用户名: 密码: 验证码:
东海陆架黑潮入侵及生态响应数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于ROMS模式(Regional Ocean Model System),利用单向嵌套的方法(即用整个太平洋粗网格(10'x10')的模拟结果为中国近海的细网格数值模式(5'x5')提供开边界条件),研究了东海陆架上,黑潮水入侵的水动力学特征;此外基于NEMURO(North Pacific Ecosystem Model for Understanding Regional Oceanography),我们自己开发了包含磷酸盐限制的三维物理-生态-化学耦合生态模型,并用其研究了长江口外海域的生态响应过程。获得了以下几个方面的创新性研究成果。
     1.模拟得到了比以往数值模拟研究更准确的结果。模式给出的对马海峡的流量为2.70 Sv (Sv≡106m3s-1),该模拟结果比已有的模拟结果更接近于观测值2.64 Sv(1997.2.21-2002.8.25平均流量);此外模式给出的台湾海峡的流量(1.03 Sv)也很接近最近的估计值(1.20 Sv)。
     2.提出了夏季东海陆架上存在两个黑潮底部分支,并给出了具体的入侵路径,此两个黑潮底部分支和黑潮表层分支KBC构成了东海陆架黑潮入侵的反气旋楼梯状三维结构。利用覆盖整个东中国海南部区域的夏季航次资料和数值模拟,对台湾东北的黑潮入侵进行了详细研究。本文发现,在垂向上,台湾东北的黑潮入侵,夏季存在三个分支:近岸黑潮底层分支(N-KBBC)、远岸黑潮底层分支(O-KBBC)和黑潮表层分支KBC。N-KBBC从台湾东北逐渐向西北涌升到60m等深线,在27.5°N, 122°E这个区域,转向东北,沿着60m等深线流动,其可以到达长江口外31°N的地方,形成了浙江外海的底部高盐水;O-KBBC从台湾东北冲出台湾岛后向西北方向涌升,然后沿着100m等深线向东北方向流动,最后在28°N附近一部分重新回到黑潮主轴,另一部分水继续沿着100m等深线向东北流动。起源于台湾东部黑潮表层水的KBC前人已有研究,其从黑潮主轴分离后很快就转向东南东,然后在27.0°N重新加入黑潮。
     3.发现了,N-KBBC起源于台湾东部黑潮水的120-300m层,O-KBBC起源于台湾东部黑潮水的60-120m层。也就是说黑潮近岸分支N-KBBC的源头水在黑潮远岸分支O-KBBC的源头水的下方。这就解释了浙江外海60m等深线上的温度和盐度,比浙江外海100m等深线上的温度、盐度更低的这个观测现象;同时很好的解释了浙江外海60m等深线底层水的磷酸盐浓度,比浙江外海100m等深线上的底层水磷酸盐浓度更高的这个观测事实。这是因为浙江外海60m等深线的底层水由低温、相对低盐和高磷酸盐浓度的N-KBBC导致,而浙江外海100m等深线的底层水而由相对高温、相对高盐和低磷酸盐浓度的O-KBBC导致。
     4.计算发现,N-KBBC对长江口外邻近海域贡献的磷酸盐比长江径流输入的磷酸盐高一个量级。计算表明夏季N-KBBC分支的流量大概为0.3 Sv,该数值比长江径流量(0.04 Sv)高了一个数量级。夏季N-KBBC向长江口外海域,源源不断的输入磷酸盐,数值试验表明,N-KBBC输入江口外邻近海域的磷酸盐量约为0.5万吨,长江径流输入江口外邻近海域的磷酸盐的量约为0.03万吨/月。
     5.提出了,夏季浙江岸线附近(30°N以南)的高叶绿素分布和从舟山到(122.5°E, 31°N)这条线上的高叶绿素分布条带,主要由N-KBBC导致。利用我们升级的生态模式,对长江口外海域的生态过程进行了模拟,数值实现表明,长江径流夏季不会导致浙江岸线附近(30°N以南)高叶绿素分布,其主要由N-KBBC导致;并计算了N-KBBC导致的生物固碳能力,其固碳量约为40万吨/天。由于黑潮的存在,其阻碍了外海大洋水和中国近海陆架的水交换,而本文提出的黑潮底部入侵分支,是外海大洋水和中国近海陆架水进行物质交换的纽带,其对中国近海的生态过程具有重要影响。
Using Regional Ocean Model System (ROMS), the ocean circulation on the East China Sea (ECS) shelf was examined by a fine resolution model(5'×5') which was nested in a coarse resolution Pacific Ocean model(10'×10'). In addition, we have developed a 3D phosphate limited physics-biology-chemistry coupled model on the basis of NEMURO (North Pacific Ecosystem Model for Understanding Regional Oceanography), and used the coupled model to study the biological process in the adjacent area of Changjiang River mouth. We have made five important progress as following:
     1.The high-resolution simulation shows more accurate results than previous model results. The high-resolution simulation show volume transport 2.70 Sv (Sv≡106 m3s-1) through the Tsushima Strait, which is more consistent with the previous 5.5 yrs. (1997.2.21-2002.8.25 yearly mean value)observation value 2.64 Sv than former model results. For the Taiwan Strait, it also shows a close volume transport (1.03 Sv) to recent estimate (1.20 Sv).
