用户名: 密码: 验证码:
外来入侵烟粉虱的种群动态、遗传分化及对噻虫嗪的抗性分子机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
据报道,我国现有入侵生物400余种,仅松材线虫(Bursaphelenchus xylophilus)、烟粉虱(Bemisia tabaci)、斑潜蝇(Liriomyza sativae)、美国白蛾(Hyphantria cunea)、稻水象(Lissorhoptrusoryzophilus Kuschel)等11种外来有害生物,在我国造成的年经济损失就达574.3亿元人民币。其中,B型烟粉虱是世界性重要害虫,也是近年来入侵我国的外来有害生物,自90年代中后期入侵我国以来,在许多地区暴发危害,造成了严重经济损失,现已成为我国蔬菜、花卉和棉花等经济作物上的主要害虫。本论文主要对B型烟粉虱的种群动态、遗传分化及其对噻虫螓抗药性的分子机理等进行了研究。
     2002-2004年对山西省烟粉虱的寄主植物范围和危害情况调查结果:山西省现有烟粉虱寄主植物27科103种(变种),其中葫芦科、十字花科、茄科和豆科等危害较为严重,且以晋南地区受害最为严重,寄主种类较多。
     通过对12种主要寄主植物上烟粉虱田间种群动态调查研究,得知不同寄主植物上烟粉虱种群数量达到高峰的时间有所差别,波动的幅度也不一致。烟粉虱在12种寄主植物上的种群数量大小比较依次为:油葵>西葫芦>棉花>大豆>南瓜>茄子>丝瓜>番茄>辣椒>黄瓜>菜豆>玉米,说明烟粉虱对其寄主植物具有一定的自然选择性。另外,采用扩散系数(C=S~2/(?)),对烟粉虱在棉花、油葵和大豆三种作物田的空间分布型进行了初步分析,结果表明均为聚集分布型。
     经反复实验,探索了一套简便、可行、纯度高、带型完整的多头和单头烟粉虱DNA基因组的提取方法。该方法提取的DNA,适用于如AFLP等对模板纯度和质量要求较高的分子标记技术研究,同时也适用于其它小型昆虫DNA的提取。
     通过DNA模板浓度、Mg~(2+)浓度、dNTP用量以及其它反应参数等的摸索、调整,建立了一套完善的烟粉虱AFLP分子标记技术体系。
     采用AFLP分子标记体系,对同一地区不同寄主上烟粉虱种群的遗传分化研究结果表明:不同寄主烟粉虱种群之间已经存在一定的遗传分化,但分化的程度比较小;同一寄主烟粉虱种群内的遗传分化则很低。
     采用AFLP分子标记体系,对来自美国、以色列、巴基斯坦、澳大利亚、肯尼亚、西班牙和中国等7个国家24个地区的27个烟粉虱种群进行了不同地理种群间遗传分化及系统发育地位研究。结果表明:烟粉虱不同地理种群间存在着丰富的遗传多样性。聚类分析结果显示,中国的烟粉虱种群可能存在多个来源,同时表明中国目前至少存在B型、Q型和非B/Q等4种生物型。采用AFLP分子标记体系,对来自我国浙江(ZJ1-China)、山东(SD2-China)、北京(BJ3一China)、上海(SH1-China)、山西(SX1-China)和河南(HN-China)等地区的烟粉虱种群内遗传分化研究结果表明,同一地区烟粉虱种群内的遗传分化和杂合度均较低,说明B型烟粉虱在中国的发展历史较短,还没有积累更多的遗传变异。另外,从测试结果看,几个种群的平均杂合度大小依次为:北京(BJ3-China)>山东(SD2-China)>浙江(ZJ1-China)>上海(SH1-China)>山西(SX1-China)>河南(HN-China)。该结果将在揭示烟粉虱的入侵路径方面起着一定作用。
     用噻虫嗪对烟粉虱进行室内继代抗性汰选,并采用改进的琼脂保湿浸叶法进行生物测定,获得了抗性倍数为39.96倍的抗性品系和相对敏感品系。
     采用AFLP分子标记技术,对噻虫嗪烟粉虱抗性品系的遗传分化进行了研究,在聚类树中首
Bemisia tabaci (Gennadius) is an important invasive species that has caused severe damage in the world. B. tabaci was recorded for the first time on cotton in China in 1949, but significant damages caused by this insect had not been noticed until 1990s. In the past several years, the importance of this whitefly in China has increased spectacularly, which has infested in more than 20 provinces in China on cotton, some ornamental plants and most of the vegetable crops, in most of these place, which has resulted in a significant decrease in yields. However, little have been understood about its invasive mechanism and resistant mechanism to insecticide. In this paper, we studied the population dynamics, genetic diversity of invasive B. tabaci and its molecular mechanism of resistance to Thiamethoxam.From 2002-2004, the host plants of B. tabaci have been investigated and identified in Shanxi province, and all the host plants can be divided into 4 grades according to the damage degree caused by B. tabaci. There were 103 species of plant which belong to 27 families as hosts of B. tabaci, of them Cucurbitaceae. Solanaceae, Cruciferae and Leguminosae are the main families of host-plant, and the population density of B. tabaci was higher in south of Shanxi province than in north.The population dynamics of B. tabaci on 12 species of host-plants were studies from 2002 to 2004, which indicated that the infesting time and population densities of B. tabaci on different hosts were significantly different. the density of B. tabaci on different host plants was in the order of sunflower>pumpkin>cotton>soybean>cushaw>eggplant>hechima> tomato>chili>cucumber>kidney> bean>corn. In addition, spatial distributions of B. tabaci in cotton, sunflower and soybean fileds were studied, which indicated that they were collective distribution type.A amplified fragment length polymorphism (AFLP) molecular marker system on B. tabaci was funded by adjusting the DNA density, Mg~2+ density, dosage of dNTP and other reactions parameter etc.AFLP analysis showed that genetic differences exited among and within different host populations, but the difference among populations is bigger that that within populations.Analysis of the genetic diversity among 27 different geographical populations of B. tabaci and determination of biotypes of B. tabaci in China based on AFLP was conducted. The use of 5 primer combinations elected from 64 primer combinations allowed the identification of 229 polymorphic bands (97.03%) from 60 to 500 bp, suggesting abundant genetic diversity among different geographical populations of B. tabaci. Molecular phylogenetic tree based on AFLP analyse revealed the presence in China of at least four different genetic groups of B. tabaci. B biotype, Q biotype and two non B/Q biotype. B biotype was nationwide distributed. Q biotype was present only in local region of China including YunNan province and BeiJing city. Other two non B/Q biotype groups, one was found in ShanDong and HeBei provinces, and another in ZheJiang province.Genetic differences within different geographical populations of B. tabaci, including Zhejiang(ZJl-China),Shandong (SD2-China), Peking(BJ3-China),Shanghai (SH1-China), Shanxi(SX1-China)and Henan (HN-China) were studied using AFLP molecular marker. The results showed that geneticdifference and heterisity of population were lower. Heterisitys of several populations in order were:
