用户名: 密码: 验证码:
桑树内生拮抗细菌Burkholderia cepacia Lu10-1的分离鉴定及其侵染定殖规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桑树(Morus alba L.)在我国的栽培已有七千多年的历史,是蚕业生产的重要物质基础,也是传统的药用植物。但近年来桑树病害的发生表现出逐年上升的趋势,严重阻碍了蚕桑生产的可持续发展。现阶段对各种桑树病害的防治很大程度上依赖于化学农药的使用,由此带来的环境污染、农药残留等诸多问题引起人们广泛关注。因而,寻求对桑树病害合理有效的防治措施已势在必行。
     作为一类新型的生防因子,植物内生细菌是定殖在健康植物的各种组织和器官中,与植物之间形成互惠共存、相互制约的和谐联合关系的一类微生物。其不易受环境条件的影响,可在植物体内长期定殖和传导,更有利于发挥生防作用,已成为植物病害生物防治上一类极具应用潜能的资源菌。因此,从桑树体内分离筛选有益细菌应用于桑树病害的生物防治具有重要的现实意义,但目前尚未见有桑树内生细菌的相关研究报道。
     鉴于此,本研究对从健康桑树叶片中分离到的一株内生拮抗细菌Lu10-1进行了系统的分类学鉴定,并测定了该内生细菌在桑树体内的定殖数量消长动态,探讨了该菌株在桑树体内的侵染定殖规律。主要研究结果如下:
     1对桑树内生拮抗细菌Lu10-1进行了抑菌谱的测定。结果表明,菌株Lu10-1对9株供试植物病原真菌、2株革兰氏阴性及1株革兰氏阳性病原细菌均表现出较强的抗菌活性,抑菌谱较广;病原菌中包括桑炭疽病菌(Colletotrichum morifolium)、桑粘格孢菌(Septogloeum mori)、桑丁香假单孢杆菌(Pseudomonas syringae pv. mori)三株桑树主要病原菌。
     2对菌株Lu10-1进行了系统的分类学鉴定。结果表明,Lu10-1菌株归属于洋葱伯克霍尔德氏菌基因型Ⅰ(Burkholderia cepacia genomovarⅠ),菌株的16S rDNA序列已在GenBank中注册,登录号为EF546394。
     3采用双抗药性标记法测定了Burkholderia cepacia Lu10-1在桑树体内的数量消长动态。结果表明,Lu10-1菌株可通过浸种、浸根、涂叶和针刺等接种方法进入桑树体内定殖,并证实了该内生细菌能够在桑树体内不同组织之间转移和传导。Lu10-1菌株浸种接种后,细菌在桑树体内的定殖数量总体上呈现下降趋势,到第20天后菌量趋于稳定;细菌浸根接种后,在根、茎和叶中定殖的菌量均呈现出“先增后降”的趋势。该菌株可在桑树体内长期定殖,且在定殖过程中菌株的拮抗性能未改变。
     4用扫描电子显微镜观察了Burkholderia cepacia Lu10-1对桑树根的吸附和侵染情况。结果表明,Lu10-1菌株在桑树根各区的吸附和分布存在较大差异,根成熟区根毛表面和伸长区为内生细菌Lu10-1在根表面吸附的优先位点。该菌可从主根与侧根的交联处、根毛分生处、根毛表面、外表皮裂痕以及根外表皮细胞的间隙等部位直接侵入到桑树根表皮内。
     5用gfp基因标记了Burkholderia cepacia Lu10-1。结果表明,标记细菌在481 nm的蓝光激发下发出明亮的绿色荧光,gfp基因在Lu10-1菌株中得到了很好的表达。且pGFP4412质粒在菌株Lu10-1中的遗传稳定性较强,可以满足在桑树体内实时监测的需要。
     6用激光共聚焦扫描显微镜实时监测了Burkholderia cepacia Lu10-1在桑树体内的侵染、转移、传导和定殖全过程。结果表明,该菌主要从主根与侧根交联处,根毛分生处和根毛进入桑树根的皮层和中柱,通过输导组织向桑树茎部、叶柄和叶片中迁移,主要定殖在桑树各维管组织和皮层的细胞间隙,细胞内未发现标记细菌的定殖。
Mulberry (Morus alba L.), an important substantial basis of sericultural industry, is widely planted about 7000 years’history in our country. In addition, it is also traditional officinal plant. However, it is always infected with many diseases in the past years, which has embarrassed severely the sustainable development of sericicultural industry. Presently pesticides application is the major messure of controlling the disease, but the use of pesticides is restricted because this may induce chemical residues in the environment. Compared with chemical control, biological control is more practical and safer in preventing the mulberry pathogens.