     2. It was proposed that Kuroshio exhibits its intrusion by a anti-cyclonical stair structure which is composed of a nearshore Kuroshio bottom branch current (N-KBBC), an offshore Kuroshio bottom branch current (O-KBBC) and a surface Kuroshio branch current (KBC); the pathways of N-KBBC and O-KBBC have also been elucidated. The bottom Kuroshio intrusion northeast of Taiwan has been carefully investigated by cruise data covering the whole southern East China Sea and an accurate numerical simulation based on ROMS. On the basis of numerical experiments and observational data, we found that originated from the Kuroshio northeast of Taiwan, N-KBBC upwells northwestward gradually from the Kuroshio east of Taiwan, then turns to northeast in the region around 27.5°N, 122°E, and finally reaches at 31°N off Changjiang river mouth along about 60 m isobaths, forming the bottom saline water off the coast of Zhejiang province, China; O-KBBC initially upwells northwestward northeast of Taiwan, then flows northeastward along the 100-m isobath on the East China Sea shelf, and finally one part of it rejoins the Kuroshio mainstream at 28°N and another part of it flows further northeastward; stemmed from Kuroshio surface water, the KBC, as reported in previous studies, turns to ESE after it immediately separated from Kuroshio mainstream and rejoins the Kuroshio mainstream near 27°N.
     3. It was proposed that N-KBBC originated from the Kuroshio subsurface water (120-300m) east of Taiwan, while the O-KBBC originated from the Kuroshio water (60-120m) east of Taiwan. N-KBBC originated from the deeper water than O-KBBC did. The vertical distribution of N-KBBC and O-KBBC well explained that why there are observational lower salinity, temperature and higher phosphate value in the bottom water close to 60m isobath off the Zhejiang coast than the bottom water close to 100m isobath off the Zhejiang coast. Because observational lower salinity, temperature and higher phosphate value in the bottom water close to 60m isobath off the Zhejiang coast is caused by N-KBBC, while the bottom water close to 100m isobath off the Zhejiang coast is formed by the O-KBBC.
     4. It was found by numerical calculation that to the adjacent area off Changjiang river mouth, N-KBBC contributed a large amount phosphate which is one order of magnitude larger than the Changjiang river did. In summer, the volume transport of the N-KBBC is estimated at about 0.3 Sverdrup (Sv) which is one order of magnitude larger than that of Changjiang river (about 0.04 Sv). The N-KBBC can continuously transport the phosphate from the east of Taiwan to the area off Changjiang river mouth. The phosphate input of the N-KBBC (5.0×104 ton/month) is one order of magnitude larger than that of Changjiang River(3.0×103 ton/month).
