用户名: 密码: 验证码:
抗肌肉乳化病候选品系三疣梭子蟹几个免疫因子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三疣梭蟹营养丰富,是重要的经济水产动物,但是肌肉乳化病严重影响了梭子蟹的养殖效益。为此我实验室用肌肉乳化病的致病菌-溶藻弧菌对其连续筛选育种2代(以下简称筛选蟹F1, F2),家系选育第3代(以下简称筛选蟹F3)。本文以抗脂多糖因子(ALF),血蓝蛋白,血清中的重要免疫酶类,如水解酶:酸性磷酸酶(ACP)、碱性磷酸酶(AKP),保护酶:超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和酚氧化酶(PO)为指标,采用半定量RT-PCR方法测定ALF表达量,用紫外分光光度法测定血蓝蛋白含量,用试剂盒测定各血清免疫酶活力的方法,研究了3代筛选蟹的免疫防御机制。同期的普通梭子蟹作为对照。结果如下:
     1.溶藻弧菌感染6h对筛选蟹F1代肝胰脏血清中免疫酶活力和ALF表达量的影响。
     筛选蟹F1代和同期的普通蟹血清中免疫酶活性在12-36h达到最大值;肝胰脏中ALF表达量分别在从感染开始计9h和12h达到最大值,然后逐渐下降;各免疫因子可被溶藻弧菌激活,并且存在明显的时间依赖性。筛选蟹F1的血清免疫酶活力和ALF表达量均优于同期的普通蟹。
     2.温度和盐度胁迫对筛选蟹F2代血蓝蛋白和血清中免疫酶活力的影响
     温度和盐度胁迫下,筛选蟹F2代和同期的普通蟹应激反应强烈,血蓝蛋白含量和血清免疫酶活力随时间表现出有升有降的不同变化趋势。温度和盐度胁迫对三疣梭子蟹非特异性免疫影响显著,筛选蟹F2代的血蓝蛋白含量和血清免疫酶活力均显著高于同期的普通蟹,筛选蟹F2比普通蟹F1在非特异性免疫因子方面具明显的免疫优势。
     3.筛选蟹F3代养殖期不同发育阶段ALF表达量研究
     筛选蟹F3代和同期的普通蟹ALF在溞状幼体阶段(1-4)变化较小;从溞
     4-大眼幼体阶段,ALF表达量显著上升(P>0.05);大眼幼体—稚蟹阶段无明显变化,但此时ALF表达量为所有发育阶段中最大。三疣梭子蟹从溞状幼体开始的整个发育阶段均有ALF表达,证明其为组成性表达,是免疫体系中一个非常重要且必需的组成成分,在其各个发育阶段扮演着帮助机体抵御外来微生物入侵的角色。在溞状幼体-稚蟹整个发育阶段,筛选蟹F3和同期普通蟹的ALF表达量没有显著差异。但是从大眼幼体开始,筛选蟹F3的ALF表达量高于普通蟹F1,可能从大眼幼体开始逐渐显现免疫优势。
Portunus trituberculatus, nutrient-rich , is one of important economic aquatic animals. Emulsification disease of Portunus trituberculatus has seriously effected its aquaculture efficiency. So our laboratory screened Portunus trituberculatus by Vibrio alginolyticus, the pathogens of emulsification disease; and breed F1, F2( short as PSVF1, PSVF2 as followings). F3 ( short as PSVF3 as followings) was pedigree breeded the next year. This paper studied the immune defense mechanism of F1, F2 and F3 focusing on the immune factors such as anti-lipopolysaccharide factor (ALF); hemocyanin; isoenzyme, like acid phosphatase (ACP), alkaline phosphatase (AKP); protective enzymes, like superoxide dismutase (SOD), peroxidase (POD), catalase(CAT) and phenoloxidase (PO). Semi-quantitive RT-PCR was used to analyze the ALF expression; UV Spectrophotometry and enzyme analysis method was respectively used to study the hemocyanin content and the serum enzymes activities. Commom Portunus trituberculatus in the same period was served as control(short as CPF1 as followings). The main results are as followings: 1.The effect of infection 6h by Vibrio alginolyticus on ALF expression in hepatopancreas, serum immunoenzymes activities of PSVF1.