     Endophytic bacterum, which colonize in the host plant tissues without doing substantive harm to the host or gaining benefit other than securing residency, have successfully served as biocontrol agents in recent years. In addition, endophytic bacteria can exit in the plant well, and control disease stably. Consequently, endophytic bacteria are good biocontrol bacteria to control mulberry disease. However, little report could be found focusing the endophytic bacteria of mulberry.
     Lu10-1 strain, isolated from the healthy mulberry leaves, was an antagonistic bacterium that exhibited excellent resistant against various plant pathogen such as Ralstonia solanacearum and Colletotrichum morifolium hara. In this study, the final taxonomical status of strain Lu10-1 was confirmed to be a single species with the phenotypic and molecular methods for species identification. In addition, the population of strain Lu10-1 living in the mulberry tissues was analyzed, and the endophytic colonization rule of Lu10-1 was established with mulberry seedlings following different methods. The main results were showed as the followings:
     1. The result showed that strain Lu10-1 had broad antimicrobial spectrum by screening its antagonistic activity against Colletotrichum morifolium, Septogloeum mori, Pseudomonas syringae pv. Mori, and so on.
     2. Strain Lu10-1 was identified based on the analysis of its 16S rRNA gene sequence homology, the physiological and biochemical characteristics, and the recA gene sequence comparison. The results showed that Lu10-1 belonged to Burkholderia sp.. In the phylogenetic tree, Lu10-1 was the closest relative to Burkholderia cepacia (X80284) with more than 98% sequences similarity. The 16S rDNA sequences of Lu10-1 have been registered at GenBank database under the accession number EF546394. Finally, it was clearly demonstrated that the strain Lu10-1 fell into Burkholderia cepacia complex genomovarⅠby PCR with Bcc-specific and genomovar-specific primers based on recA gene. The final taxonomical status of strain Lu10-1 was confirmed to be a single species.
     3. Tagged with the drug resistance of Rif. (300μg/mL) and Amp.(300μg/mL), the strain Lu10-1 was inoculated by the way of stem and leaf acupuncturing, seed soaking, root soaking and leaf daubing. The population of strain Lu10-1 living in the mulberry tissues decreased as a whole after the treatment of seed dipping and root dipping. As for the population of strain Lu10-1 in mulberry leaves and stems after the treatments, it increased first then decreaed. Ultimately, it achieved a steady level in different mulberry tissues after 20 days. In the investigation of the colonization, it was proved that the strain Lu10-1 could colonize and transmit in the mulberry, and its resistance against plant pathogen did not change in the process of colonization compared to the original strains. Therefore, Burkholderia cepacia Lu10-1 would have a far future in the biological control of mulberry disease.
     4. The adsorption, multiplication and penetration of the Burkholderia cepacia Lu10-1 in the young roots of mulberry were examined with scanning electron microscopy at the different inoculation. The results showed as follows: The root hair surface and the region of elongation surface of mulberry were two preferential sites of adsorption and multiplication of the strain Lu10-1. The bacteria could enter the epidermal cells of mulberry roots by the lateral root junction, the root hair junction, the root hair surface, the cracks between epidermal cells, and epidermal cells of the young lateral root.
     5. In this study, we had maked the Burkholderia cepacia Lu10-1 with gfp gene. The results showed that the vector pGFP4412 produced high level of GFP, and the transformants appeared bright green under blue light. The esperiment of stability of the gfp-labeled strain indicated that its stability is very strong. Therefore, the strain of Lu10-1-gfp could statisfy the need of study in the colonization in the interior of the mulberry tissues.
     6. Microscopic observation of colonization of Burkholderia cepacia Lu10-1-gfp inside the mulberry tissues using confocal laser scanning microscope showed that the Burkholderia cepacia Lu10-1 could colonize and transmit in the mulberry. The bacterial cell infected mainly the inner cortex and vascular stele of mulberry root from the root hair, and the junction between primary and lateral root. By the vascular tissue, the bacteria migrated slowly from roots to stems and leaves. The bacteria were mainly located in the intercellular spaces and vascular tissue of mulberry. Otherwise, the strain Lu10-1 could not enter interior of the mulberry cells.
