of pathogen sensors that co-operate in innate immunity[J]. Trends Immunol,2006,27:352-357.
    [22]Hashimoto C, Hudson K L, Anderson K V. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane proteinv. Cell,1988,29; 52(2):269-279.
    [23]Medzhitov R, Preston-Hurlburt P, Janeway CA, et al. A human homologue of the Drosophila Toll p rotein signals activation of adap tive immunity[J]. Nature,1997,388 (6640):394-397.
    [24]Lahiri A, Das P, Chakravortty D. Engagement of TLR signaling as adjuvant:towards smarter vaccine and beyond[J]. Vaccine,2008,26(52):6777-6783.
    [25]Poltorak A, Smirnova I, He X, et al. Genetic and physical mapping of the Lps locus:identification of the toll-4 receptor as a candidate gene in the critical region[J].Blood Cells Mol Dis,1998, 24(3):340-355.
    [26]Cohen N, Stolarsky-Bennun M, Amir-Kroll H, et al. Pneumococcal capsular polysaccharide is immunogenic when present on the surface of macrophages and dendritic cells:TLR4 signaling induced by a conjugate vaccine or by lipopolysaccharide is conducive[J]. J Immunol,2008,15(4): 2409-2418.
    [27]Cataldi A, Yevsa T, Vilte D A, et al. Efficient immune responses against Intimin and EspB of enterohaemorragic Escherichia coli after intranasal vaccination using the TLR2/6 agonist MALP-2 as adjuvant[J]. Vaccine,2008,26(44):5662-5667.
    [28]Huleatt J W, Nakaar V, Desai P, et al. Potentimmunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin[J]. Vaccine,2008,10(2):201-214.
    [29]Salem M L, El-Naggar SA, Kadima A, et al. The adjuvant effects of the toll-like receptor 3 ligand polyinosinic-cytidylic acid poly (I:C) on antigen-specific CD8+T cell responses are partially dependent on NK cells with the induction of a beneficial cytokine milieu[J]. Vaccine,2006, 12(24):5119-5132.
    [30]Wille-Reece U, Flynn B J, Lore K, et al. HIV Gag protein conjugated to a Toll-like receptor 7/8 agonist improves the magnitude and quality of Thl and CD8+T cell responses in nonhuman primates. Proc Natl Acad Sci U S A,2005,18 (42):15190-15194.
    [31]Parroche P, Lauw F N, Goutagny N, et al. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9[J]. Proc. Natl. Acad. Sci. USA,2007,104:1919-1924.
    [32]Stefan Z, Alexander D, Klaus H. CpG oligonucleotides as adjuvant in therapeutic vaccines against parasitic infections[J]. International Journal of Medical Microbiology,2008,298:39-44.
    [33]MaR D, Huang J, Wu C Y. Additive effects of CpGODNand R-848 as adjuvants on augmenting immune responses to HBsAg vaccination[J]. Biochem Biophys Res Commun,2007,21(2): 537-542.
    [34]Akira S, Takeda K. Toll-like receptor signalling[J]. Nat Rev Immunol,2004,4(7):499-511.
    [35]Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses[J]. Nat Immunol,2004,5 (10):987-995.
    [36]Greenberg S, Grinstein S. Phagocytosis and innate immunity[J]. Curr Opin Immunol,2002,14(1): 136-145.
    [37]Blander J M, Medzhitov R. Regulation of phagosome maturation by signals from toll-like receptors. Science,2004,14 (5673):1014-18.
    [38]Yates R M, Russell D G. Phagosome maturation proceeds independently of stimulation of toll-like receptors 2 and 4[J]. Immunity,2005,23(4):409-417.
    [39]Edwards A D, Manickasingham S P, Sporri R, et al. Microbial recognition via Toll-like receptor-dependent and -independent pathways determines the cytokine response of murine dendritic cell subsets to CD40 triggering[J]. J Immunol,2002,169(7):3652-3660.
    [40]Yarovinsky F, Zhang D, Andersen J F, et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein [J]. Science,2005,308 (5728):1626-1629.