    Peking (BJ3- China) >Shandong (SD2-China)>Zhejiang (ZJ1-China) >Shanghai (SH1-China)>Shanxi (SX1-China)>Henan (HN-China).A 39.96 fold Thiamethoxam-resistant strain of B. tabaci was achieved by the selection with Thiamethoxam.Analysis of the genetic diversity between the resistant and susceptive strains of B. tabaci based on AFLP were conducted. The results showed that a significant genetical differentiation was found between the resistant and susceptive strains of B. tabaci. Additionally, peculiar amplified DNA fragments, the 150bp for resistant strain and the 315bp for susceptive strain were identified using the E-ACT/M-CTG primer, which may serve to
引文
Abdeldaffie EYA, Elhag EA, Bashir NHH. Resistance in the cotton whitefly, Bemisia tabaci (Genn.) to insecticide recently introduced into Sudan Gezira.Trop Pest Manage, 1987,33:283~86
    Abdullahi I, Atiri GI, Thottappilly G, et al. Discrimination of cassava-associated Bemisia tabaci in Africa from polyphagous populations, by PCR-RFLP of the internal transcribed spacer regions of ribosomal DNA. Journal of Applied Entomology, 2004,128:81-87
    Abdullahi I, Winter S, Atiri G I, et al. Molecular characterization of whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) populations infesting cassava.J. Bull Entomol Res., 2003,93(2): 97-106
    Abe H, Sugasaki T, Terada T, et al. Nested retrotransposons on the W chromosome of the wild silkworm Bombyx mandarina. Insect Mol Biol., 2002,11(4):307-14
    AL-Aboodi A, French-Constant RH. RAPD-PCR confirm absence of genetic variation between insecticide resistant variants of the green peach aphid, Myzus persicae (Homoptera: Aphididae). The Great Lakes-entomologist (USA), 1995, 28(2): 127-133
    Anthony N, Unruh T, Ganser D, et al. Duplication of the Rdl GABA receptor subunit gene in an insecticide-resistant aphid, Myzus persicae. Moi Gen Genet., 1998,260(2-3): 65-75
    Arias HR.Topology of ligand binding sits on the nicotinic acetycholine receptor. Brain Res Rev., 1997, 25:133-191
    Atkinson L, Adams SE. Double-Strand conformation polymorphism (DSCP) analysis of the mitochondrial control region generates highly variable markers for population studies in a social insect. Insect Mol., 1997,6(4): 369 376.
    Audiso, Paolo. Molecular re-examination of the taxonomy of the meligethecenss viridescens species complex (Coleoptera: Nitidulidae). Biochemical Systematics and Ecology, 2000, 28(1): 1-13
    Azab A, Megahed MM, El-Mirasawi HD. On the range of host-plants of Bemisia tabaci (Genn.)Bull. Soc. Entomol Egypt, 1970, 54:319-326
    Ballinger C rabtree ME, Black WC, et al. Use of genetic polymorphisms detected by the r andom amplified polymophic DNA polymerase chain reaction (RAPD RCR)for differentiatio and identification of Aedes aegyptii subspecies and populations. Am. J.Trop. Med. Hyg., 1992, 47(6):893-901
    Bampbell BC. Congruent evolution between whiteflies (Homopera: Aleyrodidae)and their bacterial endosymbionts based on respective 18S and 16S rDNAs. Curr. Microbiol., 1993,26:129-132
    Barker GC. Microsatellite DNA: a tool for population genetic analysis .J. Trans R Soc Trop Med Hyg., 2002, 96 Suppl 1:S 21-24
    Bas B, Dalkilic Z. Genetic relationship among Floida Diaprepes abbreviatus population. Annals of the Entomoligical Society of America, 2000, 93(3):459-465
    Baumann A, Jonas P, Gundelflnger ED.Sequence of Dα 2, a novel α-like subinit of Drosophila nicotinic acetycholine receptor. Nucleic Acils. Res., 1990, 18:3640
    Bedford ID, Briddon RW, Brown JK, et al. Geminivirus transmission and biological characterization of Bemisia tabaci (Gennadius) biotypes from different geographic regions. Annals of Applied Biology, 1994,125:311-325
    Bellows TS, Pering TM, Gill RJ, et al. Description of a species of Bemisia (Homoptera: Aleyrodiae). Arm. Entomol. Soc. Am., 1994, 87(2):195-206
    Berlinger MJ, Bahad D. Reeding for resistance to virus transmission by whiteflies in tomatoes. Science and its Application, 1987, 8:183-784
    Bertrand D, Ballivet M, Gomez M, et al. Physiological properties of neuronal nicotinic receptors reconstituted from the vertebrate β2 subunit and Drosophila α subunits. Eur J Neurosci, 1994, 6:869-875
    Bertrand D, Devillers-Thiery A, Revah F, et al. Unconventional pharmacology of a neuronal nicotinic receptor mutated in the channel domain.Proc.Natl.Acad.Sci.USA, 1992, 89:1261-1265.