引文
[1] Ausubel F M, Brent R, Kingston R E, et al.精编分子生物学实验指南[M].颜子颖,王海林,译.北京:科学技术出版社, 2001, 36-39
    [2]安千里,匡柏健,母锡金,等.固氮菌Klebsiella oxytoca SA2在水稻根内定殖并表达固氮酶[J].自然科学进展, 1999, 9(12):1262-1268
    [3]蔡学清,何红.双抗标记法测定枯草芽孢杆菌BS-2和BS-1在辣椒体内的定殖动态[J].福建农林大学学报, 2003, 32(1):41-45
    [4]陈小斌,张炳欣,楼兵干,等.生色基因标记黄瓜根围促生菌(PGPR)筛选菌株[J].微生物学报, 2001, 41(3):287-292
    [5]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社, 2001, 267-295
    [6]冯永君,宋未.植物内生细菌[J].自然杂志, 2001, 23(5):249-252
    [7]傅正擎,夏正俊,等.内生菌对棉花黄萎病病菌及毒素的抑制作用和对棉花的促生作用[J].植物病理学报, 1999, 29(4):374-375
    [8]高增贵,庄敬华,陈捷,等.玉米根系内生细菌种群及动态分析[J].应用生态学报, 2004, 15(8): 1345-1347
    [9]胡萌.植物内生细菌研究进展[J].山东农业大学学报(自然科学版), 2008, 39(1): 148-151
    [10]孔庆科,丁爱云.内生细菌作为生防因子的研究进展[J].山东农业大学学报(自然科学版), 2001, 32(2):256-260
    [11]刘云霞,张青文,周明祥.电镜免疫胶体金定位水稻内生细菌的研究[J].农业生物技术学报, 1996, 4(4):354-358
    [12]刘云霞.植物内生细菌的研究和应用[J].植物保护, 2000, 20(5):30-32
    [13]路国兵,冀宪领,牟志美,等.桑树内生细菌的分离及生防益菌的筛选[J].蚕业科学, 2007, 33(3):350-354
    [14]路国兵,李季生,牟志美,等.一株桑树内生拮抗细菌的分离鉴定及生物学特性研究[J].蚕业科学, 2008, 34(1):11-17
    [15]路国兵,张瑶,牟志美等.植物内生细菌的侵染定殖规律研究进展[J].生物技术通报, 2007, 24 (3): 88-92
    [16]罗远婵,谢关林.伯克氏细菌是我们的敌人还是朋友[J].微生物学报, 2005, 45(4):647-652
    [17]马冠华,肖崇刚.烟草内生细菌种群动态研究[J].微生物学杂志, 2004, 24(1):7- 12
    [18]乔宏萍,黄丽丽,康振生.小麦内生细菌及其对根茎部主要病原真菌的抑制作用[J].应用生态学报, 2006, 17(4):690-694
    [19]谭小艳,黄思良,任建国,等.柑桔溃疡病内生拮抗细菌Bc51的研究[J].植物病理学报, 2007, 7(1):9-17
    [20]田宏先,崔林,孙振.马铃薯环腐病菌内生拮抗细菌的分离与筛选[J].山西农业科学, 2001, 29(2):43-46
    [21]田涛,亓雪晨,王琦,等.芽孢杆菌绿色荧光蛋白标记及其在小麦体表定殖的初探[J].植物病理学报, 2004,34(4):346-351
    [22]王金生.分子植物病理学[M ].中国农业出版社, 1998
    [23]吴蔼民,顾本康,傅正擎,等.内生菌73a在不同抗性品种棉花体内的定殖和消长动态研究[J].植物病理学报, 2001, 31(4):289-294
    [24]夏正俊,顾本康等.棉花内生菌诱导棉花抗黄萎病过程中同工酶活性的变化[J].江苏农业学报, 1997, 13(2):99-101
    [25]阎孟红,蔡正求,韩继刚,等.植物内生细菌在防治植物病害中的应用研究[J].生物技术通报, 2004, 21(3):6-12
    [26]杨瑞先,孙广宇,张荣,等.油菜内生细菌16S核糖体DNA的RFLP分析[J].微生物学报, 2005, 45 (4):606-609
    [27]易有金,罗宽,刘仁明.内生细菌在植物病害生物防治中的作用[J].核农学报, 2007, 21(5):474 -477
    [28]易有金,尹华群,罗宽,等.烟草内生短短芽孢杆菌的分离鉴定及对烟草青枯病的防效[J].植物病理学报, 2007, 37(3):301-306
    [29]于晓庆,郗丽君,刘永光,等.洋葱伯克霍尔德氏菌株Lyc2的鉴定及对棉苗的防病促生作用[J].植物病理学报, 2007, 37(4):426-432
    [30]袁军,孙福在,田宏先,等.防治马铃薯环腐病有益内生细菌的分离和筛选[J].微生物学报, 2002, 42(3):270-274
    [31]张炳欣,张平,陈晓斌.影响引入微生物根部定殖的因素[J].应用生态学报, 2000, 11(6):951-953
    [32]张军民,罗燕萍,赵莉萍,等.临床分离洋葱伯克氏菌鉴定方法的探讨[J].中华检验医学杂志, 2002, 25:333-335
    [33]张立新,谢关林,罗远婵.洋葱伯克氏菌在农业上应用的利弊探讨[J].中国农业科学, 2006, 39(6):1166-1172
    [34]周德庆.微生物学实验手册[M].上海:上海科学技术出版社, 1986, 65-70, 178-180
    [35] Ahlhom J U, Helander M, Henriksson J, et a1. Environmental conditions and host genotype direct genetic diversity of Venturia ditridut, a fungal endophyte of birch trees[J]. Evolution Int J Org Evolution, 2002, 56(8):1566-1573
    [36] Alison H, Govan J, Richard G. Could the agricultural use of Burkholderia cepacia pose a threat to human health[J]. Emerging Infectious Diseases, 1998, 4:221-227
    [37] Amann R, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiol, 1995, 59:143-169
    [38] Andallu B, Radhika B, Suryakantham V. Effect of aswagandha, ginger and mulberry on hyperglycemia and hyperlipidemia[J]. Plant Foods for Human Nutrition, 2003, 58:1-7
    [39] Anderson A S, Guerra D. Response of bean to root colonization with pseudonmonas putida in a hydrophonic system[J]. Phytopathol, 2002, 75:992-995
    [40] Azevedo J L, Walter M J, Jose O P, et al. Endophytic microorganisms: are view on insect control and recent advances on tropical plants[J]. EJB Electronic Journal of Biotechnology, 2000, 3:40–65
