用户名: 密码: 验证码:
胰岛素样生长因子诱导骨髓间充质干细胞向少突胶质细胞定向分化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1.体外探讨分离与培养大鼠骨髓间充质干细胞(mesenchymal stem cells, MSCs)的方法,并观察其体外的多向分化与增殖能力以及其生物学特性,还对细胞表面干细胞相关标志物进行鉴定,为骨髓间充质干细胞的进一步研究奠定基础。
     2.探讨胰岛素样生长因子和多种细胞因子联合诱导骨髓间充质干细胞向少突胶质细胞分化的可行性,实验条件。并用激光共聚焦显微镜观察分化细胞的阳性率,及形态学变化寻找最佳的诱导条件,为获得大量少突胶质细胞移植修复脊髓损伤奠定基础。
     3.在实验二的基础上,观察骨髓间充质干细胞的增殖分化过程,判断IGF-1在少突胶质细胞分化中的那个环节起作用,寻找胰岛素样生长因子和多种细胞因子联合诱导骨髓间充质干细胞向少突胶质细胞分化的作用机制,并给予一定的干预措施,进一步予以证实。
     方法:
     1.取原代细胞后,用贴壁筛选法和胰蛋白酶消化法分离纯化,倒置相差显微镜观察细胞形态及生长特征,研究其增殖过程,绘制出生长曲线,采用免疫组化法对细胞表面干细胞标志CD44进行鉴定,对第4代细胞分别用成骨,成软骨,成脂肪和成神经诱导剂培养,行碱性磷酸酶染色,Van kossa银染色法,Ⅱ型胶原免疫组化染色,油红O染色,NeuN抗体免疫组化染色以及形态学观察,证实其干细胞的多向分化潜能。
     2.选取生长良好的第4代骨髓间充质干细胞,胰酶消化后,离心加入诱导液,转移至含有盖玻片的培养皿中,细胞数为1×10~4个/cm~2,放入体积分数为0.05的CO_2孵箱中培养48h后,诱导组细胞更换培养液,用含不同浓度IGF-1的分化培养液培养3d后,观察骨髓间充质干细胞向少突胶质细胞诱导分化过程中的形态学变化,收取细胞进行特异性标志物大鼠磷脂碱性蛋白(MBP)、半乳糖脑苷脂(Glac)、半定量RT-PCR(semi-quatitative reverse transctiption-polymerase chain reaction)检测,Western-blot测定大鼠磷脂碱性蛋白(MBP)含量,免疫细胞化学染色后激光共聚焦显微镜检测骨髓间充质干细胞向少突胶质细胞定向分化的阳性率。并筛选出最佳IGF-1(Insulin growthfactor-1)浓度剂量的分化培养液。
     3.根据BMP2(bone morphogenetic proteins)在少突胶质细胞的形成中起抑制作用,少突胶质细胞的成熟需要BMP信号的抑制剂,为了获得IGF—1诱导少突胶质细胞分化的分子机制,我们推断IGF—1的影响是通过抑制BMP2信号通路。我将分化培养液中加入不同剂量的BMP2培养3天,收取细胞进行特异性标志物大鼠磷脂碱性蛋白(MBP)、半乳糖脑苷脂(Glac)、胶质纤维酸性蛋白(GFAP)、微管相关蛋白—2 (MAP-2)半定量RT-PCR检测,并进行统计学处理,免疫细胞化学染色后激光共聚焦显微镜检测骨髓间充质干细胞向少突胶质细胞定向分化的阳性细胞百分比。
     结果:
     1.所分离培养的细胞形态呈长梭形或多边形,细胞生长曲线呈S形,群体倍增时间约为31小时,经成骨诱导剂诱导培养2周后,碱性磷酸酶染色成阳性,Van kossa银染色法阳性表明该细胞可向成骨方向分化,经成软骨诱导剂诱导培养2周后,Ⅱ型胶原免疫组化染色阳性,表明该细胞可向成软骨方向分化,而分离培养的细胞经成脂肪诱导剂诱导培养2周后,油红O染色可见显微镜下大量细胞内充满红色脂肪滴,表明该细胞可向脂肪细胞方向分化,所培养的细胞经化学性神经诱导剂诱导培养8小时后,NeuN抗体免疫组化染色阳性,细胞呈神经元样形态表现,表明该细胞可向神经细胞方向分化。MSCs抗原CD34免疫细胞化学染色呈阴性反应,CD44免疫细胞化学染色见镜下有棕黄色颗粒沉积。以上结果提示,用贴壁筛选法所分离培养的细胞为具有多向分化潜能的大鼠骨髓间充质干细胞。