     ALF expressions in hepatopancreas of PSVF1 and CPF1 reached maximun respectivly at 9h and 12h counting the infection time of 6h, and then gradually decline; serum immunoenzymes activities of PSVF1 and CPF1 reached maximum at 12-36h; The time dependency after infection was obvious. PSVF1 has more immunity advantage on the hemocyanin content and serum immunoenzymes than that of CPF1. 2. Effects of temperature and salinity stress on the content of hemocyanin and serum immunoenzymes activities of PSVF2.
     The result showed that under temperature and salinity stress, PSVF2 and CPF1 showed strong stress response, and the non-specific immunity was significantly affected; The content of hemocyanin and serum immunoenzymes activities of PSVF2 were higher than that of CPF1, and PSVF2 showed more non-specific immunity advantages. 3.Expressions of ALF during the growth period of PSVF3
     ALF expressions throughout the four zoea stages had no significant difference, then rapidly up-regulated at megalops stage (P>0.05), reached maxium at the first and second juvenile crab stages of both PSVF3 and CPF1. ALF transcripts were present in all detected samples during different developmental stages. This suggests that ALF is constitutively expressed in Portunus trituberculatus, it may also play an important role in innate defense against infection. During the whole growth period from zoea to junivile crab, there were no distinctively difference in ALF expressions between PSVF3 and CPF1. However, ALF expressions of megalops and juvenile cab stages of PSVF3 were higher than that of CPF1, this may suggest that PSVF3 showed more immunity advantage beginnig from megalops stages.
引文
艾春香,陈立侨,刘晓玲,等.维生素C对中华绒螯蟹非特异性免疫的影响[J].水产学报, 2008, 32: 249-256.
    艾春香,陈立侨,刘晓玲,等.维生素E对中华绒螯蟹(Eriocheir sinensis)酚氧化酶、抗菌力和溶菌酶活性的影响[J].海洋与湖沼, 2008, 39: 119-123.
    安德森著,张寿山,华鼎可,译.鱼类免疫学. 1974:1-27.
    陈清西,陈素丽,石艳,等.长毛对虾碱性磷酸酶性质[J].厦门大学学报, 1996, 35(2): 257-261.
    曹建亭,王广成,王希升,等.三疣梭子蟹临界盐度海水育苗技术探讨[J].现代渔业信息, 2005, 20(7): 41-42.
    陈寅儿,王国良,金珊,等.三疣梭子蟹患“乳化病”后几种保护酶活力的变化[J].水产科学, 2006, 25(9): 448-451.
    陈寅儿,王国良,金珊,等.三疣梭子蟹肌肉乳化病的同工酶病理变化研究[J].海洋科学, 2008, 32(5): 36-39.
    陈宇锋,艾春香,林琼武,等.盐度胁迫对锯缘青蟹血清及组织、器官中PO和SOD活性的影响[J].台湾海峡, 2007, 26(4): 469-575.
    陈福昌,陈萱,陈超然,等.水产甲壳动物的免疫防御机能及其免疫预防研究进展[J].华中农业大学学报, 2003, 22(2): 197- 203.
    邓欢,陈俅,刘卫东,等.中国对虾血细胞包掩作用的超微结构和组织化学观察[J].应用与环境生物学报, 1999, 5: 296- 299.
    丁美丽,林林,李光友,等.有机污染对中国对虾体内外环境影响的研究[J].海洋与湖沼, 1997, 28(1): 7-11.
    郭振宇,董波,焦传珍等.养殖期中国对虾抗菌肽的表达[J].研究论文, 2004, 28(1): 48-51.
    高健,李跃华.甲壳类的体液免疫因子及其环境作用[J].水产养殖, 1992, 6: 21-23.
    洪美玲,陈立侨,顾顺樟等.不同温度胁迫方式对中华绒螯蟹免疫化学指标的影响[J].应用与环境生物学报, 2007, 13(6): 818-822.
    黄灿华,陈棣华.中国对虾病虾体内同工酶表型变化的初步研究[J].中国水产科学, 1999, 6(1): 45-49.