     5. It was proposed that the high chlorophyll value distribution off the coast of Zhejiang (to the south of 30°N) and the high chlorophyll value distribution zone between Zhoushan and (122.5°E, 31°N), were attributed to the N-KBBC. Using our developed biological model, numerical experiments have been done and show that the high chlorophyll value distribution off the coast of Zhejiang (to the south of 30°N) cannot be generated by Changjiang River, but N-KBBC can do it. Photosynthetic carbon fixation caused by N-KBBC is estimated at about 4.0×105 ton/day.
     The water exchange between the open sea water and marginal sea water on the East China Sea Shelf is blocked by the Kuroshio. Therefore the cross-shelf Kuroshio intrusion branches play a very important role in the material exchange between the Pacific Ocean and the marginal sea of China.
引文
Alexander, S. F., and J. C. McWilliams (2011), Accurate Boussinesq oceanic modeling with a practical,“Stiffened”Equation of State, Ocean Modelling, 38(1-2), 41-70.
    Andres, M., Y.-O. Kwon, and J. Yang (2011), Observations of the Kuroshio's barotropic and baroclinic responses to basin-wide wind forcing, J. Geophys. Res., 116(C4), C04011.
    Caruso, M. J., G. G. Gawarkiewicz, and R. C. Beardsley (2006), Interannual variability of the Kuroshio intrusion in the South China Sea, J Oceanogr, 62(4), 559-575.
    Chang, P. H., and A. Isobe (2003), A numerical study on the Changjiang diluted water in the Yellow and East China Seas, J Geophys Res-Oceans, 108(C9), 1-17.
    Chen, C.-T. A. (2011), Downwelling then upwelling again of the upwelled Kuroshio water, J. Geophys. Res.
    Chen, C. S. (2003), Marine Ecosystem Dynamics and Modeling, Higher Education Press, Beijing.
    Chen, C. T. A. (1996), The Kuroshio intermediate water is the major source of nutrients on the East China Sea continental shelf, Oceanol Acta, 19(5), 523-527.
    Chen, C. T. A. (2003), Rare northward flow in the Taiwan Strait in winter: a note, Cont Shelf Res, 23(3-4), 387-391.
    Chen, C. T. A. (2008), Distributions of nutrients in the East China Sea and the South China Sea connection, J Oceanogr, 64(5), 737-751.
    Chern, C. S., and J. Wang (1989), On the water masses at northern offshore area of Taiwan, Acta Oceanogr. Taiwan, 22, 14-32.
    Chern, C. S., and J. Wang (1990), On the Kuroshio branch current north of Taiwan, Acta Oceanogr. Taiwan, 25, 55-64.
    Fang, G. H., B. R. Zhao, and Y. H. Zhu (1991), Water Volume Transport through the Taiwan Strait and the Continental-Shelf of the East-China-Sea Measured with CurrentMeters, Elsev Oceanogr Serie, 54, 345-358.
    Feng, M., H. Mitsudera, and Y. Yoshikawa (2000), Structure and variability of the Kuroshio Current in Tokara Strait, J Phys Oceanogr, 30(9), 2257-2276.
    Guan, B. X. (2002), Winter Counter-wind Current off the Southeastern China Coast, China Ocean University Press,Qingdao(in Chinese).
    Guan , B. X., and G. H. Fang (2006), Winter counter-wind currents off the southeastern China coast: A review, J Oceanogr, 62(1), 1-24.
    Guan, B. X., and Y. C. Yuan (2006), Overview of studies on some eddies in the China seas and their adjacent seas, Acta Oceanology Sinica, 28(3), 16.
    Guo, B. H., Z. Z. Huang, and P. Y. e. a. Li (2004), Ocean Environment of China Coast Sea and Adjacent Sea Areas, Ocean Press, Beijing, 267 pp. (in Chinese).