    [41] Bai Y D, Aoust F, Smith D L, et a1. Isolation of plant-growth-promoting Bacillus strains from soebean root nodules[J]. Appl Environ Microbiol, 2002, 48(3):230-238
    [42] Banna N, Winkelmann G. Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes[J]. Journal of Applied Microbiolog, 1998, 85(1):69-78
    [43] Barraquio W L, Revilla L, Ladha J K. Isolation of endophytic bacteria diazotrophic bacteria from wetland rice[J]. Plant and Soil, 1997, 194:15-24
    [44] Barraquio W L, Revilla L, Ladha J K. Isolation of endophytic bacteria diazotrophic bacteria from wetland rice[J]. Plant and Soil, 1997, 194:15-24
    [45] Beauchamp C J, Kloepper J W. A review of issues related to measuring of plant roots by bacteria[J]. can J Microbiol, 1992, 38:1219-1232
    [46] Bell C R, Dickie G A, et al. Endophytic bacteria in grapevine[J]. Can J Microhiol, 1995, 41:46-53
    [47] Bellone C H, De Bellone S D, Pedraza R O, et al. Cell colonization and infection thread formation in sugarcane roots by Acetobacter diazotrophicus[J]. Soil Biol Biochem, 1997, 29(8):965-967
    [48] Benhamou N, Kloepper J W. Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: Ultrastructure and cytochemistry of the host response[J]. Planta, 1998, 4:153-168
    [49] Bloenberg G V, Toole G A, Lugtenberg B J, et al. Green flurescent protein as a maker for Pseudomonas spp[J]. Appl Environ Microbiol, 1997, 63:4543-4551
    [50] Bowyer P, Mueller E, John L. Use of isocitrate lyase promoter GFP fusion to monitor carbon metabolism of the plant pathogen Tapesia yallundae during infection of Wheat [J]. Mol Plant Pathol, 2000, 1(4):253-262
    [51] Bressan W, Borges M T. Delivery methods for introducing endophytic bacteria into maize. [J]. Biocontrol, 2004, 49:315-322
    [52] Burkholder W H. Sour skin, a bacterial rot of onion bulbs[J]. Phytopathology, 1950, 40: 115-117
    [53] Caraher E, Reynolds G, Murphy P. Comparison of antibiotic susceptibility of Burkholderia cepacia complex organisms when grown planktonically or as biofilm in vitro[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2008, 26(3):213-216
    [54] Cavaglieri L, Orlandoa J, Rodrguez M, et al. Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level[J]. Research in Microbiology, 2005, 156:748-754
    [55] Chalfie M, Tu Y, Euskirchen G, et al. Green flurescent protein as a maker for gene expression[J]. Sci, 1994, 263:802-805
    [56] Chelius M K, Treplett E W. Immunolocalization of dinitrogenase reductase produced by Klebsiella pneumoniae in association with Zea mays L[J]. Appl Environ Micr - biol, 2000, 66:783-787
    [57] Chiara A, Giovanna J L, Claudia D, et al. Metabolic profiling of Burkholderia cenocepacia, Burkholderia ambifaria, and Burkholderia pyrrocinia isolates from maize rhizosphere[J]. Microbial Ecology, 2005, 50:385-395
    [58] Chiara A, Giovanna J L, Claudia D, et al. Metabolic profiling of Burkholderia cenocepacia, Burkholderia ambifaria, and Burkholderia pyrrocinia isolates from maize rhizosphere[J]. Microbial Ecology, 2005, 50:385-395
    [59] Chiarini L, Bevivino A, Dalmastri C, et al. Burkholderia cepacia complex species: health hazards and biotechnological potential[J]. Trends Microbiol, 2006, 14:277-286
    [60] Clemence C, Eric G, Yues P, et al. Photosynthetic bradyrhizobia are natural endophytes of the African wild rice[J]. Appl Environ Microbiol, 2000, 2:5437-5447