    黄旭雄,周洪琪.甲壳动物免疫机能的衡量指标及科学评价[J].科学视野, 2007, (7): 90-94.
    姜令绪.环境因子对甲壳动物免疫力和抗氧化酶活力的影响[D].山东:中国海洋大学, 2004.
    金珊,李政,陈寅儿,等.梭子蟹养殖中的一种新疾病[J].水产养殖, 2003, 24(6): 24.
    江晓路,刘树青,牟海津,等.真菌多糖对中国对虾血清及淋巴细胞免疫活性的影响[J] .动物学研究, 1999, 20 (1): 41-45.
    孔祥会,王桂忠,艾春香,等.锯缘青蟹不同器官组织中总抗氧化能力和SOD活性的比较研究[J]. 台湾海峡, 2003, 22(4): 469-474.
    刘树青,江晓路,牟海津,等.免疫多糖对日本对虾血清酶活性的影响[J].中国科学报1999, 6(3): 107-108.
    刘树青,江晓路,牟海津,等.免疫多糖对中国对虾血清溶菌酶、磷酸酶和过氧化物酶的作用[J]. 海洋与湖沼, 1999, 30(3): 278-283.
    刘文杰.锯缘青蟹血淋巴和血蓝蛋白免疫活性研究[D].厦门,厦门大学硕士论文, 2006.
    李强,李华,姜传俊等.温度对凡纳滨对虾血淋巴免疫指标的影响[J].大连水产学院学报, 2008, 23(2): 132-135.
    李红霞,李义,俞菊华,等. CpG寡脱核苷酸对中华绒螯蟹非特异性免疫指标的影响[J]. 2008, 15(5): 801-807.
    李红霞,李义,刘永贵,等. CpG寡脱氧核苷酸对中华绒螯蟹3种血清酶活性的影响[J].饲料工业, 2007, 28(2): 42-45.
    李桂峰,钱沛锋,孙际佳,等.维生素C对胡子鲶血清免疫相关酶活性的影响[J].大连水产学院学报, 2004, 19(4): 301-305.
    廖永岩,肖展鹏,袁耀阳.三疣梭子蟹幼体和幼蟹的温度适应性[J].水生生物学报, 2008, 32: 534-543.
    李长红,金珊.三疣梭子蟹血淋巴免疫功能的初步研究[J].水产科学, 2008, 27(4): 163-166.
    刘淇,王学忠,戴芳钰等.梭子蟹溶藻弧茵病的初步研究[J].齐鲁渔业, 2007, 24(9): 1-4.
    陆宏达,刘凯,张明辉.中华绒螯蟹血淋巴中酚氧化酶的部分生化特性[J].上海水产大学学报, 2007, 16(3): 236-241.
    李雷,王金星,康翠洁,等.对虾免疫防御中的阳离子和阴离子抗菌肽[J].海洋与湖沼, 2003, 3(2): 218-223.
    牟海津,江晓路,刘树青,等.免疫多糖对栉孔扇贝酸性磷酸酶、碱性磷酸酶和超氧化物活性的影响[J].青岛海洋大学学报, 1999, 29(3): 463-468.
    牟海津,江晓路,刘树青,等.日本对虾溶血素的活性测定及性能研究[J].海洋与湖沼, 1990, 30(4): 362-367.
    牟海津,江晓路,刘树青,等.中国对虾血细胞凝集素的性能研究[J].中国水产科学, 1999, 6(3): 32-35.
    孟凡伦,张玉臻,孔健,等.甲壳动物中的酚氧化酶原激活系统研究评价[J].海洋与湖沼[J]. 1999, 30(1): 110 -115.
    莫照兰,李会荣,俞勇,等.细菌糖蛋白对螯虾免疫因子的影响[J].中国水产科学, 2000, 7(3): 28 -32.
    潘鲁青,金彩霞.甲壳动物血蓝蛋白研究进展[J].水产学报, 2008, 32(3): 485-488.
    潘鲁青,姜令绪.盐度、pH突变对2种养殖对虾免疫力的影响[J].青岛海洋大学学报, 2002, 32(6): 903-910.