    Guo , X. Y., Y. Miyazawa, and T. Yamagata (2006), The Kuroshio onshore intrusion along the shelf break of the East China Sea: The origin of the Tsushima Warm Current, J Phys Oceanogr, 36(12), 2205-2231.
    Guo, X. Y., H. Hukuda, Y. Miyazawa, and T. Yamagata (2003), A triply nested ocean model for simulating the Kuroshio - Roles of horizontal resolution on JEBAR, J Phys Oceanogr, 33(1), 146-169.
    Haidvogel, D. B., H. G. Arango, K. Hedstrom, A. Beckmann, P. Malanotte-Rizzoli, and A. F. Shchepetkin (2000), Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates, Dynam Atmos Oceans, 32(3-4), 239-281.
    Hasumi, H., H. Tatebe, T. Kawasaki, M. Kurogi, and T. T. Sakamoto (2010), Progress of North Pacific modeling over the past decade, Deep-Sea Res Pt Ii, 57(13-14), 1188-1200.
    Hu, D. X., L. H. Lu, Q. C. Xiong, Z. X. Ding, and S. C. Sun (1984), On the cause and dynamical structure of the coastal upwelling off Zhejiang province, Studia Marina Sinica, 21, 101-112(in Chinese).
    Hu , J. Y., H. Kawamura, C. Y. Li, H. S. Hong, and Y. W. Jiang (2010), Review on Current and Seawater Volume Transport through the Taiwan Strait, J Oceanogr, 66(5), 591-610.
    Hu, X. M., X. J. Xiong, F. L. Qiao, B. H. Guo, and X. P. Lin (2008), Surface current field and seasonal variability in the Kuroshio and adjacent regions derived from satellite-tracked drifter data, Acta Oceanol Sin, 27(3), 11-29.
    Ichikawa, H., and R. Beardsley (2002), The Current System in the Yellow and East China Seas, J Oceanogr, 58(1), 77-92.
    Isobe, A. (2008), Recent advances in ocean-circulation research on the Yellow Sea and East China Sea shelves, J Oceanogr, 64(4), 569-584.
    Jan, S., D. D. Sheu, and H. M. Kuo (2006), Water mass and throughflow transport variability in the Taiwan Strait, J Geophys Res-Oceans, 111(C12), -.
    Johns, W. E., T. N. Lee, D. X. Zhang, R. Zantopp, C. T. Liu, and Y. Yang (2001), The Kuroshio east of Taiwan: Moored transport observations from the WOCE PCM-1 array, J Phys Oceanogr, 31(4), 1031-1053.
    Kako, S., A. Isobe, S. Yoshioka, P. H. Chang, T. Matsuno, S. H. Kim, and J. S. Lee (2010), Technical Issues in Modeling Surface-Drifter Behavior on the East China Sea Shelf, J Oceanogr, 66(2), 161-174.
    Kent, E., et al. (2007), Advances in the use of historical marine climate data, B Am Meteorol Soc, 88(4), 559-564.
    Kishi, M. J., et al. (2007), NEMURO--a lower trophic level model for the North Pacific marine ecosystem, Ecological Modelling, 202(1-2), 12-25.
    Large, W. G., J. C. McWilliams, and S. C. Doney (1994), OCEANIC VERTICAL MIXING - A REVIEW AND A MODEL WITH A NONLOCAL BOUNDARY-LAYER PARAMETERIZATION, Reviews of Geophysics, 32(4), 363-403.
    Lee, H. J., and S. Y. Chao (2003), A climatological description of circulation in and around the East China Sea, Deep-Sea Res Pt Ii, 50(6-7), 1065-1084.
    Lee, J. S., and T. Matsuno (2007), Intrusion of Kuroshio water onto the continental shelf of the East China Sea, J Oceanogr, 63(2), 309-325.
    Liu, K. K., T. Y. Tang, G. C. Gong, L. Y. Chen, and F. K. Shiah (2000), Cross-shelf and along-shelf nutrient fluxes derived from flow fields and chemical hydrography observed in the southern East China Sea off northern Taiwan, Cont Shelf Res, 20(4-5),493-523.