    [61] Clo S J, Park S R, Kim M K, et al. Endophytic bacillus sp. Isolated from the interior of balloon flower root[J]. Biosci Biotechnol Biochem, 2002, 66:1270-1275
    [62] Cody C W, Prasher D C. Chemical structure of the hexapepitide chromophore of the Aequorea green fluorescent protein[J]. Biochemistry, 1993, 32:1212-1218
    [63] Coenye T, Vandamme P. Diversity and significance of Burkholderia species occupy- ing diverse ecological niches[J]. Environmental Microbiology, 2003, 5(9):719-729
    [64] Dalmastri C, Baldwin A, Tabacchioni S, et al. Investigating Burkholderia cepacia complex populations recovered from Italian maize rhizosphere by multilocus sequence typing[J]. Environmental Microbiology, 2007, 9(7):1632-1639
    [65] Dong Y M, Iniguez A L, Triplett E W. Quantitative assessments of the host range and strain specificity of endophytic colonization by Klebsiella pneumoniae 342[J]. Plant and Soil, 2003, 257:49-59
    [66] Downing K J, Thomson J A. Introduction of the Serratia marcescens chiA gene into an endophytic Pseudomonas fluorescens for the biocontrol of phytopathgenic fungi. Can.J.Microbiol, 2000, 46(4):363-369
    [67] Drevinek P, Cinek O, Melter J, et al. Genomovar distribution of the Burkholderia cepacia complex differs significantly between Czech and Slovak patients with cystic fibrosis[J]. J Med Microbiol, 2003, 52:603-604
    [68] Egener T, Hurek T, Reinhold H B. Use of green flurescent protein to detect express- ion of nif-genes in rice by Azoarcus sp. BH72, a grass associated diazotroph, on rice roots[J]. Mol Plant Microbe Interact, 1998, 11:71-75
    [69] Elbeltagy A, Nishioka K, Sato T, et al. Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. Isolated from wild rice species[J]. Appl Environ Microbiol, 2001, 67:5285-5293
    [70] Elizabeth B, Christopher P, Chan W. The growth promoting effects of a bacterial endophyte on lodgepole pine are partially inhibited by the presence of other rhizobacteria [J]. Can J Microbiol, 1998, 44:980-988
    [71] Errampalli D, Leung K. Application of the green flurescent protein as a molecular maker in environmental microorganisms[J]. Journal of microbiological methods, 1999, 35: 187- 189
    [72] Eshwar M, Jocelyn B, Sean K B, et al. DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovarsⅠandⅢ[J]. Journal of Clinical Microbiology, 2000, 38:3165-3173
    [73] Eshwar M, Teresa A, Joanna B. The multifarious, multireplicon Burkholderia cepacia complex[J]. Nature Review Microbiology, 2005, 3(2):144-156
    [74] Feng Y J. In vitro symplasmata formation in the rice diazotrophic endophyte Pantoea agglomerans YS19[J]. Plant and Soil, 2003, 255:435-444
    [75] Glandorf D C, Brand L, Bakker P, et al. Stability of rifampicin resistance as a marker for root colonization studies of Pseudomonas putida in the field[J]. Plant and Soil, 1992, 147:135-142
    [76] Gyaneshwar P, James E K, Mathan N, Reddy P M, et al. Endophytic colonization of rice by a diazotrophic strain of serratia marcescens[J]. J Bacteriol, 2001, 183:2634-2645
    [77] Hallmann J, Quadt H, Lmann A, et al. Interaction between Meloidogyne incognita and endophytic bacteria in cotton and cucumber[J]. Soil Biol Biochem, 1998, 30:925-937
    [78] Hallmann J, Rodriguez K R, Kloepper J W, et a1. Chitinmediated changes in bacteri- al communities of the soil, ruizosphere and within roots of cotton in relation to nematode control[J]. Soil Biology and Biochemistry, 1999,31(5):551-560.