    [41]Uematsu S, Akira S. Toll-like receptors and type I interferons[J]. J Biol Chem.2007,282: 15319-15323.
    [42]Diehl L, den Boer A T, Schoenberger S P, et al. CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy[J]. Nat Med,1999,5(7):774-779.
    [43]Ahonen C L, Doxsee C L, McGurran S M, et al. Combined TLR and CD40 triggering induces potent CD8+T cell expansion withvariable dependence on type I IFN[J]. J Exp Med,2004,15(6): 775-784.
    [44]Houde M, Bertholet S, Gagnon E, et al. Phagosomes are competent organelles for antigen cross-presentation[J]. Nature,2003,425(6956):402-406.
    [45]Datta S K, Redecke V, Prilliman K R, et al. A subset of Toll-lik e receptor ligands induces cross-presentation by bone marrow-derived dendritic cells[J]. J Immunol,2003,170(8): 4102-4110.
    [46]Kovacsovics-Bankowski M, Rock K L. A phagosome-to-cytosol pathway for exogenous antigens presented on MHCclass I molecules[J]. Science,1995,267(5195):243-246.
    [47]Shen Z, Reznikoff G, Dranoff G, et al. Cloned dendritic cells can present exogenous antigens on both MHC class Ⅰ and class Ⅱ molecules[J]. J Immunol,1997,158(6):2723-2730.
    [48]Men Y, Tamber H, Audran R, et al. Induction of a cytotoxic T lymphocyte response by immunization with a malaria specific CTL peptide entrapped in biodegradable polymer microspheres[J]. Vaccine,1997,15(12-13):1405-1412.
    [49]Peter K, Men Y, Pantaleo G, et al. Induction of a cytotoxic T-cell response to HIV-1 proteins with short synthetic peptides and human compatible adjuvants[J]. Vaccine,2001,19(30):4121-4129.
    [50]Gelman A E, Zhang J, Choi Y, et al. Toll-like receptor ligands directly promote activated CD4+T cell survival[J]. J Immunol,2004,172(10):6065-6073.
    [51]Hervas-Stubbs S, Olivier A, Boisgerault F, Thieblemont N, Leclerc C. TLR3 ligand stimulates fully functional memory CD8+ T cells in the absence of CD4+ T-cell help[J]. Blood,2007, 109(12):5318-5326.
    [52]Wille-Reece U, Flynn B J, Lore K, et al. Toll-like receptor agonists influence the magnitude and quality of memory T cell responses after prime-boost immunization in nonhuman primates[J]. J Exp Med,2006,203(5):1249-1258.
    [53]Harrison C J, Miller R L, Bernstein D I. Posttherapy suppression of genital herpes simplex virus (HSV) recurrences and enhancement of HSV-specific T-cell memory by imiquimod in guinea pigs[J]. Antimicrob Agents Chemother,1994,38(9):2059-2064.
    [54]Chen M, Griffith B P, Lucia H L, et al. Efficacy of S26308 against guinea pig cytomegalovirus infection[J]. Antimicrob Agents Chemother,1988,32(5):678-83.
    [55]Stokes J R, Sorkness R L, Kaplan M R, et al. Attenuation of virus-induced airway dysfunction in rats treated with imiquimod[J]. Eur Respir J,1998,11(February(2)):324-329.
    [56]Cluff C W, Baldridge J R, Stover A G, et al. Synthetic toll-like receptor 4 agonists stimulate innate resistance to infectious challenge[J]. Infect Immun,2005,73(5):3044-3052.
    [57]Lau Y F, Tang L H, Ooi E E. A TLR3 ligand that exhibits potent inhibition of influenza virus replication and has strong adjuvant activity has the potential for dual applications in an influenza pandemic[J]. Vaccine,2009,27:1354-1264.
    [58]Franchi L, Park J H, Shaw M H, et al. Intracellular NOD-like receptors in innate immunity, infection and disease[J]. Cell. Microbiol,2008,10:1-8.