    Bethke JA, Paine TD, Nuessly GS. Comparative biology morphometrics and development of two populations of Bemisia tabaci (Homoptera: Aleyrodidae) on cotton and poinsettia, Ann. Entomol. Soc. Am., 1991, 84:407-411
    Betz H, Gundelfinger ED. Primary structure of a developmentally regulated nicotinic acetylcholine receptor protein from Drosophila. EMBO J., 1986, 5:1503-1508
    Bird JA. whitefly-transmitted mosaic of Jatropha gossypifolia. Agricultural Experimental Station University of Puerto Rico., 1957,22:1-35
    Black IV WC. Use of the random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) of defect DNA polymorphisms in aphids. J. Bull, Entomol. Res., 1992, 82:151-159
    Black WC. RAPD Software.University of Colorado.Felsen stein J.PHYLIP (Phylogeny Inference Package). Version3.5c.Universityof Washington, 1993
    Seattle, Halward T, Stalker T, et al. Use of sing-primer DNA amplification ingenetic studies of peanut(ArachishypogaeaL.)Plant.Mol.Biol., 1996,18(2):315-326
    Blark MA, Baumann L, Munson MA, et al. The eubacterial endosymbionts of whiteflies (Homopera: Aleyrodidae) constitute a lineage distinct from the endosymbionts of aphids and mealybugs. Curr. Microbiol, 1992, 25:119-23
    Boge A, Gerstmeier R, Einspanier R. Molecular polymorphism as a tool for differentiation ground beetles: application of ubiquition PCR/SSCP analysis. Insect Mol. Biol., 1994,3(4): 267-271
    Bohn M, Utz F, Melchinger AE. Genetics similarities among winter wheat multivars determins on the basis on RFLPs, AFLPs, and SSRs and theiruse for predicting progeny variance. Crop Sci., 1999,391:228-237
    Bonizzoni M, Malacrida AR, Guglielmino CR, et al. Microsatellite polymorphism in the Mediterranean fruit fly, C, eratitis capitata. Insect Mol Biol., 2000, Jun;9(3):251-261
    Bossy B. Conservation of neural nicotinic acetylcholine receptors from Drosophila to vertebrate central nervous system.. EMBO J., 1988, 7:611-618
    Bourguet D, Bethenod MT, Pasteur N, et al. Gene flow in the European corn borer Ostrinia nubilalis: implications for the sustainability of transgenic insecticidal maize. Proc. R.Soc. Lond. B, 2000, 267:117-122
    Breje K, Dijk V, Klaassen W J, et al. Crystal structure of an Ach-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature, 2001, 411:269-272
    Brown JK, Coat S, Bedford I D, et al. General esterase polymorphisms as genetic markers of Bemisia tabaci Germ. Biotypes and evidence for the worldwide distribution of the 'B'biotype. Biochem. Gen., 1994, In press.
    Brown JK, Coats S, Bedford ID, et al. Characterization and distribution ofesterase electromorphs in the whitefly Bemisia tabaci (Genn.) (Hemiptera: Aieyrodidae). Biochemical Genetics, 1995b, 33: 205-214
    Brown JK, Pozo-Campodonico O, Nelson MR. A Whitefly-transmitted geminivirus from peppers with tigre disease. Plant Dis., 1989,73:610
    Brown JK. Current status of Bemisia tabaci as a plant pest and virus vector in agroecosystems worldwide. Bull: FAO plant prot, 1994, 42: 1-32.
    Brown JK. Genetic analysis of Bemisia (Hom., Aleyodidae). populations by isoelectric focusing electrophoresis Biochemical Genetics. Biochemical Genetics, 2000, 38:14-25
    Brown JK. The swewt potato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? Annual Review.Entomology, 1995, 40:511-534
    Brown JK. Current status of Bemisia tabaci as a plant pest and virus vector in agroecosystems worldwide. FAO Plant Protection Bulletin, 1994,42:3-32
    Brown JK. Molecular markers for the identification and global tracking of whitefly vector Begomovirus complexes. Special Issue: Plant Virus Epidemiology: challenges for the twenty first century, Almeria, Spain, 1999. Virus Research. 2000, 71: 12, 233-260
    Brown JK.The sweet potato or silverle of whiteflies: biotypes of Bemisia tabaci oraspecies complex? Ann. Rev. Entomol., 1995, 40:511-534
    Brown JK, Coats S, Bedford ID, et al. Characterization and distribution of esterase electromorphs in the whitefly Bemisia tabaci (Genn.) (Hemiptera: Aleyrodidae). Biochemical Genetics, 1995b,33:205-214
    Brown JK, Pozo-Campodonico O, Nelson MR. A whitefly-transmitted geminivirus with tigre disease. Plant Dis., 1989, 73:610
    Brown JK. Current status ofBemisia tabaci as a plant pest and virus vector in agroecosytems worldwild. FAO Plant Prot. Bull., 1994, 42:1-32
    Brown RJ, Malcolm CA, Mason PL, et al. Genetic differentiation between and within strains of the saw-toothed grain beetle, Oryzaephilus surinamensis (Coleoptera: Silvanidae) at RAPD loci. Insect Mol Biol., 1997,6(3): 285-289
    Burban C, Fishpool LDC, Fauquet C, et al. Host-associated biotypes within West African populations of the whitefly Bemisia tabaci (Genn.), (Hom., Aleyrodidae). Journal of Applied Entomology, 1992, 113:416-423
    Byrne DN, Bellows TS.Jr. Whitefly biology. Annu.Rev. Entomol., 1991,36:431-457
    Byrne DN, Mille RWB. Carbohydrate and amino acid composition of phloem sap and honeydew produced by Bemisia tabaci.J. Insect Physiol., 1990, 36:433-439
    Byrne FJ, Cahill M, Denholm I, et al. Biochemical identification of interbreeding between B-type and non B-type strains of the tobacco whitefly Bemisia tabaci. Biochemical Genetics, 1995,33:13-23
    Byrne FJ, Castle S, Prabhaker N, et al. Biochemical study of resistance to imidacloprid in B biotype Bemisia tabaci from Guatemala. Pest Manag. Sci., 2003, 59(10): 347-352
    Byrne FJ, Devonshire AL. Insensitive acetylcholinesterase and esterase polymorphism in susceptible and resistant populations of the tobacco whitefly, Bemisia tabaci. Pestic. Biochem. Physiol., 1993,45:34-42
    Byrne FJ, Devonshire AL. Kinetics of insensitive acetylcholin esterases in organophosphate-resistant tobacco whitefly, Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Pestic. Biochem. Physiol., 1997,58(2): 119-124
    Byrne FJ, Devonshire AL. In vivo inhibition of esterase and acetylcholin-esterase activities by profenefos treatments in the tobacco whitefly, Bemisia tabaci (Genn.): implications for routione biochemical monitoring of these enzymes. Pestic.Biochem.Physiol, 1991,40:198-204
    Byrne FJ, Devonshire AL. Insensitive acetylcholinesterase and esterase polymorphism in susceptible and resistant populations of the tobacco whitefly, Bemisia tabaci (Genn.): Pestic. Biochem. Physiol, 1993, 45:34-42
    Byrne FJ, Gorman KJ, Cahill M, et al. The role of B-type esterases. Bull. Entomol. Res., 2000, 90: 867-874.