    [79] Hinton D M, Bacon C W. Enterobacter cloacae is an endophytic symbiont of corn[J]. Mycopathologia, 1995, 129(2):117-125
    [80] Inonye S, Tsuji F I. Aequorea green flurescent protein: Expression of the gene and fluorescence characteristics of the recombinant protein[J]. F E B S Lett. 1994, 341: 277-280
    [81] Iwao O. Chemistry and Fate of Organotin Antifouling Biocides in the Environmen[J]. Applied Microbiology and Biotechnology, 2006, 50:17-50
    [82] James E K, Olivares F L, Baldani J I, et al. Herbaspirillum, an endophytic diazo- troph colonizing vascular tissue in leaves of Sorghum bicolor L[J]. Moench J Exp Bot, 1997, 48: 785-797
    [83] John A M, Joseph W K. Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant and soil, 1995, 173:337-342
    [84] Joyce N K, Tanaka T S. Infection and colonization of aseptically micropropagated sugarcane seedlings by nitrogen-fixing endophytic bacterium, Herbaspirillum sp. B501gfp1[J]. Biol Fertil Soils, 2006, 52:298 -234
    [85] Kapley A, Siddiqui S N, Purohit H J. A Bacillus subtilis strain HPC248 from an effluent treatment plant with antimicrobial activity[J]. World J Microb Biot, 2007, 23:879-882
    [86] Katarina C, Hojka K, Maja R, et al. Bacterial endophytes from seeds of Norway Spruce[J]. Microbiology Ecology, 2005, 244(2):341-345
    [87] Klepper J W, Beauchamp C J. A review of issues related to measuring colonization of plant roots by Bacteria[J]. Can J Microbiol, 1992, 38:1219-1232
    [88] Lacavaa P T, Lib W B, Araújoa W L, et al. Rapid, specific and quantitative assays for the detection of the endophytic bacterium Methylobacterium mesophilicum in plants[J]. J Microbiol Methods, 2006, 65(3):535-541
    [89] Lappalainen J H, Mattila T. Genetic diversity in Finland of the birch endophytic Gnomonia setacea as determined by RAPD-PCR markers[J]. Mycol Res, 1999, 103: 328-332
    [90] Lata H, Li X C, Silva B, et al. Identification of IAA-producing endophytic bacteria from micropropagated Echinacea plants using 16S rRNA sequencing[J]. Plant Cell, Tissue and Organ Culture, 2006, 85(3):353-359
    [91] Liu X L , Dong M S, Chen X H, et al. Antimicrobial activity of an endophytic Xylaria sp.YX-28 and identification of its antimicrobial compound 7-amino-4- methylcoumarin[J]. Applied Microbiology and Biotechnology, 2008, 78(2):241-247
    [92] Marciano R, Rute T, Alan S, et al. Diversity of endophytic bacteria community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of broom disease[J]. International Journal of Biological Sciences, 2005, 1:24– 33
    [93] Mark S T. Iron acquisition mechanisms of the Burkholderia cepacia complex[J]. BioMetals, 2008, 21(1):105-106
    [94] McInroy J A , Kleopper J W. Survey of indigenus bacterial endophytic from cotton and sweet corn[J]. Plant Soil, 1995, 173:337-342
    [95] Mizumoto S, Hirai M, and Shoda M. Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani[J]. Appl Microbiol Biot, 2007, 75:1267-1274
    [96] Mocali S, Bertelli E, Di Cello F, et al. Fluctuation of bacteria isolated from elm tissues during different seasons and from different plant organs[J]. Res Microbiol, 2003, 154(2): 105- 114
    [97] Munusamy G, Jacques B, Soon W K, et al. Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice[J]. Microbial Ecology, 2008, 55(1):21-37