    [59]Franchi L, Nunez G.The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-lb secretion but dispensable for adjuvant activity[J]. Eur J Immunol,2008,38:2085-2089.
    [60]金伯泉.NLR:固有免疫模式识别受体中的一个重要家族[J].现代免疫学,2006,26(3):177-182.
    [61]Kummer J A. Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response[J]. J Histochem Cytochem,2007,55:443-452.
    [62]Kanneganti T D. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3[J]. Nature,2006,440:233-236.
    [63]Gurcel L, Abrami L, Girardin S, et al. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival[J]. Cell,2006,126:1135-1145.
    [64]Mariathasan S. Cryopyrin activates the inflammasome in response to toxins and ATP[J]. Nature, 2006,440:228-232.
    [65]Dementoa S L, Eisenbarth S C, Foellmer HG, et al. Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy[J]. Vaccine,2009,27:3013-3021.
    [66]Eisenbarth S C, Colegio O R, O'Connor W, et al. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants[J]. Nature,2008,453:1122-1126.
    [67]Sharp F A, Ruane D, Claass B, et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. PNAS,2009,106:870-875.
    [68]Lau Y F, Tang L H, Ooi E E. A TLR3 ligand that exhibits potent inhibition of influenza virus replication and has strong adjuvant activity has the potential for dual applications in an influenza pandemic[J]. Vaccine,2009,27(9):1354-1364.
    [69]Klinman D M, Y1 A K, Beaucage S L, et al. CpG motifs present in bacterial DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon-y[J]. Proc. Natl Acad Sci USA, 1996,23:2879-2883.
    [70]Nesburn A B, Ramos T V, Zhu X, et al. Local and systemic B cell and Thl responses induced following ocular mucosal delivery of multiple epitopes of herpes simplex virus type 1 glycoprotein D together with cytosine-phosphate-guanine adjuvant[J]. Vaccine,2005,23(7): 873-883.
    [71]石艳春,杨贵贞CpG ODN对rHBsAg免疫小鼠Thl/Th2型免疫应答的影响[J].中国免疫学杂志,2005,21(5):329-335.
    [72]Wang X, Bao M, Wan M, et al. A CpG oligodeoxynucleotide acts as a potent adjuvant for inactivated rabies virus vaccine[J]. Vaccine,2008,26(15):1893-1901.
    [73]Klinman D M, Xie H, Little S F, et al. CpG oligonucleotides improve the protective immune response induced by the anthrax vaccination of rhesus macaques[J]. Vaccine,2004,22: 2881-2886.
    [74]Sanchez-Campillo M, Chicano A, Torio A. Implication of CpG-ODN and reactive oxygen species in the inhibition of intracellular growth of Salmonella typhimurium in hepatocytes[J]. Microbes and Infection,2004,6:813-820.
    [75]Zimmermann S, Dalpke A, Heeg K.CpG oligonucleotides as adjuvant in therapeutic vaccines against parasitic infectionsv. International Journal of Medical Microbiology,2008,298:39-44.
    [76]Harris T H, Mansfield J M, Paulnock D M. CpG Oligodeoxynucleotide Treatment Enhances Innate Resistance and Acquired Immunity to African Trypanosomes[J]. Infection and Immunity, 2007,75(5):2366-2373.
    [77]Walker P S, Scharton-Kersten T, Krieg A M, et al. Immunostimulatory oligodeoxynucleotides promote protective immunity and provide systemic therapy for leishmaniasis via IL-12-and IFN-gamma-dependent mechanisms[J]. Proc Natl Acad Sci USA,1999,96:6970-6975.
    [78]Zimmermann S, Egeter O, Hausmann S, et al. CpG oligodeoxynucleotides trigger protective and curative Thl responses in lethal murine leishmaniasis. J Immunol,1998,160:3627-30.