    Cahill M, Byrne FJ, Gorman K, et al. Pyrethroid and organophosphate resistance in the tobacco whitefly Bemisia tabaci (Homoptera: Aleyrodidae). Bull. Entomol. Res., 1995,85(2): 181-187
    Cahill M, Denholm I, Byrne F J, et al. Insecticide resistance in Bemisia tabaci-current status and implications for management. Proceedings 1996 Brighton Crop Protection Conference, 1996a,1: 75-80
    Cahill M, Denholm I, Ross G, et al. Relationship between bioassay data and the simulated field performance of insecticides against susceptible and resistant adult Bemisia tabaci (Homoptera: Aleyrodidae). Bull. Entomol. Res., 1996, 86:109-116
    Cahill M, Gorman K, Day S, et al. Baseline determination and detection of resistance to imidacloprid in Bemisia tabaci (Homoptera: Aleyrodidae). Bull. Entomol. Res., 1996c, 86:343-349
    Cahill M, Jarvis W, Gorman K, et al. Resolution of baseline responses and documentation of resistance to buprofezin in Bemisia tabaci (Homoptera: Aleyrodidae). Bull. Entomol. Res., 1996b, 86: 117-122
    Campbell BC, Duuffus JE, Baumann P. Determining whitefly species. Science, 1993, 261:1333
    Caterino MS, Cho S, Sperling FAH. The current state of insect molecular systematics:A thriving Tower of Babel. Annual Review of Entomology, 2000, 45:1-54
    Cenis JL, Beitia F. Application of the technique RAPD-PCR to the identification of insects. Investigation Agraria production and protection vegetales, 1993, 9(2): 289-297
    Cenis JL, Perez P, Fereres A. Identification of aphid (Homoptera: Aphidae) species and vlones by random amplified polymorphic DNA. Annals of Entomological Society of America 1993,86:545-550
    Cervera MT, Cabezas JA, Simon B, et al. Gennetic relationships among biotypes of Bemisia tabaci (Hemiptera:Aleyrodidae) based on AFLP analysis. Bull. Entomol. Res., 2000,90:391-396
    Chakraborty R, Jin L. Determination of relateness between individuals by DNA fingerprinting. Hum. Biol., 1993,65:875-895
    Chakravarti A. To a future of genetic medicine. Nature, 15;409(6822):822-3.
    Chavarriaga-Aguirre P, Maya MM, Bonierbale MW, et al. Microsatellites in Cassava (Manihot esculenta Crantz): Discovery, inheritance and variability. Theoret Appl Genet., 2001, 97:493-501
    Chamaon K, Schulz R, Smalla KH, et al. Neuronal nicotinic acetylcholine receptor of Drosophila melanogaster the α-subunit Dα 3 and the β-type subunit ARD co-assemble within te same receptor complex. FEBS Lett, 2000, 482:189-192
    Chapco W. A feasibility study of the use of randm amplified ploymorphic DNA in the population genetics and systemtics grasshoppers. J.Genom., 1992,35(4):569-574
    Chen B, Harbach RE, Butlin RK. Molecular and morphological studies on the Anopheles minimus group of mosquitoes in southern China: taxonomic review, distribution and malaria vector status. Med Vet Entomol., 2002,16(3): 253-265
    Clarke TE, Levin DB, Kavanaugh DH, et al. Rapid evolution in the Nebria gregaria group (Coleoptera: Carabidae) and the paleogeography of the Queen Charlotte Islands. Evolution Int J Org Evolution, 2001,55(7): 1408-1418
    Cock MJW. Other control methods. In M.J.W.Cock ed.Bemisia tabaci: Bemisia tabaci-A Literature survey on the cotton whitefly with an annotated bibliography, P.56-61. UK:AFO/CAB. Ascot, 1986, 121
    Cock MJW Ed. Bemisia tabaci: a literature on the cotton whiterfly with an annotated porc. Lond.(A). R.Soc.,1986, 38:171-180
    Cock MJW. Bemisia tabaci an update 1986-1992 on the cotton whitefly with an annotated bibliography. CAB. Silwood Park, Ascot, Berks: Int.Inst. Biol.Control, 1993
    Cognato, Anthony I. Species Diagnosis and Phylogeny of the Ipsgrandicollis Group(Coleoptera:Scolytidae)Using Random Amplified Pplymorphic DNA. Annals of the Entomological Society of America, 1999,88(4): 397-405
    Cooper E, Couturier S, Balliver M. Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetycholine receptor. Nature, 1991,350:235-238
    Coote T, Bruford MW. Universally applicable microsatellites for analysis of genetic variation in old world monkeys. J. Heredity, 1996,87:406-410
    Corringer PJ, Le Novere N, Changuex JP. Nicotinic receptor at the amino acid level. Annu Rev Pharmacol Toxicol, 2000, 40:431-458
    Costa HS, Brown JK. Variation in biological characteristics and in esterase patterns among populations of Bemisia tabaci Genn. And association of one population with silverleaf symptom development. Entomol. Exp.Appl., 1991,61:211-219
    Costa HS, Brown JK, Sivasupramaniam S, et al. Regional distribution, insecticide resistance, and reciprocal crosses between the A and B biotypes of Bemisia tabaci. Insect Sci. Appl., 1993,14:255-266
    Cottage ELA, Gunning RV. Ⅺ International symposium on cholinergic mechanisms-function and dysfunction 2nd misrahi syposium on neurobiology, Switzerland, 2002
    Coudriet DL, Prabhker N, Kishaba AN. Variation in development alrate on different hosts and overw interring of the sweet potato whitefly, Bemisia tabaci(Homoptera:Aleyrodidae). Environ.Entomol., 1985,14:516-519
    David C. Queller, Francesca Zacchi, et al. Unrelated helpers in a social insect, Nature,2000, 405:784-787.