     2.①骨髓间充质干细胞向少突胶质细胞诱导分化过程中的形态学变化:经诱导分化后,大部分骨髓间充质干细胞表现出少突胶质细胞的形态学特征,胞质向细胞核回缩,细胞突起向外延伸,折光性增强,随时间延长多个细胞突起相互连接形成典型的网状结构。②少突胶质细胞特异性标志物mRNA的表达:细胞诱导分化后可检测到磷脂碱性蛋白mRNA、半乳糖脑苷脂mRNA的特异性条带。③少突胶质细胞阳性率:在诱导分化条件下,半乳糖脑苷脂阳性率为65%,磷脂碱性蛋白阳性率为45%,微管相关蛋白2阳性率为10%。比较含不同IGF-1浓度的分化培养液,发现含500μg/L IGF-1浓度的培养液少突胶质细胞标志物阳性率最高。④Western-blot检测磷脂碱性蛋白表达水平明显增高,以含500μg/L IGF-1浓度的培养液分化组最为明显。
     3.在分化培养液中加入不同浓度的BMP2,发现向少突胶质细胞的分化明显受到抑制,仅部分骨髓间充质干细胞表现出少突胶质细胞的形态学特征,与BMP2的浓度成依赖关系,浓度越高(5μg/L)少突胶质细胞标志物(Glac,MBP)的阳性细胞越少,收取细胞进行特异性标志物大鼠磷脂碱性蛋白(MBP)、半乳糖脑苷脂(Glac)半定量RT-PCR检测,未检查出特异性条带。在低浓度(0.05μg/L—0.5μg/L)的情况下,可以观察到部份细胞向少突胶质细胞分化,这个结果与BMPs抑制少突胶质分化的特性相一致。
     结论:
     1.通过取大鼠骨髓组织培养,用贴壁筛选法和胰蛋白酶消化法分离纯化,可以分离出稳定的含CD44抗原的有多向分化潜能的骨髓间充质干细胞,该细胞不断可以向中胚层成细胞分化,而且可以向外胚层神经细胞分化,取材方便,容易获得是体外研究干细胞定向分化的理想细胞。
     2.合适的培养基和一定浓度的IGF-1有利于骨髓间充质干细胞向少突胶质细胞定向分化,该结果通过探讨诱导骨髓间充质干细胞向少突胶质细胞分化的可行性,实验条件,为以后的间充质干细胞向少突胶质细胞的定向分化移植治疗脊髓损伤打下基础。
     3.胰岛素样生长因子诱导骨髓间充质干细胞向少突胶质细胞定向分化,其主要作用机理是通过抑制少突胶质细胞前体在脊髓中特异化的抑制性因子BMPs的信号通道,促进少突胶质细胞的产生。
Objective: 1.Investigate the method of isolation and cultivation of rat bone marrowmesenchymal stem cells (mesenchymal stem cells, MSCs) in vitro, and observe the ability ofproliferation and differentiation in vitro as well as their biological characteristics, but alsostem cell-related markers on the cell surface were identified for laying the foundation forfurther study on bone marrow-derived mesenchymal stem cells.