    [79]Mendez S, Tabbara K, Belkaid Y, et al. Coinjection with CpG-containing immunostimulatory oligodeoxynucleotides reduces the pathogenicity of a live vaccine against cutaneous Leishmaniasis but maintains its potency and durability [J]. Infect Immun,2003,71:5121-5129.
    [80]Zimmermann S, Hausmann S, Lipford GB, et al. Prevention of lethal murine toxoplasmosis by CpG oligonucleotides in susceptible mice[J]. Proc Int Cong Immunol,1998,1407-1410.
    [81]Parroche P, Lauw F N, Goutagny N, et al, Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9[J]. Proc Natl Acad Sci USA,2007,104:1919-1924.
    [82]Dempsey P W, Allison M E, Akkaraju, et al. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity[J]. Science,1996,271:348-350.
    [83]Ross T M, Xu Y, Bright R A, et al. C3d enhancement of antibodies to hemagglutinin accelerates protection against influenza virus challenge[J]. Nat Immunol,2000,1:127-131.
    [84]Green T D, Newton B R, Rota P A, et al. C3d enhancement of neutralizing antibodies to measles hemagglutinin[J]. Vaccine,2001,20:242-248.
    [85]Green T D, Montefiori D C, Ross T M. Enhancemant of antibodies to the human immunodeficiency virus type 1 envelope by using the molecular adjuvant C3d[J]. J Virol,2003, 77(3):2046-2055.
    [86]王立新,熊思东.新型分子佐剂C3d[J].《国外医学》预防、诊断、治疗用生物制品分册.2001,24(3):110-113.
    [87]刘丹.热休克蛋白在天然免疫和适应性免疫中的作用[J].国外医学免疫学分册,2004,27(3):121-124.
    [88]Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity[J]. Nat Rev Immunol, 2002,2(3):185-194.
    [89]李浪,颜兰香.Toll样受体及内源性配体HSP的研究进展[J].国外医学·生理、病理科学与临床分册,2005,25(1):8-10.
    [90]Vabulas R M, Ahmad-Nejad P, Ghose S, et al. HSP70 as endogenous stimulus of the Toll/interleukin-1 recep tor signal pathway[J]. J Biol Chem,2002,277(17):15107-15112.
    [91]Pack C D, Kumaraguru U, Suvas S, et al. Heat-shock protein 70 acts as an effective adjuvant in neonatal mice and confers protection against challenge with herpes simplex virus[J]. Vaccine, 2005,23(27):3526-3534.
    [92]Srivastava P K, Amato R J. Heat-shock proteins:the Swiss Army Knife vaccines against cancers and infectious agents[J]. Vaccine,2001,19(17-19):2590-2597.
    [93]Bradney C P, Staats H F, et al. Cytokines as adjuvants for the induction of anti-human immunodeficiency virus peptide immunoglobulin G (IgG) and IgA antibodies in serum and mucosal secretions after nasal immunization[J], J Virol,2002,76(2):517-524.
    [94]Staats H F, Ennis F A, et al. IL-1 is an effective adjuvant for mucosal and systemic immune responses when coadministered with protein immunigens[J]. J Immunol,1999,162 (10):6141-47.
    [95]Yang Y, Gao R, et al. Porcine interleukin-2 gene encapsulated in chitosan nanoparticles enhances immune response of mice to piglet paratyphoid vaccine[J]. Comp Immunol Microbiol Infect Dis, 2007,30(1):19-32.
    [96]Xiaowen Z, Qinghua Y, et al. Co-administration of inactivated avian influenza virus with CpG or rIL-2 strongly enhances the local immune response after intranasal immunization in chicken[J]. Vaccine,2009,27(41):5628-5632.
    [97]Barouch D H, Steenbeke T D, et al. Augmentation and suppression of immune responses to anHIV21 DNA vaccine by plasmid cytokine/ Ig administ ration[J]. J Immunol,1998,161: 1875-1882.
    [98]Chow Y H, Chi W K, et al. Improvement of hepatitis B virus DNA vaccines by plasmids coexpressing hepatitis B surface antigen and interleukin22[J]. J Virol,1997,71:169-178.