    De Barro PJ, Driver F, Trueman JWH, et al. Phylogenetic relationships of world populations of Besimia tabaci (Gennadius) using ribosomal ITS1.Molecular Phylogenetics and Evolution, 2000,16:29-36
    De Barro PJ, Scott KD, Graham GC, et al. Isolaion and characterization of microsatellite loci in Bemisia tabaci. Molecular Ecilogy Notes, 2003,3:40-43
    De Barro PJ, Driver F. Use of RAPD—PCR to distinguish the B biotype from other biotypes of Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae). Australian Journal of Entomology, 1997, 36(2): 149-152
    De Barro PJ, Hart PJ. Mating interactions between two biotypes of the whitefly, Bemisia tabaci (Hemiptera:Aleyrodidae) in Australia. Bulletin of Entomological Research, 2000b, 90(2): 103-112
    Dennehy TJ, Williams L. Management of resistance in Bemisia in Arizona cotton. Pestic Sci., 1997, 51: 398-406
    Dib C. A comperehensive Genetic map of the human genome based on 5264 microsotellites. Nature, 1996,380:152-154
    Dietrich WF., Miller J, Steen R, et al. A comperehensive genetic map of the mouse genome Nature, 1996, 380:149-152
    Dittdch V, Ernst GH, Ruesch O, et al. Resistance mechanisms in sweetpotato whitefly (Homopera: Aleyrodidae) populations from Sudan, Turkey, Guatemala, and Nicaragua. J. Econ. Entomol., 1990, 83:1665-1670
    Duffus JE. Whitefly transmission of plant viruses.Current Topics in vector research.Harris K,ed.Springer-verlag, New York. 1987,4:73-91
    Eastham HM, Lind RJ, Eastlake JL, et al. Characterization of a nicotinic acetycholine receptor from the insect Manduca Sexta. Eur J Neuroscii, 1998, 10:879-889
    Edwards OR, Hoy MA. Polymorphism in two parasitoids detected using random amplified polymorphic DNA polymerase chain reaction. Biol. Control., 1993,3:243-257
    Elbert A, Nauen R. Resistance of Bemisia tabaci (Homoptera:Aleyrodidae) to insecticides in southern Spain with special ref-erence to neonicotinoids. Pest Manag Sci, 2000, 56:60-64
    Ellegren HT. DNA typing of museum birds. Nature, 1991, 354:113
    Foottut R., Galvis C, Basitoids deonen L. Acta Phytopathol. Et Entomol. Hungarica, 1990, 25(1): 211-219
    Forneck A, Walker MA, Blaich R. Genetic structure of an introduced pest, grape phylloxera (Daktulosphaira vitifoliae Fitch), in Europe. J.Genome, 2000,43(4): 669-678
    Frohlich DR, Torres-Jerez I, Bedford ID, et al. A phylogeographical analysis of the Bemisia tabaci species complex based on mitochondrial DNA markers. Molecular Ecology, 1999,8:1683-1691
    Fulton RE, Salasek ML, Du Teau NM. SSCP analysis of cDNA markers provides a dense linkage map of the Aedes aegypti genome. Genetics, 2001,158(2): 715-26
    Galzi JL, Devillers-Thiery A, Hussy N, et al. Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature, 1992, 359:500-505
    Garner KJ, Slavicek JM. Identification and characterization of a RAPD-PCR marker for distinguis hing Asian and North American gypsy moths. J. Insect Mol. BIOL., 1996, 5(2): 81-91
    Gawel NJ, Bartlett AC. Characterization of differences between whiteflies using RAPD-PCR. Insect Mol. Biol., 1993,2:33-238
    Gennadius P. Disease of tobacco plantations in Trikonia: the aleurodid of tobacco. Ellenike Georgia, 1889, 51-53
    Georghiou KJ. Principles of insecticide resistance management. Phytoprotection, 1994,78(Suppl.):51-59
    Gerling D. Natural enemies of Bemisia tabaci, biological characteristics and potential as biological control agents: A review. Agric. Ecosyst. Environ., 1986,17: 99-110
    Gerling D. Whiteflies revisited. Book I, Abstracts of ⅩⅪ International congress of Entomology, Lguassu, Brasil. LⅩⅣ-LⅩⅦ, 2000
    Gerloff U, Hartung B, Rassmann K. Amplification of hypervariable simple sequence repeats (microsatellite)from excremental DNA of wild living bonobos (pan paniscus).Mol.Ecol., 1995,4:515-518
    Goodisman MA, Matthews RW, Spradbery JP, et al. Reproduction and recruitment in perennial colonies of the introduced wasp Vespula germanica. J. Hered, 2001,92(4): 346-349