    Lv, X. G., F. L. Qiao, C. S. Xia, and Y. L. Yuan (2007), Tidally induced upwelling off Yangtze River estuary and in Zhejiang coastal waters in summer, Sci China Ser D, 50(3), 462-473.
    Lv, X. G., F. L. Qiao, C. S. Xia, J. R. Zhu, and Y. L. Yuan (2006), Upwelling off Yangtze River estuary in summer, J Geophys Res-Oceans, 111(C11), -.
    Ma, J., F. L. Qiao, C. S. Xia, and C. S. Kim (2006), Effects of the Yellow Sea Warm Current on the winter temperature distribution in a numerical model, J Geophys Res-Oceans, 111(C11), -.
    Marchesiello, P., J. C. McWilliams, and A. Shchepetkin (2001), Open boundary conditions for long-term integration of regional oceanic models, Ocean Model, 3(1-2), 1-20.
    Marchesiello, P., J. C. McWilliams, and A. Shchepetkin (2003), Equilibrium structure and dynamics of the California Current System, J Phys Oceanogr, 33(4), 753-783.
    Marchesiello, P., L. Debreu, and X. Couvelard (2009), Spurious diapycnal mixing in terrain-following coordinate models: The problem and a solution, Ocean Modelling, 26(3-4), 156-169.
    Mellor, G. L., and T. Yamada (1982), DEVELOPMENT OF A TURBULENCE CLOSURE-MODEL FOR GEOPHYSICAL FLUID PROBLEMS, Reviews of Geophysics, 20, 851-875.
    Moon, J. H., I. C. Pang, J. Y. Yang, and W. D. Yoon (2010), Behavior of the giant jellyfish Nemopilema nomurai in the East China Sea and East/Japan Sea during the summer of 2005: A numerical model approach using a particle-tracking experiment, J Marine Syst, 80(1-2), 101-114.
    Nitanni, H. (1972), Beginning of the Kuroshio, Kuroshio—its physical aspects, edited by H. Stommel and Y. Yoshida.
    Paulson, C. A., and J. J. Simpson (1977), Irradiance Measurements in Upper Ocean, J Phys Oceanogr, 7(6), 952-956.
    Pedlosky, J. (1996), Ocean Circulation Theory, Springer-Verlag, New York.
    Qiu, B., and N. Imasato (1990), A Numerical Study on the Formation of the KuroshioCounter Current and the Kuroshio Branch Current in the East China Sea, Cont Shelf Res, 10(2), 165-184.
    Shchepetkin, A. F., and J. C. McWilliams (2005), The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Model, 9(4), 347-404.
    Shchepetkin, A. F., and J. C. McWilliams (2009), Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system (vol 227, pg 3595, 2008), J Comput Phys, 228(24), 8985-9000.
    Song, Y., and D. B. Haidvogel (1994), A semi-implicit circulation model using a generalized topography following coordinate, J. Comput. Phys., 115, 228-244.
    Su, J. L., and Y. Q. Pan (1987), On the shelf circulation north of Taiwan, Acta Oceanol Sin, 1, 1-20.
    Su, J. L., Y. Q. Pan, and X. S. Liang (1994), Kuroshio intrusion and Taiwan Warm Current, in Oceanology of China Seas, 1(edited by D. Zhou et al., Kluwer Academic Publishers, Dordrecht, Netherlands.), 59-77.
    Taguchi, B., S. P. Xie, N. Schneider, M. Nonaka, H. Sasaki, and Y. Sasai (2007), Decadal variability of the Kuroshio Extension: Observations and an eddy-resolving model hindcast, J Climate, 20(11), 2357-2377.
    Takikawa, T., J. H. Yoon, and K. D. Cho (2005), The Tsushima warm current through Tsushima Straits estimated from ferryboat ADCP data, J Phys Oceanogr, 35(6), 1154-1168.