    [99]李琳,王永祥GM-CSF表达质粒对pcDNA3/MDC-VP1 DNA疫苗的增强作用[J].陕西医学杂志,2009,38(7):783-786.
    [100]Czerkinsky C, Anjuere F, McGhee J R,et al. Mucosal immunity and tolerance:relevance to vaccine development[J]. Immunol Rev,1999,170:197-222.
    [101]Isaka M, Yasuda Y, Mizokami M, et al. Mucosal immunization against hepatitis B virus by intranasal co-administration of recombinant hepatitis B surface antigen and recombinant cholera toxin B subunit as an adjuvant[J]. Vaccine,2001,19(11-12):1460-1466.
    [102]Sun J B, Xiao B G, Lindblad M, et al. Oral administration of cholera toxin B subunit conjugated to myelin basic protein protects against experimental autoimmune encephalomyelitis by inducing transforming growth factor-beta-secreting cells and suppressing chemokine expression[J]. Int Immunol,2000,12:1449-1457.
    [103]Zhang X F, Zhang X W, Q Y. Effect of compound mucosal immune adjuvant on mucosal and systemic immune responses in chicken orally vaccinated with attenuated Newcastle-disease vaccine[J]. Vaccine,2007,25:3254-3262.
    [104]Zanvit P, Havl'1ˇ ckov'M, T'aˇcner J. Immune response after adjuvant mucosal immunization of mice with inactivated influenza virus[J]. Immunology Letters,2005,97:251-259.
    [105]Allison A C. The mode of action of immunological adjuvants[J]. Dev Biol Stand,1998,92(1): 3-11.
    [106]Barr I G, Sjolander A, Cox J C. ISCOMS and other saponin basedadjuvants[J]. Advanced Drug Delivery Reviews,1998,32(3):247-271.
    [107]Dementoa S L, Eisenbarth S C, Foellmer H G, et al. Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy[J]. Vaccine,2009,27:3013-3021.
    [108]刘学丽.两种免疫刺激齐(?)CpG ODN与Poly (I:C)联合应用佐剂效果的研究[J].硕士论文,2007。
    [109]Schultze V, D'Agosto V, Wack A, et al. Safety of MF59 adjuvant[J]. Vaccine,2008,26(26): 3209-3222.
    [110]Giuliani M M, Del G G, Giannelli V, et al. Mucosal adjuvanticity and immunogenicity of LTR72, a novel mutant of Escherichia coli heat-labile enterotoxin with partial knockout of ADP-rybosyltransferase activity[J]. J Exp Med,1998,187:1123-1132.
    [111]Kende M, Giudice G D, Rivera N, et al. Enhancement of intranasal vaccination in mice with deglycosylated chain A ricin by LTR72, a novel mucosal adjuvant[J]. Vaccine,2006,24: 2213-2221.
    [112]Hase C C, Thai L S, Boesman-Finkelstein M, et al. Construction and characterization of recombinant Vibrio cholerae strains producing inactive cholera toxin analogs[J]. Infect Immun, 1994,62(8):3051-3057.
    [113]Lomada D, Gambhira R, Nehete P N, et al. A two-codon mutant of cholera toxin lacking ADP-ribosylating activity functions as an effective adjuvant for eliciting mucosal and systemic cellular immune responses to peptide antigens[J]. Vaccine,2004,23:555-565.
    [1]Calnek B W, Barnes H J, Beard C W, et al. Diseases of poultry, 10th.Iowa State University Press[J]. Ames,1997,583-605.
    [2]于康震,崔尚金,付朝阳.禽流感与养禽业发展和人类健康[J].中国预防兽医学报,2000,4:312-315.
    [3]殷震,刘景华.动物病毒学[M].第2版,北京:科学出版社,1997,708-709.
    [4]Suarz D.L.Evolutin of avain influenza virus [J]. Vet Microl,2000,74:15-27.
    [5]Qiao C, Tian G, Jiang Y, et al. Vaccines developed for H5 highly pathogenic avian influenza in China. Ann NY Acad Sci,2006,1081:182-92.