    [98] Nejad P, Johnson P. Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato[J]. Biological control, 2000, 18:208-215
    [99] Nishiguchi T, Shimizu T, Njoloma J, et al. The estimation of the amount of nitrogen fixation in the sugarcane by 15N dilution technique[J]. Bulletin Faculty Agric Univ Miyazaki, 2005, 51:53-62
    [100] Ongena M, Duby F, Jourdan E, et al. Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression[J]. Appl Microbiol Biot, 2005, 67:692-698
    [101] Parke J L, Gurian S D. Diversity of the Burkholderia cepacia complex and implica- tions for risk assessment of biological control strains[J]. Annual Review of Phyto- pathology, 2001, 39:225-258
    [102] Pelt C V, Verduin C M, Goessens W H, et al. Identification of Burkholderia spp. in the clinical microbiology laboratory: comparison of conventional and molecular methods[J]. Journal of Clinical Microbiology, 1999, 37:2158-2164
    [103] Peter A R. Polyphasic Taxonomy Inpractise: the Burkholderia cepacia challenge[J]. WFCC Newsletter, 2001, 34:17- 25
    [104] Pillay V J, Nowak J. Inoculum density, temperature and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonad bacterium[J]. Can J Microbiol, 1997, 43:34-36
    [105] Pious T, Ganiga K S, Prakash P, et al. Ubiquitous presence of normally non-culturable endophytic bacteria in field shoot-tips of banana and their gradual activation to quiescent cultivable form in tissue cultures[J]. Plant Cell, Tissue and Organ Culture, 2008, 93(1):39-54
    [106] Poonguzhali S, Madhaiyan M, Yim W J. Colonization pattern of plant root and leaf surfaces visualized by use of green-fluorescent-marked strain of Methylobacterium suomiense and its persistence in rhizosphere[J]. Applied Microbiology and Biotechnology, 2008, 78(6):1033-1043
    [107] Qian F, An L, Wang M, et al. Isolation and characterization of a xanthan-degrading Microbacterium sp. strain XT11 from garden soil[J]. J Appl Microbiol, 2007, 102(5):1362-1371
    [108] Quan C S, Zheng W, Liu Q, et al. Isolation and characterization of a novel Burkholderia cepacia with strong antifungal activity against Rhizoctonia solani[J]. Biocontrol, 2006, 72(6):1276-1284
    [109] Ramamoorthy V, Viswanathan R, Raguchander T, et al. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pest and diseases[J]. Crop Protection, 2001, 20:1-11
    [110] Ramesh K S, Ravi P N, Hemant K J, et al. Isolation and identification of natural endophytic rhizobia from rice (Oryza sativa L.) through rDNA PCR-RFLP and sequence analysis[J]. Current Microbiology, 2006, 52(2):345-349
    [111] Ramos H J, Roncato L B, Souza E M, et al. Monitoring Azospirillum wheat inter- actions using the gfp and gusA genes constitutively expressed from a new broad- host range vector[J]. J Biotech, 2002, 97:243-252
    [112] Rermus R, Ruppel S, Jacob H J, et a1. Colonization behaviour of two bacterial strains on cereals[J]. Biol Fertil Soil. 2000, 30:550-557
    [113] Ronald G, and Claudia N. Burkholderia[M]. Plant-Associated Bacteria Springer Netherlands, 2006, 3: 645-670
    [114] Schloter M, Hartmann A. Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studied with strain specific monoclonal antibodies[J]. Symbiosis, 1998, 25:159-179
    [115] Selosse M A, Baudoin E, Vanden P. Symbiotic microorganisms, a key for ecologi- cal success and protection of plants[J]. Comptes Rendus Biologies, 2004, 327:639- 648
    [116] Serge G. Xylem-residing bacteria in alfalfa roots[J]. Can J Microbiol, 1997, 33:996-1000