     2.Investigate the feasibility of experimental conditions of bone marrow-derived mesenchymalstem cells induced by the insulin-like growth factor and cytokines differentiated tooligodendrocyte . Observe the positive rate of differentiated cells by laser scanning confocalmicroscope and select the optimal conditions for inducing cells.
     3.On the basis of two experiments, to observe the bone marrow-derived mesenchymal stemcells proliferation and differentiation process, to determine the role of IGF-1 inoligodendrocyte differentiation and give a certain degree of intervention measures to confirmfurther.
     Methods: 1 From the original cells, adherent screening method and trypsin digestion wereused for isolation and purification of mesenchymal stem cells .Inverted phase contrastmicroscope were used to observe cell morphology and growth characteristics in the process ofits proliferation, MTT method to map out the growth curve, immunohistochemical methodwere used to identify cell surface markers CD44 of stem cells. the fourth passage cells were respectively cultured in osteogenic、adipogenic and neuro—differentiation induction medium, the alkaline Phosphatase staining, oil red O staining and morphological observation, multi-differentiation potential of stem cells were confirmed.
     2.At passage 4, BMSCs were incubated in serum-free medium, supplemented with N2, 20 ng/mL basic fibroblast growth factor, 20 ng/mL epidermal growth factor for 48 hours, and incubated in medium containing 500 ng/mL insulin-like growth factor 1 and N2 for 3 days. Morphological changes were observed using an phase contrast microscope. Semiquantitative RT-PCR was utilized to detect specific marker mRNA expression of oligodendrocytes. Western-blot Determination was utilized to detect basic protein in rat phospholipid (MBP).Using neuron marker anti-microtubule-associated protein, astrocyte marker anti-glial fibrillary acidic protein, oligodendrocyte marker anti-galactocerebroside, anti-myelin basic protein antibody, immunocytochemical staining was performed to detect the positive rate of the differentiation of BMSCs into oligodendrocytes. Select the best IGF-1 (Insulin growth factor-1) concentration in the culture medium divided doses.
     3.in accordance with BMP2 (bone morphogenetic proteins) inhibiting oligodendrocyte formation , in order to obtain the molecular mechanisms of IGF-1 inducing oligodendrocyte differentiation, we infer the effects of IGF-1 are the inhibition of BMP signaling pathway. To determine whether BMP2 inhibit MSCs differentiate to oligodendrocyte, The differentiation culture medium with different doses of BMP2 were used for 3 days and to collect cell-specific markers for rat phospholipid basic protein (MBP), galactose cerebroside (Glac) and take statistical treatment ,semi-quantitative RT-PCR detection, immunocytochemical staining、laser scanning confocal microscope .Then to detect the percentage of positive cells of bone marrow-derived mesenchymal stem cells to oligodendrocyte differentiation.
     Results: After isolation and culture , cells arranged spindle or polygonal.cells were S-shaped growth curve, population doubling time were 20 hours of osteoblasts. induced by the agent 14 days after induction, alkaline Phosphatase staining is positive results , suggesting that the cells differentiated into osteogenic direction, the isolation and culture of the cells were induced into a fat-induced cultivate 14, and the oil red O staining shows that a large number of red cells with lipid droplets, suggesting that the cells can divide to the direction of fat cells, the cultured cells into neurons induced by the agent 6 hours after induction, cells were typical neuron-like form of performance, suggesting that the cells can divide to the direction of nerve cells. CD44 antigen MSCs immunocytochemical staining showed positive results, the above results, the isolated and cultured the cells comply with the requirements of experiments with multi-differentiation potential of bone marrow-derived mesenchymal stem cells.