    [6]Horimoto T, Takada A, Fujii K, et al. The development and characterization of H5 influenza virus vaccines derived from a 2003 human isolate. Vaccine,2006,24(17):3669-3676.
    [7]Horimoto T, Yoshihiro K. Strategies for developing vaccines against H5N1 influenza A viruses. TRENDS Mol Med,2006,12(11):506-514.
    [8]乔传玲.H5亚型AIV不同毒株及抗原含量对灭活疫苗效果的影响.预防兽医学进展,2001,3(1):57-59.
    [9]包红梅,陈国彬,陈化兰,等.禽流感的诊断技术与防制措施[J].中国兽医科技,2003,3(4):75.
    [10]L.D.Sims.亚洲H5N1型禽流感爆发的回顾与反思[J].中国家禽,2007,29(11):41-46.
    [11]谭铁兵,王勇,何建强,等.不同饲养条件下家禽H5亚型禽流感灭活油乳剂疫苗免疫效果的监测[J].养禽与禽病防治,2007(9):8-9.
    [1]中华人民共和国兽药典(2005版)附录9:注射用白油(轻质矿物油质量标准).
    [2]中华人民共和国药典(2005版)三部.
    [3]U.S. Pharmacopeia/National Formulary(美国药典/国家处方)USP 32-NF 27,2008.
    [4]European pharmacopoeia 6th edition(欧洲药典EP6).
    [5]British Pharmacopoeia英国药典,2009,(BP2009).
    [6]李慧.我国禽用疫苗质量标准与质量现状[J].中国家禽,2003,25(1).
    [7]马书杰,马丙水,杨建湘.欧盟环保指令对轮胎橡胶油产品的影响及对策研究[J].润滑油,2009,24(02).
    [8]食品级白油标准GB4853-2008.
    [1]Ribinson Andrew, Farrar Grham H, Wiblin Christopher N. Vaccine Protocols[J], To To Wa, New Jersey, Human Press,1996,17-33.
    [2]海洋,赵玉军,张立鹏.禽流感疫苗的研究进展[J].上海畜牧兽医通讯,2007(6):13-14.
    [3]徐之勇,仲崇岳,李军民,等.禽流感疫苗的研究概况[J].家禽科学,2007(11):30-42.
    [4]J. Aucouturier, L. Dupuis, V. Ganne.Adjuvants designed for veterinary and human vaccines.Vaccine[J].2001,19:2666-2672.
    [4]Virgil E J, C. Schijns. Mechanisms of vaccine adjuvant activity:initiation and regulation of immune responses by vaccine adjuvants[J]. Vaccine,2003,21:829-831.
    [6]Manmohan S, Derek T. O'Hagan. Recent advances in veterinary vaccine adjuvants. International Journal for Parasitology[J].2003,33:469-478.
    [7]李忠明.当代新疫苗[M].北京,高等教育出版社,2001,79-103.
    [8]胡北侠,黄艳艳,任素芳,等.兽医常用免疫佐剂的研究概况与发展趋势[J].中国畜牧兽医,2005,32(3):4-6.
    [9]王明俊.兽医生物制品学[M].北京,中国农业出版社,1997,145-146.
    [1]卡尔尼克Bw主编(高福等译).禽病学[M].第十版,北京,北京农业出版社,1999,465-452.
    [2]Qiao C, Tian G, Jiang Y, et al. Vaccines developed for H5 highly pathogenic avian influenza in China[J]. Ann NY Acad Sci,2006,1081:182-192.
    [3]Lee C W, Senne D A, Suarez D L. Generation of reassortant influenza vaccines by reverse genetics that allows utilization of a DIVA (Differentiating Infected from Vaccinated Animals) strategy for the control of avian influenza[J]. Vaccine,2004,22(23-24):3175-3181.
    [4]Shi H, Liu X F, Zhang X, et al. Generation of an attenuated H5N1 avian influenza virus vaccine with all eight genes from avian viruses[J]. Vaccine,2007,25(42):7379-7384.