    Grauso M, Reenan RA, Culetto E, et al. Novel putative Nicotinic acetylcholine receptors subunit genes, Dalpha5, Dalpha6, and Daipha7, in Drosophila melanogaster identify a new and highly conservative target of adenosine deaminase acting on RNA-mediated A-to I pre-Mrna editing. Genetics. 2002, 160(4): 1519-1533
    Greathead AH, Host plants. In: Cock MJW ed. Bemisia tabaci-A Literature survey on the cotton whitefly with an annotated bibliography, P. 17-25.Ascot, UK: AFO/CAB. 1986,121
    Greenblatt HM, Silman I., Sussman JL. Structural studies on verterbrate and inverterbarate acetylcholinesterase and their complex with functional ligands. Drug development research. 2000, 50:573-583
    Guirao P, Beitia F, Cenis JL. Biotype determination in Spanish populations of Bemisia tabaci (Hemiptera:Aleyrodidae). Bulletin of Entomological Rasearch, 1997,87:587-593
    Gundelfinger ED. How complex is the nicotinic receptor system of insects? TINS, 1992, 15:206-211
    Haberl M, Tautz D. Comparative allele sizing can produce inaccurate allele size differeness for microsatellites. Mol Ecol., 1999,8:1347-1350
    Hadrys, H., Balick M., Schierwater B. Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol. Ecol., 1992,1:55-163
    Hajek, AnnE, Kathie T, et al. Use of RAPD analysis to trace the origin the weevil pathogen Zoophthora phytonomi in North America.Mycological Research, 1996, 100 (3):349-355 1982,79:646-649
    Hamada H, Petrino MG, Kakunaga T. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc Natl Acad Sci USA., 1982, 79(21):6465-6469
    Hermanns-Borgmeyer I, Zopf D., Ryseck RP. et al. Primary structure of a developmentally regulate nicotinic acetylcholine receptor protein from Drosophila. EMBO J., 19986, 5:1503-1508
    Hermsen B, Stetzer E, Thees R, et al. Neuronal nicotinic receptors in the locust Locusta migratoria. J Biol. Chem., 1998, 273:18394-18404
    Hernandez D, Mansanet V, Puiggroc Jove JM. Use of Confidor 200SL in vegetable cultivation in Spain. Pflanzenschutz-Nachri, Bayer, 1999, 52:364-375
    Hirose S, Iwata H, Akiyoshi H, et al. A novel mutation of CHRNA4 reponsible for autosomal dominant nocturnal frontal lobe epilepsy. Neurology, 1999, 53:1749-1753
    Hiss RH, Norris DE, Dietrich CH. Molecular taxonomy using single strand conformation polymorphism (SSCP)analysis of Mitochondrial ribosomal DNA genes.Insect Mol.Biol., 1994,3:171-182
    Horowitz AR, Denholm I, Groman K, et al. Insecticide resis-tance in whiteflies: current status and implication for manage-ment [A]. In: Denholm I, Ioannidis P. eds. Proc ENMARIA Sympos: Combating Insecticide Resistance. Thessalonikis, Greece, 1999, 8996-8998
    Horowitz AR, Kontsedalov S, Denholm I, et al. Dynamics of insecticide resistance in Bemisia tabaci: a case study with the insect growth regulator pyriproxyfen. Pest Manag. Sci., 2002, (58): 1096-1100
    Horowitz AR, Mendelson Z, Cahill M, et al. Managing resis-tance to the insect growth regulator, pyriproxyfen, in Bemisia tabaci. Pestic Sci., 1999, 55:272-276
    Horowitz AR, Forer G. Ishaaya. Managing resistance in Bemisia tabaci in Israel with emphasis on cotton. Pesticide Science, 1994, 42:113-122
    Horowiz AR, Gorman K, Ross G, et al. Inheritance of pyriproxyfen resistance in the whitefly, Bemisia tabaci (Q Biotype). Arvhives of Insect Biochemistry and Phrsiology. 2003,54:177-186
    Horowotz AR, Ishaaya I. Managing resistance to insect groeth regulators in the sweetpotato whiterfly. J.Econ.Entomol., 1994,87:866-871
    Huang J, Polaszek A. A revision of the Chinese species of Encarsia Forster: Parasitoids of whiteflies, scales and aphids. J.Nat. Hist., 1998, 32:1825-1966
    Huang Y, Williamson MS, Development AL, et al. Molecular characterization and imidacloprid selectivity of nicotinic acetylcholine receptor subunit from peach-potato aphid Myzus persicae. J Neuro. Chem., 1999, 73:380-389
    Huang Y, Williamson MS, Development AL, et al. Cloning heterologous expression and co-assembly of Mp β 1, a nicotinic aeetylcholine receptor subunit from the Myzus persicae. Neurosci LETT, 2000, 284:116-120.