     2①bone marrow-derived mesenchymal stem cells to the oligodendrocyte-induced morphological differentiation in the process of change: After induction of differentiation, the majority of bone marrow-derived mesenchymal stem cells showed oligodendrocyte morphological characteristics of the cytoplasm to the nucleus to shrinkage, cell processes extend outward, the refractive index increased, with the number of cell processes extend to form a typical interconnected network structure.②oligodendrocyte-specific expression of mRNA markers: cells can be detected after differentiation phospholipid basic protein mRNA, cerebroside galactose specific mRNA bands.③oligodendrocyte positive rate: conditions in inducing differentiation, galactose cerebroside positive rate was 65%, phospholipid basic protein-positive rate of 45%, microtubule-associated protein 2-positive rate was 10%. Comparison with different concentrations of IGF-1 in differentiation medium,we found that culture medium contain 500μg / L IGF-1 concentration was the highest positive rate in oligodendrocyte markers.④Western-blot detection of alkaline phospholipid significantly increased the level of protein expression in the culture medium o contain 500μg / L IGF-1 concentration.
     3 the differentiation culture medium by adding different concentrations of BMP2, was found that oligodendrocyte differentiation were inhibited, only part of bone marrow-derived mesenchymal stem cells showed oligodendrocyte morphological characteristics, and as dependent on the concentration of BMP2. the relationship between the higher concentration (5μg/L-50μg/L), the less of oligodendrocyte marker (Glac, MBP)-positive cells .charged cell-specific markers for rat phospholipid basic protein (MBP), semi - galactose cerebroside (Glac) semi-quantitative RT-PCR detection,we did not detect specific bands. At low concentrations (0.05μg/L-0.5μg/L) circumstances, it can be observed in some cells to oligodendrocyte differentiation, the results consistent with BMPs inhibitting oligodendrocyte differentiation characteristics.
     Conclusions: take tissue culture of rat bone marrow, adherent with screening, trypsin digestion and purification, MSCs can be isolated with a stable number of CD44 antigens to thedifferentiation potential of bone marrow-derived mesenchymal stem cells, the cells continuedto mesodermal cell differentiation into, but also to the ectodermal neural cell differentiation, itwas an ideal cell to study directed differentiation of stem cells in vitro.
     2.The combination of epidermal growth factor, basic fibroblast growth factor and insulin-likegrowth factor can effectively promote the directional differentiation of BMSCs intooligodendrocytes. We grasp the experiment conditions of bone marrow-derived mesenchymalstem cells to oligodendrocyte differentiation and lay the foundation for the treatment ofspinal cord injury by subsequent mesenchymal stem cells to the oligodendrocytedifferentiation transplantation.
     3.the main mechanism of insulin-like growth factor-induced bone marrow-derivedmesenchymal stem cells to oligodendrocyte differentiation, are to inhibit the signal path ofspecific BMPs inhibitory factor of oligodendrocyte precursors in the spinal cord .
引文
1. Myckatyn TM , Mackinnon SE, McDonald JW . Stem cell transplantation and other novel techniques for promoting recovery fro m spinal cord injury[J]. Transplant Immunol, 2004, 12(3-4): 343
    2. NagyRD, TsaiBM , WangM , etal. Stem cell transplantation as a therapeutic approach to organ failure[J]. J Surg Res, 2005, 129(1): 152
    3. Reynolds BA. Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system[J]. Science, 1992, 255(5052): 1707.
    4. Eriksson PS, Perfilieva E, Bjork-Eriksson T,et al.Neurogenesis in the adult human hippocampus[J]. NatMed, 1998, 4(11): 1313.
    5. Carlo-Stella C , Gianni MA . Biology and clinical applications of marrow mesenchymal stem cells[J]. Pathol Biol(Paris), 2005, 53(3): 162.
    6. Ryden M , Dicker A, Gotherstmom C. etal. Functional characterization of human mesenchymal stem cell ?derived adipocytes [J] . Biochem Biophys Res Commun. 2003. 31 1(2): 391-397.
    7. Direkze NC, Forbes SJ, Brittan M, etal. Multiple organ engraftment by bone marrow derived myofibroblasts and fibroblasts in bone marow transplanted mice[J]. Stem Cells. 2003. 21(5): 514.