    Tang, T. Y., J. H. Tai, and Y. J. Yang (2000), The flow pattern north of Taiwan and the migration of the Kuroshio, Cont Shelf Res, 20(4-5), 349-371.
    Teague, W. J., P. A. Hwang, G. A. Jacobs, J. W. Book, and H. T. Perkins (2005), Transport variability across the Korea/Tsushima Strait and the Tsushima Island wake, Deep-Sea Res Pt Ii, 52(11-13), 1784-1801.
    Teague, W. J., G. A. Jacobs, D. S. Ko, T. Y. Tang, K. I. Chang, and M. S. Suk (2003), Connectivity of the Taiwan, Cheju, and Korea straits, Cont Shelf Res, 23(1), 63-77.
    Umlauf, L., and H. Burchard (2003), A generic length-scale equation for geophysical turbulence models, Journal of Marine Research, 61(2), 235-265.
    Wang, B. D., and X. L. Wang (2006), Impact of the exceptionally high flood from the Changjiang River on the aquatic chemical distributions on the Huanghai Sea and East China Sea shelves in the summer of 1998, Acta Oceanol. Sinica, 25(4), 43-52.
    Wang, Y. H., S. Jan, and D. P. Wang (2003), Transports and tidal current estimates in the Taiwan Strait from shipboard ADCP observations (1999-2001), Estuar Coast Shelf S, 57(1-2), 193-199.
    Warner, J. C., C. R. Sherwood, H. G. Arango, and R. P. Signell (2005), Performance of four turbulence closure models implemented using a generic length scale method, Ocean Model, 8(1-2), 81-113.
    Weng, X. C., and C. M. Wang (1984), A preliminary study of the structure of temperature and salinity in the northwesten part of the East China Sea, Studia Marina Sinica, 21, 49-61,(In chinese).
    Wong, G. T. F., G. C. Gong, K. K. Liu, and S. C. Pai (1998), 'Excess nitrate' in the East China Sea, Estuar Coast Shelf S, 46(3), 411-418.
    Wu, C. R., H. F. Lu, and S. Y. Chao (2008), A numerical study on the formation of upwelling off northeast Taiwan, J Geophys Res-Oceans, 113(C8), -.
    Yang, D. Z., B. S. Yin, Z. L. Liu, and X. R. Feng (2011), Numerical study of the ocean circulation on the East China Sea Shelf and a Kuroshio bottom branch northeast of Taiwan in summer, J Geophys Res-Oceans, 10.1029/2010JC006777.
    Zhang, J., S. M. Liu, J. L. Ren, Y. Wu, and G. L. Zhang (2007), Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf, Progress in Oceanography, 74(4), 449-478.
    Zhang, J., Z. F. Zhang, S. M. Liu, Y. Wu, H. Xiong, and H. T. Chen (1999), Human impacts on the large world rivers: Would the Changjiang (Yangtze River) be an illustration?, Global Biogeochem Cy, 13(4), 1099-1105.
    Zhu, J. R., C. S. Chen, P. X. Ding, C. Y. Li, and H. C. Lin (2004), Does the Taiwan warm current exist in winter?, Geophys Res Lett, 31(12), -.
    顾宏堪,熊孝先,刘明星, and李延(1981),长江口附近氮的地球化学Ⅰ、长江口附近海水中的硝酸盐,山东海洋学院学报(04), 37-46.
    顾宏堪,魏庆仁,吴玉莺, and姜传贤(1982a),长江口附近氮的地球化学Ⅲ.海水中的有机氮,海洋湖沼通报(02), 1-8.
    顾宏堪,马锡年,沈万仁,任广法,陈志,习焕祥,李国基, and张莲影(1982b), 长江口附近氮的地球化学Ⅱ.长江口附近海水中的亚硝酸盐及氨,山东海洋学院学报(02), 31-38.