    宋林生,季延宾,蔡中华,等.温度骤升对中华绒螯蟹几种免疫化学指标的影响[J]. 2004, 35(1): 74-77.
    孙金辉,徐霞,季延滨,等.温度骤降对南美白对虾仔虾抗氧化机能的影响[J]. 2008, 15(3): 7-10.
    沈锦玉,刘问,曹铮,等.免疫增强剂对中华绒螯蟹免疫功能的影响[J].浙江农业学报2004, 16: 25-29.
    陶保华,胡超群,任春华.弧菌疫苗对斑节对虾和日本对虾免疫预防的作用[J].水产学报2000, 24(6): 564-569.
    王晓杰,张秀梅,李文涛.盐度胁迫对许氏平鲉血液免疫酶活力的影响[J].海洋水产研究, 2005, 26: 17-21.
    王雷,李光友.甲壳动物的体液免疫研究进展[J].海洋科学, 1992, (3): 18-19.
    王国良,金珊,陈寅儿,等.三疣梭子蟹肌肉乳化病的病原及其致病性研究[J].海洋科学进展, 2006, 24(4): 526-530.
    许伟群,苏东辉等.中国鲎鲎抗脂多糖因子的提取、纯化及其活性的初步鉴定[J].福建医科大学学报. 2003(4): 364-366.
    徐海圣,徐步进.甲壳动物细胞及体液免疫机理的研究进展[J].大连水产学院学报, 2001, 16(1): 49-56.
    徐镇,姚鹃,陈昌福,等.免疫多糖(酵母细胞壁)对中华绒螯蟹抗病力的增强效果[J].华中农业大学学报, 2005, 24: 383-386.
    袁春营,崔青曼.β-胡萝卜素对中华绒螯蟹卵巢发育及免疫学指标的影响.海洋科学, 2007, 25-28.
    杨翠华,孔杰,王清印,等.中国对虾6项免疫相关组分的估计遗传力和遗传相关[J].科学通报, 2007, 52(2): 183-190.
    叶建生,王兴强,马甡,等.盐度突变对凡纳滨对虾非特异性免疫因子的影响[J].海洋水产研究, 2008, 29(1): 38-43.
    章跃陵,王三英,彭宣宪.虾类免疫学的基础和研究应用[J].海洋科学, 2000, 24(12): 26-29.
    章跃陵,卓奕明,朱永飞,等.凡纳滨对虾人工感染细菌后肝胰脏中主要变化蛋白的研究[J].水产科学, 2005, 24(6): 19-23.
    章跃陵,刘光明,王三英,等.南美白对虾血蓝蛋白与抗人IgG相互作用的研究[J].汕头大学学报(自然科版), 2005, 20(2): 32- 36.
    章跃陵,罗芸,彭宣宪.血蓝蛋白功能研究新进展[J].研究综述, 2007, 31(2): 77-80.
    张明,王雷,郭振宇,等.脂多糖和弧菌对中国对虾血清磷酸酶、超氧化物歧化酶和血蓝蛋白的影响[J].海洋科学, 2004, 28(7): 22-25.
    张秋玉,许伟群,黄爱明,等. LALF对增敏小鼠内毒素致死性攻击的保护作用及其对炎症因子产生的调节[J ].中国人兽共患病杂志, 2003, 19(4): 54-58.
    周文杰,王帅,杜欣军,等.中国明对虾抗脂多糖因子基因克隆与表达研究[J].四川动物, 2008, 2(5): 771-773.
    周素琴.环境胁迫对养殖锯缘青蟹主要免疫因子的影响[D].山东:中国海洋大学,2006.
    Auffret M, Oubella R. Hemocyte aggregation in the oyster Crassostrea gigas: In vitro measurement and experimental modulation by xenobiotics[J].Comp Biochem Physiol, 1997, 118(3): 705-712.
    Adachi K, Hirata T , Nagai K, et al. Purification and characterization of prophenoloxidase from kuruma prawn Penaeus japonicus [J] . Fisheries Science , 1999 , 65 (6) :919 - 925.