    8. Sammons J, Ahmed N, El SheemyM, et al. The role of BMP-6, IL-6, and BMP-4 in mesenchymal stem cell-dependent bone development: effects on osteoblastic differentiation induced by parathyroid hormone and vitamin D (3)[J]. Stem Cells Dev,2004. 13(3): 273.
    9. Wang PP, Wang JH, Yan ZP, et all. Expression of hepatocyte-like phenotypes in bone marow stromal cells after HGF induction[J]. Bioehem Biophys Res Commun, 2004,320(3): 712.
    10. Hassan HT,El-Sheemy M. Adult bone-marow stem cells and their potential in medicine[J]. J R Soc Med, 2004, 97(10): 465.
    11. Luk JM ,Wang PP,Lee CK,et al. Hepatic potential of bone marrow stromal cells:development of in vitro co-culture and intra-portal transplantation models [J]. J Immunol Methods, 2005, 305(1): 39.
    12. Li H, Yu B,Zhang Y,et al. Jaggedl protein enhances the differentiation of mesenchymal stem cells into cardiomyocytes[J]. Biochem Biophys Res Commun, 2006. 341(2): 320.
    13. Mareschi K, Biasin E, PiacibelloW, et al. Isolation of human mesenchymal stem cell:bone marrow versus umbilical cord blood[J]. Haematol, 2001.86(10): 1099.
    14. Erice A, Conget P, MinguellJJ. Mesenchymal progenitor cells In human umbilical cord blood[J]. Haematol, 2000, 109(1): 235.
    15. Prockop DJ, Sekiyal, Coher DC. Isolation and characterization of rapidly self-renewing stem cells from cultures of human marrow stromal cells[J]. Cytotherapy, 2001, 3(5):393.
    16. Coher DC. Class R. DiGirolamo CM. et al. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA 2000; 97(7): 3213-8
    17. Javazon EH. Coher DC. sohwarz EJ,et al. Rat marrow stromal cells are more sensitive to plating density and expand more rapidly from single-cell-derived coonies than human marrow stromal cells. Stem Cells 2001: 19(3): 219.
    18. Dennis JE, Charbord P. Origin and differentiation of human and murine stroma[J]. Stem Cells, 2002, 20(3): 205.
    19. 19 David JA, Fred HG, Irving LW. Can stem cells cross the lineage boundaries?[J] Nature Medicine, 2001, 7(4): 393.
    20. Lu D, Mahmood A, Wang L, et al. Adult bone marrow stromal cells administered intravenously to rats after trauma tic brain injury migrate into brain and improve neurological outcome[J]. Neuroreport, 2001, 12(3): 559.
    21. Karadottir R, Attwell D.Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience.2007 Apr 14;145(4):1426.
    22. Levison SW , Rothstein RP,Romanko MJ, et al Hypoxia / ischemia depletes the rat perinatal subventricular zone of oligodendrocyte progenitors and neural stem cells Dev Neurosci2001: 23(3): 234.
    23. BelkaC, Budach W , KortmannRD. et al. Radiation induced CNS toxicity-molecular and cellular mechanisms. BrJ Cancer, 2001, 85(9): 1233-1239.
    24. Dawson MR, PolitoA, Levine JM, et al. NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS[J]. Mol Cell Neurosci, 2003, 24(2): 476-488.
    25. Deng W , Poretz RD . Oligodendroglia in developmental neurotoxicity. Neurotoxicology, 2003, 24(2): 161.
    26. Sortwell CE, Daley BF, Pitzer MR, et al. Oligodendrocyte-type2 astrocyte-derived trophic factors increase survival of developing dopamine neurons through the inhibition ofapoptotic cell death. JCompNeurol, 2000, 426(1): 143-153.
    27. DuY , Dreyfus CF Oligodendrocytes as providers of growth factors. J Neurosci Res, 2002, 68(6): 647.
    28. WilkinsA, MajedH, La eld R, etal. Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanism : a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. J Neurosci, 2003,23(12): 4967.