    海洋图集编委会(1992),渤海、黄海、东海海洋图集—水文分册,北京:海洋出版社.
    胡敦欣,吕良洪,熊庆成,丁宗信, and孙寿昌(1980),关于浙江沿岸上升流的研究,科学通报(03), 131-133.
    李道季,张经,吴莹,梁俊, and黄大吉(2002),长江口外氧的亏损,中国科学(D辑:地球科学)(08), 686-694.
    李铁,胡立阁, and史致丽(2000),营养盐对中肋骨条藻和新月菱形藻生长及氮磷组成的影响,海洋与湖沼(01), 46-52.
    刘波,王玉衡, and顾峰等(1993),东海营养盐分布及相互关系的研究,黑朝调查研究论文选(5),北京:海洋出版社, 325-355.
    陆赛英,葛人峰, and刘丽慧(1996),东海陆架水域营养盐的季节变化和物理输运的规律,海洋学报(中文版)(05).
    浦泳修(1983),夏季长江冲淡水扩展机制的初析,东海海洋(01), 43-51.
    全为民, and沈新强(2004),长江口及邻近水域渔业环境质量的现状及变化趋势研,海洋渔业, 26(2), 2-9.
    沈志良,陆家平, and留兴俊等(1992),长江口区营养盐的分布特征及三峡工程对其影响,海洋科学集刊, 33, 109-129.
    石岩峻(2004),赤潮藻对营养盐的吸收及生长和相关特性研究,博士thesis,北京化工大学.
    孙湘平,修树孟, and苏玉芬(1996),“东、南海陆架暖流”的初步探讨,海洋通报(02), 1-10.
    王保栋,战闽, and臧家业(2002),长江口及其邻近海域营养盐的分布特征和输运途径,海洋学报(中文版), 24(1), 53-58.
    王金辉,黄秀清,刘阿成, and张有份(2004),长江口及邻近水域的生物多样性变化趋势分析,海洋通报(01), 32-39.
    王玉衡,董恒霖, and任典勇(1992),夏冬季东海营养盐的分布及水系化学特征的初步研究,黑朝调查研究论文选(4),北京:海洋出版社, 280-288.
    翁学传, and王从敏(1985),台湾暖流水的研究,海洋科学(01), 7-10. 翁学传, and王丛敏(1988), ON THE TAIWAN WARM CURRENT WATER, Chinese Journal of Oceanology and Limnology(04), 320-329.
    翁学传, and王从敏(1989a),关于台湾暖流水的研究,青岛海洋大学学报(S1), 159-168.
    翁学传, and王从敏(1989b), On the Taiwan Warm Current Water,青岛海洋大学学报(S1), 500-514.
    杨德周,尹宝树,俞志明,白涛, and刘兴泉(2009),长江口叶绿素分布特征和营养盐来源数值模拟研究,海洋学报(中文版)(01), 10-19.
    张启龙, and翁学传(1985),应用对应分析法划分夏季东海水团的初步研究,海洋科学(02), 14-18.
    张启龙,王凡,赵卫红, and唐晓晖(2007),舟山渔场及其邻近海域水团的季节特征,海洋学报(中文版)(05), 1-9.
    赵保仁,任广法,曹德明, and杨玉玲(2001),长江口上升流海区的生态环境特征,海洋与湖沼(03), 327-333.
    赵水东(2006),温度、盐度和营养盐对东海原甲藻生长的影响,硕士thesis,暨南大学.
    周名江, and于仁成(2007),有害赤潮的形成机制、危害效应与防治对策,自然杂志(02), 72-77+125-126.
    周名江,朱明远, and张经(2001),中国赤潮的发生趋势和研究进展,生命科学(02), 54-59+53.
    朱建荣(2003),夏季长江口外水下河谷西侧上升流产生的动力机制,科学通报(23), 2488-2492.
    朱建荣(2004),长江口外海区叶绿素a浓度分布及其动力成因分析,中国科学(D辑:地球科学)(08), 757-762.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700