    Aspan A , Soderhall K. Purification of prophenoloxidase from crayfish blood cells, and its activation by an endogenous serine proteinase[J] . Insect Biochem, 1991,21 :363 -373.
    Boman HG. Peptide antibiotics and their role in innate immunity[J].Annu Rev Immunol 1995, 13: 61-92. Bulet P, Stocklin R, Menin L. Anti-microbial peptides: from invertebrates to vertebrates [J]. Immunol Rev 2004;198:169-84.
    Biggar WD, Sturgess JM. Role of lysozyme in the microbicidal activity of rat alveolar macrophages. Infect Immun, 1977, 16: 974-982.
    Bray WA, Lawrence AL, et al. The effect of salinity on growth and survival of Penaeus vannamei, with observation on interaction of IHHN virus and salinity[J]. Aquaculture,1994, 122: 133-146.
    Beale KM, Towle DW, Jayasundara N, et al. Anti-lipopolysaccharide factors in the American lobster Homarus americanus: Molecular characterization and transcriptional response to Vibrio fuvialis challenge[J]. Comp Biochem Physiol, 2008, 3: 273-269.
    Bake HJ, Beintema JJ. Panulirus interruptus hemocyanin:The elucidation of the complete amino acid sequence of subunit[J]. Eur J Biochem, 1987, 169(2): 333-348.
    Burmester T. Origin and evolutiong of arthropod hemocyanin and related proteins [J]. Comp Physiol, 2002, 172B: 95 -107.
    Chanprapa I, Piti A, Anchalee T, et al. Antilipopoly saccharidefactor (ALF) of mud crab Scylla paramamosain: Molecular cloning,genomic organization and the antimicrobial activity of its synthetic LPS binding domain[J]. Mol Immunol, 2007, 44: 3195-3203.
    Cheng TC, Rodrick GE. Lysosomal and other enzymes in the hemolymph of Crassostrea virginica and Mercenaria mercenaria. Comp Biochem Physiol B 1975, 52: 443-7.
    Cheng W, Chen JC. Effects of pH, temperature and salinity on immune parameters of the freshwater prawn Macrobrachium rosenbergii[J]. Fish & Shellfish Immun, 2000, 10 (4): 387-391.
    Cassels FJ, Odom EW, Vasta GR. Hemolymph lectins of the blue crab, Callinectes sapidus, recognize selected serotypes of its pathogen vibrio parahaemolyticus[J]. Ann NY Acad Sci, 1994, 712: 324 -326.
    Chalk R, Townson H, Natori S, Desmond H, Ham PJ. Purification of an insect defensin from the mosquito, Aedes aegypti[J]. Insect Biochem Mol Biol , 1994, 24: 403-410.
    Destoumieux D, Munoz M, Cosseau C, et al. Penaeidins, antimicrobial peptides with chitinbing activity, are produced and stored in shrimp granulocytes and released after microbial challenge[J]. Journal of Cell Science, 2000, 113: 461-469.
    Destoumieux D, Bulet P, Loew D, et al. Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei [J]. J Biol Chem, 1997, 272: 28398-28406.
    De la Vega E, O Leary NA, Shockey JE, et al. Anti-lipopolysaccharide factor in Litopenaeus vannamei(LvALF): A broad spectrum antimicrobial peptide essential for shrimp immunity against bacterial and fungal infection [J]. Mol Immunol, 2008, 45(7): 1916-1925.
    Downs CA, Fauth JE ,Woodley CM. Assessing the health of grass shrimp (Palaeomonetes pugio) exposed to natural and anthropogenic stressors: a molecular biomarker system[J]. Marine Biotech, 2001, 3: 380-397.
    Destoumieux GD, Saulnier D, Garnier J, et al. Crustacean Immunity: Antifungal peptides are generated from the C terminus of shrimp hemocyanin in response to microbial challenge[J]. Biol.Chem, 2001, 276: 47070-47077.
    Elsbach P, Weiss J. Prospects for use of recombinant BPI in the treatment of gram-negtive bacterial infections[J]. Infections agents and Disease, 1995, 4(2): 102-109.