    29. MckerracherL, WintonMJ. Nogo on the go[J]. Neuron, 2002, 36(3): 345-348 30 Levison SW , RothsteinRP, Romanko MJ, et al. Hypoxia / ischemia depletes the rat perinatal subventricular zone of oligodendroc yte progenitors and neural stem cells. Dev Neurosci, 2001, 23(3): 234.
    30. Alberdi E, Victoria MS, Marino A, et al. Ca influx through AMP A or Kainate receptors alone is sufficient to initiate excitotoxicity in cultured oligodendrocytes. Neurobiol Dis, 2002, 9(2): 234.
    31. Casha S,Yu WR, Fehlings MG. Oligodendroglial apoptosis Occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat. Neuroscience, 2001, 103 : 203.
    32. Gomes LW , CorkillDJ, Freire MA, et al. Astrocytosis, microglia activation,oligodendrocyte degeneration, and pyknosis following acute spinal cord injury. Exp Neurol, 2004, 190(2): 456.
    33. Atkinson S, LI YQ, Wong S. Changs in oligodendrocytes and myelin gene expression after radiation in the rodent spinal cord[J]. J Radia Oncology Biol Phys, 2003, 57(4):1093.
    34. Espinosa de los Monteros A, Baba H, Zhao PM, et al. Remyelination of the adult demyelinated mouse brain by grafted oligodendrocyte progenitors and the effect of B-104 cografts. Neurochem Res, 2001, 26 : 673.
    35. Franklin, BayleySA, Blakemore WF. Transplanted CG4 cells(an oligodendrocyte progenitor cell line)survive, migrate and contribute to repair of areas of demyelination in X-irradiated arm damaged spinal cord, but not in normal spinal cord. Exp Neural, 1996,137(2): 263.
    36. Cloutier F, Siegenthaler MM, Nistor G,et al . Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm. Regen Med. 2006 Jul;1(4):469.
    37. Ohori Y, Yamamoto S, Nagao M,et al. Growth factor treatment and genetic manipulation stimulate neurogenesis and oligodendrogenesis by endogenous neural progenitors in the injured adult spinal cord. J Neurosci.2006 Nov 15;26(46):11948.
    38. Pan HC, Yang DY, Chiu YT, et al. Enhanced regeneration in injured sciatic nerve by human amniotic mesenchymal stem cell. J Clin Neurosci. 2006;13(5):570.
    39. Keilhoff G, Stang F, Goihl A,et al. Transdifferentiated mesenchymal stem cells as alternative therapy in supporting nerve regeneration and myelination. Cell Mol Neurobiol.2006;26(7-8):1235.
    40. Li H, Fu X, Ouyang Y, et al. Adult bone-marrow-derived mesenchymal stem cells contribute to wound healing of skin appendages. Cell Tissue Res. 2006;326(3):725-36.
    41. Tropel P, Platet N, Platel JC, et al. Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells. 2006;24(12):2868.
    42. Liu TM, Martina M, Hutmacher DW, et al. Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells. 2007;25(3):750.
    43. Kim KN, Oh SH, Lee KH, et al. Effect of human mesenchymal stem cell transplantation combined with growth factor infusion in the repair of injured spinal cord. Acta Neurochir Suppl.2006;99:133.
    44. Alexanian AR. Neural stem cells induce bone-marrow-derived mesenchymal stem cells to generate neural stem-like cells via juxtacnne and paracnne interactions.Experimental Cell Research. 2005; 310 (2) :383.
    45. Rivera FJ,Sebastien CD,Xiomara P,et al.Mesenchymal stem cells instruct oligodendrogenic fate decision on adult neural stem cells.Stem Cells.2006;24 (10) :2209.
    46. Woodbury D,Reynolds K,Black IB.Marrow stromal stem cells express germline ectodermal ,endodermal,and mesodermal genesprior to neurogenesis.J Neurosci Res,2002,69 (6) :908.
    47. Man Dezawa,Lzumi Takahashi,Michiyo Esaki,et al.Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells.2001, 14 (11): 1771.