    [5]Webster R G, Kawaoka Y, Taylor J, et al. Efficacy of nucleoprotein and haemagglutinin antigens expressed in fowlpox virus as vaccine for influenza in chickens[J]. Vaccine,1991,9(5):303-308.
    [6]Johansson B E, Bucher D J, Kilbourne E D. Purified influenza virus hemagglutinin and neuraminidase are equivalent in stimulation of antibody response but induce contrasting types of innunity to infection[J]. J Virol,1989,63:1239-1246.
    [7]Webster R G, Reay P A, Laver W G. Protection against lethal influenza with neuraminidase [J]. Virology,1988,164(1):230-237.
    [1]于康震,崔尚金,付朝阳,等.禽流感与养禽业发展和人类健康[J].中国预防兽医学报,2000,4:312-315。
    [2]甘孟侯主编,禽流感[M],第2版,北京,中国农业出版社,2002。
    [3]Taisuke Horimoto, Yoshihiro Kawaoka. Pandemic Threat Posed by Avain Influenza A Virus[J]. Clinical Microbiology Reviews,2001(14):129-149.
    [4]Calnek B W, Barnes H J, Beard C W, et al. Diseases of poultry,10th. Iowa State University Press, Ames.1997,583-605.
    [5]Villareal C L, Flores A O. The Mexican avain influenza(H5N2)outbreak. In:Proc.4th. International Symposium on Avain Influenza.U.S.Animal Health Association, Richmond, VA 1998,18-22.
    [6]Naeem K. The avain influenza (H7N3) outbreak in south central Asia. In:Proc.4th. International Symposium on Avain Influenza. U.S.Animal Health Association, Richmond, VA 1998,31-22.
    [7]于康震,中国的禽流感,第15届世界禽病大会论文集,2007,9:134-137.
    [8]Swayne D E, Halvorson D A. Influenza, n:Saif Y M, editor-in-chief. Disease of pourtry (11th edition). Ames:Iowa State University press 2003:135-160.
    [9]Chen H, Smith G J D, Li K S, et al. Establishment of multiple sublineages of H5N1 influenza virus in Asia:implications for pandemic control[J]. PNAS,2006,103(8):2845-2850.
    [10]Li K S, Guan Y, Wang J, et al. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia[J]. Nature,2004,430:209-212.
    [11]Smith G J D, Fan X H, Wang J, et al. Emergence and predominance of an H5N1 influenza variant in China[J]. PNAS,2006,103(45):16936-16941.
    [1]徐怀英,秦卓明,何叶峰,等.不同型号白油ND油乳剂灭活疫苗免疫比较实验[J].山东家禽,2002,10:8-9.
    [2]王明俊,等.矿物油佐剂疫苗研究Ⅱ矿物油佐剂疫苗的安全与效力初步观察[J]. China Academic Journal Electronic Publishing,1994-2008.
    [3]中国兽药典委员会.中华人民共和国兽药典(2005版)(三部)
    [4]中华人民共和国农业部.兽用生物制品质量标准汇编(2006-2008)
    [5]Avi-Hai H, Yolanta F, Herve B. Gamma interferon and mono-phosphoryl lipid A-Trehalose dicorynomycolate are efficient adjuvants for Mycobacterium tuberculosis multivalent acellular vaccine[J]. Inf and Imm,2005,73 (1):2502257.
    [6]Dittmann S. Vaccine safety:risk communication a global per-spectives[J]. Vaccine,2001,19:2446.
    [7]张玲华,郭勇,田兴山,等.畜禽疫苗佐剂研究进展[J].生物技术通讯,2005,16(2):2312233.
    [8]Gluck R, Mischler R, Durrer P, et al. Safety and immunogenicity of int ranasally administered inactivated trivalent virosome formulated influenza vaccine containing Escherichia coli heat labile toxin as a mucosal adjuvant[J]. J Infect Dis,2000,181:112921132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700