    Ioannou N. Cultural management of tomato yellow leaf curl disease in Cyprus. Plant Pathol., 1987, 36:367-373
    Ishaaya I, Horowitz AR. Pyriproxyfen, a novel insect growthregulator for controlling whiteflies: mechanisms and resistancemanagement. Pestic Sci., 1995, 43:227-232
    Ishaaya I, Mendelson Z, Ascher KRS, et al. Cypermethrin synergism by pyrethroid esterase inhibitors in adults of the whitefly Bemisia tabaci. Pestic. Biochem. Physiol., 1987, 28(2): 155-162
    Lacey LA, Fransen JJ, Carruthers R. Global distribution of naturally occurring fungi of Bemisia, their biologies and use as biological control agents. In: Bemisia 1995: Taxonomy, Biology, Damage, and Management (Gerling, D. and Mayer, R., eds.). Intercept, Andover. 1996
    Jonas P, Baumann A, Merz B,et al. Structure and developmental expression of the D α 2 gene encoding a novel nicotinic acetylcholine receptor protein of Drosophila melanogaster. FEBS Lett, 1990, 269:264-268
    Jonas PE, Phannavong B, Schuster R, et al. Expression of the ligand-binding nicotinic acetylcholine receptor subunit D α 2 in the Drosophila central nervous system. J Neurobiol., 1994, 25:1494-1508
    Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual.Cold Spring Harbor Laboratory Press. 2001
    Sambrook J, Russell DW. Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor NY., 2001,12.89, 5.42
    Kagabu S. Studies on the synthesis and insecticidal activity ofneonicotinoid compounds. Pestici Sci., 1999, 21:231-239
    Kamau L, Mukabana WR, Hawley WA, et al. Analysis of genetic variability in Anopheles arabiensis and Anopheles gambiae using microsatellite loci. Insect Mol Biol., 1999,8(2): 287-297
    Kambhampati S, Black WC, Rai KS, et al. Random amplified polymorphic DNA of mosquito species and populations (Diptera: Culicidae): Techniques, statistical, analysis and applications. J. Med Entomol., 1992,29 (6): 939-945
    Karlin A. Emerging structure of the nicotinic acetycholine receptor. Nat Rev. Neuro. Sci., 2002, 3(2):102-114
    Kelley ST, Farrell BD, Mitton JB. Effects of specialization on genetic differentiation in sister species of bark beetles. Heredity, 2000, 84 (14): 218-272
    Kethidi DR, Roden DB, Ladd TR, et al. Development of SCAR markers for the DNA-based detection of the Asian long-horned beetle, Anoplophora glabripennis (Motschulsky). Arch Insect Biochem Physiol., 2003,52(4): 193-204
    Kirk AA, Lacey LA, Brown JK, et al. Variation in the Bemisia tabaci s. 1. species complex (Hemiptera: Aleyrodidae) and its natural enemies leading to successful biological control of Bemisia biotype B in the USA.J. Bull Entomol Res., 2000,90(4): 317-327
    Kohaaya I, Mendelson Z, Melamed-Mad-jar V. Effect of buprofezin on egg fertility and larval development of Benicia tabaci. Phytoparasitica, 1987,15:263-264
    Krafsur ES, Bryant NL, Marquez JG, et al. Genetic distances among North American, British, and West African house fly populations (Musca domestica L.). Biochem.Genet., 2000,38(9-10):275-284
    Lansdell SJ, Millar NS. Cloning and heterologous epression of D α 4, a Drosophila neuronal nicotinic acetylcholine receptor subunit: identification of an alternative exon influencing the efficiency of subunit assembly. Neuropharmacology, 2000, 39:2604-2614
    Lansdell SJ, Millar NS.The influence of nicotinic receptor subunit composition upon agonist, α-bungarotoxin and insecticide(imidacloprid)binding affinity. Neuropharmacology, 2000, 39:671-679
    Lansdell SJ, Schmitt B, Betz H, et al. Temperature-sensitive expression of Drosophila neuronal nicotinic acetylcholine receptors. J Neurochem., 1997, 68:1812-1819
    Lashermes P, Agwanda CO, Anthony F, et al. Molecular marker-assisted selection: apowerful approach for Coffee improvement. In: 17th Int Sci Colloq On coffee. ASIC, Paris., 1997a, 474-480
    Lashermes P, Combes MC, Robert J, et al. Molecular charaterization andorigin of the Coffea arabica L. genome. Mol. Gen. Genet., 1999,261:259-266
    Lashermes P, Combes MC, Trouslot P, et al. Phylo-genetic relationships of coffee-tree species (Coffea L.) as in-ferredfrom ITS sequences of nuclear ribosomal DNA. Theor. Appl. Genet., 1997b,94:947-955
    Leeton P, Christidis L,Westeraman M. Feather from museum bird skins-A good source of DNA for phylogentics studies. Conder, 1993,95:465-466
    Lessinger AC, Martins Junqueira AC, Lemos TA, et al. The mitochondrial genome of the primary screwworm fly Cochliomyia hominivorax (Diptera: Calliphoridae).Insect Mol Biol., 2000, 9 (5):521-529
    Lewis, Kornelia G. Random amplified polymorphic DNA reveals fine-scale genetic strcture in Pissods stroi. Canadian Entomologist, 2001,133(2): 229-238
    Li AY, Dennehy TJ, Li X, et al. Susceptibility of Arizona whiteflies to chloronicotinyl insecticides and IGR's new developments in the 1999 season. Proc Beltwide Cotton Conferences, National Cotton Council, Memphis, TN., 2000, 1325-1330
    Li AY, Dennehy TJ, Li S, et al. Sustaining Arizona's fragile success in whitefly resistance management. In: Dugger P, Richter D. eds. Proc Beltwide Cotton Conf. National Cotton Council. Memphis, TN., 2001, 1108-1114
    Lima LHC, Campos L, Moretzsohn MC, et al. Genetic diversity of Bemisia tabaci (Genn.) populations in Brazil revealed by RAPD markers. Genetics and Molecular Biology, 2002,25:217-223