    48. Karlsson C, Brantsing C, Svensson T, et al.Related Articles, Links Differentiation of human mesenchymal stem cells and articular chondrocytes: analysis of chondrogenic potential and expression pattern of differentiation-related transcription factors. J Orthop Res. 2007;25(2):152.
    49. Kim S, Honmou O, Kato K, et al. Neural differentiation potential of peripheral blood- and bone-marrow-derived precursor cells. Brain Res. 2006;1123(1):27.
    50. Bai L, Caplan A, Lennon D,et al. Human mesenchymal stem cells signals regulate neural stem cell fate. Neurochem Res. 2007;32(2):353.
    51. Buntinx M, Vanderlocht J, Hellings N, et al. Characterization of three human oligodendroglial cell lines as a model to study oligodendrocyte injury: morphology and oligodendrocyte-specific gene expression. J Neurocytol. 2003;32(l):25.
    52. Paez PM, Garcia CI, Pasquini JM. Expression of myelin basic protein in two oligodendroglial cell lines is modulated by apotransferrin through different transcription factors. J Neurosci Res. 2006;83(4):606.
    53. Kuhn J, Meissner C, Oehmichen M. Microtubule-associated protein 2 (MAP2)-a promising approach to diagnosis of forensic types of hypoxia-ischemia. Acta Neuropathol (Berl). 2005;110(6):579.
    54. Pillai R, Scintu F, Scorciapino L, et al. Human astrocytes can be induced to differentiate into cells with neuronal phenotype. Exp Cell Res. 2006 15;312(12):2336.
    55. Jo C,Kim H,Jo I,et al.Leukemia inhibitory factor blocks early differentiation of skeletal muscle cells by activating ERK.Biochim Biophys Acta,2005,1743 (3) : 187.
    56. Mekki-Dauriac S, Agius E, Kan P, et al. Bone morphogenetic proteins negatively control oligodendrocyte precursor specification in thechick spinal cord J . Development, 2002 ,129 (22) :5117.
    57. Yung SY, Gokhan S,JurcsakJ , et al. Differential modulationof BMP signaling promotes the elaboration of cerebral cortical GABAergic neurons or oligodendrocytes from a common sonic hedgehog-responsive ventral forebrain progenitor speciesJ . Proc Natl Acad Sci USA, 2002 ,99 (25): 16273-16278
    58. Lu QR, Sun T, Zhu Z, et al. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connectionJ .Cell, 2002 ,109 (1): 75-86.
    59. Zeger M, Popken G, Zhang J, et al.Insulin-like growth factor type 1 receptor signaling in the cells of oligodendrocyte lineage is required for normal in vivo oligodendrocyte development and myelination. Glia. 2007;55(4):400-11
    60. Hsieh J,Aimone JB,Kaspar BK,et al.IGF-1 instructs multipotent adult neural progenitor cells to become oligodendrocytes.J Cell Biol.2004,164 (1) : 111-122.
    1. Takao M, Uchio Y, Kakimaru H, Kumahashi N, Ochi M. Arthroscopic drilling with debridement of remaining cartilage for osteochondral lesions of the talar dome in unstable ankles. Am J Sports Med. 2004 Mar;32(2):332-6.
    2. Hui JH, Chen F, Thambyah A,et al. Treatment of chondral lesions in advanced osteochondritis dissecans: a comparative study of the efficacy of chondrocytes,mesenchymal stem cells, periosteal graft, and mosaicplasty (osteochondral autograft) in animal models. J Pediatr Orthop. 2004 Jul-Aug;24(4):427-33.
    3. Onstott AT,Mocczo A,Harris NL. Osteochondral autotransfer-newer treatment for chondral defects.AORN J. 2000;71(4):843-5, 848-51. Review.
    4. Mainil-Varlet P,Rieser f,Grogan s,et al. Articular cartilage repair using a tissue-engineered cartilage-like implant: an animal study.Osteoarthritis Cartilage. 2001;9 Suppl A:S6-15.