    Enghild JJ , Thogerseni B, Salvesen G,et al.α- Macroglobulin from Limunus polyphemus exhibits proteinase inhibitory activity and participates in a hemolytic system[J]. Biochemistry, 1990, 29(43): 10070 -10080.
    Fridovich I. Superoxide radical and superoxide dismutases[J]. Annu Rev Biochem, 1995, 64(1): 97-112. Fridovich I. Oxygen is toxic[J]. Bioscience, 1977, 27(7): 462.
    Gollasgalvan T, Hernandezlopez J, Vargasalbores F. Prophenoloxidase from brown shrimp (Panaeus californiensis) hemocytes[J]. Comp biochem physiol biochemi& mole biology, 1999, 122(1): 77 -82.
    Gilles LM, Philippe H. Environmental factors affecting immune responses in Crustacea[J]. Aquaculture, 2000, 191: 121-131.
    Gross PS, Bartlett TC, Browdy CL, et al. Immune gene discovery by expressed sequence tag analysis of hemocytes and hepatopancreas in the Pacific White Shrimp, Litopenaeus vannamei, and the Atlantic White Shrimp L. setiferus[J]. Dev Comp. Immunol, 2001, 25, 565–577.
    Goldenberg PZ, Huebner E, Greenberg AH. Activation of lobster hemocytes for phagocytosis[J]. Journal of Invertebrate Pathology, 1984, 43(1): 77-88.
    Hoess A, Watson S, Siber GR, et al.Crystal structure of an endotoxin-neutralizing protein from the horseshoe crab, Limulus anti-LPS factor at 1.5 A resolution[J]. EMBOJ, 1993, 12: 3351-3356.
    Imjongjirak C, Amparyup P, Tassanakajon A, et al.Antilipopolysaccharide factor (ALF) of mud crab Scyall paramamosain: Molecular cloning, genomic organization and the antimicrobial activity of its synthetic LPS binding domain[J]. Molecular Immunology, 2007, 44: 3195-3203.
    Jaenicke E, Decker H. Conversion of crustacean hemocyanin to catechol oxidase [J].Micron, 2004, 35: 89 - 90. Johansson MW, Soderhall K. Isolation and purification of a cell adhesion factor from crayfish blood cells. J Cell Biol, 1988, (106): 1795-1803.
    Kunlaya S, Evelyne B, Vichien R et al. Localization of anti-lipopolysaccharide factor (ALFPm3) in tissues of the black tiger shrimp, Penaeus monodon, and characterization of its binding properties[J]. Developmental and Comparative Immunology, 2008, 32: 1170-1176.
    Krol RM, Hawkins WE, Vogelbein WK, et al. Histopathology and ultrastructure of the hemocytic response to an acid-fast bacterial infection in cultured Penaeus vannamei[J]. Aquat Anim Health, 1989, (1): 37-42.
    Kunlaya S, Michael M, Anchalee T, et al. Recombinant expression and anti-microbial activity of anti-lipopolysaccharide factor(ALF) from the black tiger shrimp Penaeus monodon[J]. 2005, 29: 841-851.
    Kunihiro O, Makoto N, Takanori N,et al. Anti-LPS factor in the horseshoe crab, Tachypleus tridentatus-Its hemolytic activity on the red blood cell sensitized with lipopolysaccharide[J]. FEBS, 1984, 176: 207-210.
    Khoo L, Robinette D W, Noga E J. Callinectin, an antibacterial peptide from blue crab, Callinectes sapidus, hemocytes[J]. Mar. Biotechnol, 1999, 1: 44-51.
    Li CH, Zhao JM, Song LS, et al. Molecular cloning, genomic organization and functional analysis of ananti-lipopolysaccharide factor from Chinese mitten crab Eriocheir sinensis[J]. 2008, 32: 784-794.
    Lazzaro BP, Clark AG. Molecular population genetics of inducible antibacterial peptide genes in Drosophila melanogaster. Mol Biol Evol, 2003, 20(4): 914-923.
    Liu FS, Liu YC, Li FH, et al. Molecular cloning and expression profile of putative antilipopolysaccharide factor in Chinese shrimp (Fenneropenaeus chinensis)[J]. Mar Biotechnol, 2005, 7, 600–608.