    [117] Steenhoudt O, Vanderleyden J. Azospirillum, a free living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects[J]. FEMS Microbiol Rev, 2000, 24:487-506
    [118] Sturz A V, Christie B R, Matheson B G, et a1. Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth[J]. Biol Fertil Soils, 1997, 25:13-19
    [119] Sturz A V, Christie B R, Norwak J. Bacterial endophytes: potential role in developing sustainable systems of crop production[J]. Critical Reviews in Plant Sciences, 2000, 19(1): 1-10
    [120] Sun L J, Lu Z X, Bie X M, et al. Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World[J]. J Microbiol Biotechnol, 2006, 22:1259- 1266
    [121] Sun L, Qiu F, Zhang X X, Dai X, Dong X Z, et al. Endophytic Bacterial Diversity in Rice (Oryza sativa L.) Roots Estimated by 16S rDNA Sequence Analysis[J]. Microbial Ecology, 2008, 55(3):415-424
    [122] Tom C, Peter V, John R W, et al. Taxonomy and Identification of the Burkholderia cepacia Complex[J]. Applied Microbiology and Biotechnology, 2001, 39(10):3427- 3436
    [123] Tomasino S F, Leister R T, Dimock M B, et al. Field performance of Clavibacter xyli subsp. Cynodontis expressing the insecticidal protein gene cry IA(c) of Bacillus thuringiensis against European corn borer in field corn[J]. Biological Control, 1995, 5: 442-448
    [124] Tomblini R, Unge A, Davey M E, et al. Flow cytometric and microscopic analysis of GFP-tagged Pseudomonas fluorescens bacteria[J]. FEMS Micobiol Ecol, 1997, 22:17-28
    [125] Vandamme P, Holmes B, Coenye T, et al. Burkholderia cenocepacia sp. nov. -a new twist to an old story[J]. Research in Microbiology, 2003, 154:91-96
    [126] Vandamme P, Holmes B, Vancanneyt M, et al. Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov[J]. International Journal of Systematic Bacteriology, 1997, 47:1188-1200
    [127] Verma S C, Singh A, Chowdhury S P, et a1. Endophytic colonization ability of two deep water rice endophytes, Pantoea sp. and Ochrobactrum sp. using green fluorescent protein reporter[J]. Biotechnol Lett, 2004, 26:425-429
    [128] Vineet K, Gupta V P. Scanning Electron microscopy on the perithecial development of Phyllactinia corylea on mulberry sexual stage[J]. J Phytopathology, 2004, 152:169-173
    [129] Wang G F, Xie G.L, Xu F S, et al. Description and discussion on some research issuses in mulberry bacterial wilt[J]. Acta Sericol Sin, 2007, 33:321-324
    [130] Wellington B, Marcela T B. Delivery methods for introducing endophytic bacteria into maize[J]. BioControl, 2004, 49:315-322
    [131] Xi C, Lambrecht M, Vanderleyden J, et al. Bi-functional gfp-and gusA-Containing mini-Tn5 transposon derivatives for combined gene expression and bacterial locali- zation studies[J]. J Microbiol Meth, 1999, 35:85-92
    [132] Yabuuchi E, Kosako Y, Oyaizu H, et al. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology groupⅡto the new genus, with the type species Burkholderia cepacia comb. nov[J]. Microbiology and Immunology, 1992, 36:1251-1275
    [133] Zdor R E, Anderson A J. Influence of root colonizing baceria on the defence responses in bean[J]. Plant Soil, 1992, 140:99-107
    [134] Zinniel D K, Pat L, Harris N B, et al. Isolation and characterization of Endophytic colonizing bacteria from crops and prairie plants[J]. Appl Microbiol, 2002, 68(5): 2198- 2208

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700