    5. Pietsch M, Hofmann S. Surgical treatment of knee joint osteoarthritis in the middle-aged patient.Wien Med Wochenschr. 2007 Jan;157(1-2):7-15.
    6. Bobic V,Noble J.Articular cartilage梩o repair or not to repair.J Bone Joint Surg Br. 2000 Mar;82(2):165-6.
    7. Hangody L, Fules P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am. 2003;85-A Suppl 2:25-32.
    8. Miniaci A, Tytherleigh-Strong G .Fixation of unstable osteochondritis dissecans lesions of the knee using arthroscopic autogenous osteochondral grafting (mosaicplasty).Arthroscopy. 2007 Aug;23(8):845-51.
    9. Jiang CC, Chiang H, Liao CJ, et al. Repair of porcine articular cartilage defect with a biphasic osteochondral composite J Orthop Res. 2007 Oct;25(10):1277-90.
    10. Iwasaki N, Kato H, Ishikawa J, et al. Autologous osteochondral mosaicplasty for capitellar osteochondritis dissecans in teenaged patients. Am J Sports Med. 2006 Aug;34(8):1233-9.
    11. Oztiirk A, Ozdemir MR, Ozkan Y. Osteochondral autografting (mosaicplasty) in grade IV cartilage defects in the knee joint: 2- to 7-year results. Int Orthop. 2006 Jun;30(3):200-4. Epub 2006 Mar 8.
    12. Peterson L, Minas T, Brittberg M, Lindahl A. Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg Am. 2003;85-A Suppl 2:17-24.
    13. Kreuz PC, Steinwachs M, Erggelet C, et al. Mosaicplasty with autogenous talar autograft for osteochondral lesions of the talus after failed primary arthroscopic management: a prospective study with a 4-year follow-up.Am J Sports Med. 2006 Jan;34(1):55-63.
    14. Marcacci M, Kon E, Zaffagnini S, et al. Multiple osteochondral arthroscopic grafting (mosaicplasty) for cartilage defects of the knee: prospective study results at 2-year follow-up. Arthroscopy. 2005 Apr;21(4):462-70.
    15. Huntley JS, Bush PG, McBirnie JM, et al. Chondrocyte death associated with human femoral osteochondral harvest as performed for mosaicplasty. J Bone Joint Surg Am.2005 Feb;87(2):351-60.
    16. Kish G, Hangody L. A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br. 2004May;86(4):619;
    17. Hangody L, Rathonyi GK, Duska Z, et al. Autologous osteochondral mosaicplasty. Surgical technique. J Bone Joint Surg Am. 2004 Mar;86-A Suppl 1:65-72.
    18. Koulalis D, Schultz W, Heyden M, et al. Autologous osteochondral grafts in the treatment of cartilage defects of the knee joint. Knee Surg Sports Traumatol Arthrosc.2004 Jul;12(4):329-34.
    19. van Susante JL, Wymenga AB, Buma P. Potential healing benefit of an osteoperiosteal bone plug from the proximal tibia on a mosaicplasty donor-site defect in the knee. An experimental study in the goat. Arch Orthop Trauma Surg. 2003 Nov;123(9):466-70.
    20. Rose T, Lill H, Hepp P, et al. Autologous osteochondral mosaicplasty for treatment of a posttraumatic defect of the lateral tibial plateau: a case report with two-year follow-up. J Orthop Trauma. 2005 Mar;19(3):217-22.
    21. Iwasaki N, Kato H, Kamishima T, et al. Donor site evaluation after autologous osteochondral mosaicplasty for cartilaginous lesions of the elbow joint.Am J Sports Med.2007Dec;35(12):2096-100.
    22. Bartha L, Vajda A, Duska Z, et al. Autologous osteochondral mosaicplasty grafting. J Orthop Sports Phys Ther. 2006 Oct;36(10):739-50. Review.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700