    Li EC, Chen LQ, Zeng C, et al. Comparison of digestive and antioxidant enzymes activities, haemolymph oxyhemocyanin contents and hepatopancreas histology of white shrimp, Litopenaeus vannamei, at various salinities[J]. Aquaculture, 2008, 274: 80-86.
    Liu H, Jiravanichpaisal P, Soderhall I et al. Antilipopolysaccharide factor interferes with white spot syndrome virus replication in vitro and in vivo in the crayfish Pacifastacus leniusculus[J]. Virol, 2006, 80: 10365–10371.
    Lee MH, Shiau SY. Vitamin E requirements of juvenile grass shrimp, Penaeus monodon, and effects on non-specific immune responses [J]. Fish & Shellfish Immunology, 2004, 16(4): 473-485.
    Immune gene discovery by expressed sequence tag analysis of hemocytes and hepatopancreas in the Pacific White Shrimp, Litopenaeus vannamei, and the Atlantic White Shrimp, L. setiferus[J].Dev Comp Immunol, 2001, 25, 565–577.
    Lim BK, Hirayama K. Growth and elemental composition (C, N, P) during larval developmental stages of mass-cultured swimming crab Portunus trituberculatus[J]. Marine Ecology Progress Series, 1991, 78(2): 131-137.
    Menezes S, Soares A, et al. Biomarker responses of the estuarine brown shrimp crangon L. to non-toxic stressors: temperature, salinity and handling stress effects[J]. Exp. Mar. Biol. Ecol, 2006, 335: 114-122. Mydlarz LD, Jones LE, Harvell CD. Innate immunity, environmental drivers, and disease ecology of marine and freshwater invertebrates[J]. Annual Review of Ecology, Evolution, and Systematics, 2006, 37: 251-288.
    Muta T, Iwanaga S. The role of hemolymph coagulation in innate immunity[J]. Curr Opin Immunol , 1996, 8 (1): 7-41.
    Nagoshi H, Inagawa H, Morii K, et al. Cloning and characterization of a LPS-regulatory gene having an LPS binding domain in kuruma prawn Marsupenaeus japonicus[J]. Mol Immunol, 2006, 43: 2061–2069.
    Pipe RK, Porte C, Livingstone DR. Antionxidant enzymes associated with the blood cells and haemolymph of the mussel Mytilusedlis [J]. Fish and shellfish Immunology, 1993(3): 221.
    Paul R , Pirow R. The physiological significance of respiratory proteins in invertebrates [J]. Zoology, 1998, 100: 319-327.
    Pan LQ, Fang B, Jiang LX, et al. The Effect of temperature on selected immune parameters of the White Shrimp, Litopenaeus vannamei[J]. Journal of The World Aquaculture Society, 2007, 38(2): 326-332.
    Patrzykat A, Zhang L, Mendoza V, Iwama GK, Hancock RE. Synergy of histone-derived peptides of coho salmon with lysozyme and flounder pleurocidin[J]. Antimicrob Agents Chemother, 2001, 45(5): 1337-1342.
    Pan CY, Chao TT, Chen JC.Shrimp(Penaeus monodon) anti-lipopolysaccharide factor reduces the lethality of Pseudomonas aeruginosa sepsis in mice[J]. 2007, 7(5): 687-700.
    Pech LL, Strand MR. Granular cells are required for encapsulation of foreign targets by insect haemocytes[J]. Journal of Cell Science, 1996, 109(8): 2053-2060.
    Persson M, Vey A, Soderhall K. Encapsulation of foreign particles in vitro by separated blood cells from crayfish, Astacus leptodactylus[J]. Cell Tissue Res, 1987, 247: 409-415.
    Rafael DR , Patricia HS, Margherita AB. Cloning and characterisation of cDNA sequences encoding for anti-lipopolysaccharide factors (ALFs) in Brazilian palaemonid and penaeid shrimps[J]. Fish&Shellsh Immunology, 2008, 25: 693-696.
    Relf J M, Chisholm J R S, Kemp G D et al. Purification and characterisation of a cysteine-rich 11.5kDa antibacterial protein from the granular haemocytes of the shore crab, Carcinus maenas[J]. Eur J Biochem, 1999, 264: 350- 357.
    Schnapp D, Kemp G D, Smith V J. Purification and characterization of a proline-rich antibacterial peptide, with sequence similarity to bactenecin-7, from the haemocytes of the shore crab, Carcinus maenas[J]. Eur.J.Biochem, 1996, 240, 532- 539.
    Sirikwan P, Kunlaya S, Anchalee T. Recombinant anti-lipopolysaccharide factor isoform 3 and the prevention of vibriosis in the black tiger shrimp, Penaeus monodon[J]. Aquaculture, 2009, 289: 219-224.
    Smith VJ, S?derh?ll K. A comparison of phenoloxidase activity in the blood of marine invertebrates[J]. Developmental and Comparative Immunology, 1991, 15(4): 251-261
    Supungul P, Klinbunga S, Pichyangkura R, et al. Identification of immune-related genes in haemocytes of black tiger shrimp (Penaeus monodon)[J]. Mar Biotechnol, 2002, 4: 487–494.
    Somboonwiwat K, Supungul P, Rimphanitchayakit V, et al. Differentially expressed genes in hemocytes of Vibrio harveyi-challenged shrimp Penaeus monodon[J]. J Biochem Mol Biol, 2006, 39, 26–36.
    S?derh?lla K, Cerenius L. Crustacean immunity[J]. Annual Review of Fish Diseases, 1992, 2: 3-23.
    Samakovlis C, Kylsten P, Kimbrell DA, et al. The andropin gene and its product, a male- specific antibacterial peptide in Drosophila melanogaster[J]. EMBOJ, 1991, 10: 163-169.
    Soderhall K.β- 1 ,3 - glucan enhancement of protease activity in crayfish Hemocyte lysate[J]. Comp Biochem Physicl, 1983, 74B(2) :221-224 .
    Soderhall K, Hall L. Lipopolysaccharide induced activation of the prophenolocidase activating system in cray fish haemocyte[J]. Biochem Biophys Acta , 1984, 797: 99 - 104.
    Song HH , Chang HJ , Her CH , et al . Phenoloxidase activity of hemocytes derived from Penaeus monodon and Macrobrachium rosebergii [ J]. Journal of invertebrate pathology, 1998, 71: 26 - 33.
    Tanaka S, Nakamura T, Morita T, et al. Limulus anti-LPS factor:an anticoagulant which inhibits the endotoxin mediated activation of Limulus coagulation system[J]. Biochem Biophys Res Commun, 1982, 105: 717-723.
    Van WJK, Komen J. The effect of chronic stress on growth in fish:a critical appraisal. Comparative Biochemistry and Physiology, 1998, 120(1): 107-112.
    Vallespi MG, Alvarez-Obregon JC, Rodriguez-Alonso, et al. A Limulus anti-LPS factor-derived peptide modulates cytokine gene expression and promotes resolution of bacterial acute infection in mice [J]. International Immunopharmacology, 2003, 3(2), 247-256.
    Wootton EC, Dyrynda EA, Ratcliffe NA. Interaction between non-specific electrostatic forces and humoral factors in haemocyte attachment and encapsulation in the edible cockle, Cerastoderma edule[J]. J Exp Biol, 2006, 209: 1326-1335.
    Wang DN, Liu JW, Yang GZ, et al.Cloning of Anti-LPS factor cDNA from TachyPleus tridentatus, expression in Bombys morilarvae and its biological activity in vitro[J]. Mol Biotechnol, 2002, 21(l): l-7.
    White KN, Ratcliffe NA. The segregation and elimination of radio and fluorescent-labelled marine bacteria from the baemolyph of the shore crab, Carcinus maenas[J]. J Mar Biol Ass, 1982, (62): 819-833.
    Wang KJ, Huang WS, Yang M et al. A male-specific expression gene, encodes a novel anionic antimicrobial peptide, scygonadin, in Scylla serrata[J]. Mol. Immunol, 2007, 44: 1961-1968.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700