    Lima LHC, Navia D, Inglis PW, et al. Survey of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotypes in Brazil using RAPD markers. Genetics and Molecular Biology, 2000,23:781-785
    Lindstrom J. Nicotinic acetylcholine receptor in health and disease, Mol Neurobiol., 1997, 15:193-222
    Littleton JT, Ganetzky B.Ion channels and synaptic organization: analysis of the Drosophila genome. Neuron, 2000, 26:35-43
    Liu MY, Lanford J, Casida JE. Relevance of [~3H]Imidacloprid Binding Site in House Fly Head Acetylcholine Receptor to Insecticidal Activity of 2-Nitromethylene-and 2-Nitroimino-Imidazolidines, Pesticide Biochemistry and Physiology 1993,46:200-206
    Lucinda MB, Angela ED. Low genetic diversity among pea aphid (Acyrthosiphon pisum) biotypes of different plant affiliation. Heredity, 1999, 82 (6): 605-612
    Luetje CW, Maddox FN, Hrvey SC. Glycosylation within the cysteine loop and sin residues near conserved Cys 192/Cys 193 are determinants of neuronal bungarotoxin sensitivity on the neuronal nicotinic receptor alpha 3subunit. Mol. Pharmacol., 1998, 53(6): 1112-1119
    Luetji CW, Piattoni M, Patrick J. Mapping of ligand sites of neuronal nicotinic acetylcholine receptor using chimeric subunits.Mol.Pharmacol., 1993,44(3):657-666
    Maienfisch P, Angst M, Brandl F, et al. Chemistry and biology of thiamethoxam: a second generation neonicotinoid. Pest Manag. Sci., 2001, 57(10): 906-913
    Marquez JG, Krafsur ES. Mitochondrial diversity evaluated by the single strand conformation polymorphism method in African and North American house flies (Musca domestica L.).Insect Mol Biol., 2003,12(2): 99-106
    Marshall J, Buckinghan SD, Shingai R, et al. Sequence and functional expression of a single α subunit of insect nicotinic acetylcholine receptor. J. EMBO. 1990, 9:4391-4398
    Maughan PJ, Saghai Maroof MA, Buss GR, et al. Amplified fragment length polymorphism (AFLP) in soybean: species diversity, inheritance, and near-isogenic line analysis. Theor. Appl. Genet., 1996,93: 392-401
    May B, Holbrook F. Absence of genetic variability in the green peach aphid, Myzus persicae (Hemiptera: Aphididae). Ann.Entomol.Soc.Amer., 1978,71: 809-812
    McMichael M, Prowell DP. Differences in amplified fragment-length polymorphisms in fall armyworm (Lepidoptera:Noctudiae) host strains. Annals of the Entomological Society of America, March 1999, 92(2): 175-181
    Miesfeld R, Krystal M, Arnbeim N. A member of a new repeated sequence family which is conserved throughout eucaryotic evolution is found between the human delta and beta globin genes. Nucl. Acids Res., 1981, 9:5931-5947
    Miyazawa A, Fujiyoshi Y, Unwin N. Structure and gating mechanism of the acetylcholine receptor pore. Nature, 2003, 423:949-955
    Mohanty Ak, Basu AN. Effect of host plants and seasonal factors on specific variations in pupalmorphology of the whitefly vector, Bemisia tabaci (Genn.)(Homoptera:Aleyrodidae). J. ent. Res., 1986,10(1): 19-26
    Mound LA, Halsey SH. Whitefly of the world. A systematic catalogue of the Aleyrodidae (Homoptera) with host plant and natural enemy data. British Museum (Natural History) and Chichester; John Wiley & Sons, London, UK, 1978, 340
    Mound LA. Host-correlated variation in Benicia tabaci(Germadius) (Homopera: Aleyrodidae). Lond.(A):PROC.R.Soc., 1963,38:171-178
    Moya A, Guirao P, Cifuentes +D, et al. Genetic diversity of Iberian populations of Bemisia tabaci (Hemiptera:Aleyrodidae) based on random amplified polymorphic DNA-polymerase chain reaction. Molecular Ecology, 2001,10:891-897
    Mueller U, Muller YA, Herbst-irmer R, et al. Disorder and twin refinement of RNA heptamer double helices. Acta Crystallogr D, 1999, 55 (8): 1405-1413
    Muniz M. Host suitability of two biotyp,es of Bemisia tabaci on some common weeds. Entomologia Experimentalis et Applicata, 2000, 95 (1): 63-70
    Nakamura Y, Matsubara R, Kitagawa H, et al. Variable number of tande repeat (VNTR) markers for human gene mapping. Science, 1987,235:1616-1622
    Nauen R, Stumpf N, Elbert A. 2002,Toxicopogical and mechanistic studies on neonicotinoid cross resistance in Q-type Bemisia tabaci(Hemiptera: Aleyrodidae). Pest Management Science 58:868-875
    Sappal NP, Jeng RS, Hubbes M, et al. Restriction fragment length polymorphisms in polymerase chain reaction amplified ribosomal DNAs of three Trichogramma especies. Genome, 1995,38:419-425
    Nei M. Analysis of gene diversity in subdivided popula-tions. Proceedings of the Nation Academy of Sciences of the Unite, 1973,70:3321-3323
    Nombela G, Beitia F, Muniz M. A differential interaction study of Bemisia tabaci Q-biotype on commercial tomato varieties with or without the Mi resistance gene, and comparative host responses with the B-biotype. Entomol. Exp. Appl., 2001,98(3): 339-344
    Novere NL, Corringger PJ, Changeux JP. The diversity of subunit composition in nAChRs: pharmacologic consequences. J Neurobiol., 2002, 53:447-456
    Ohana B, Gershoni JM.Comparison of the toxin binding sites of the nicotinic acetylcholin receptor from Drosophila to human. Biochemistry, 1990, 29:6409-6415
    Oliveira MRV de. Tigano MS. Aljanabi S, et al. Molecular characterization of whitefly (Bemisia spp.) in Brazil. Pesquisa Agropecuaria Brasileira. 2001,35: 6, 1261-1268
    Osakaba Mh, Sakagami Y. RFLP analysis of ribosomal DNA in sibling species of spider mite, genus Panonychus (Acari: Tetranychidae).Insect Mol Biol., 1994,3(1): 63-66
    Palumbo JC, Horowitz AR, Prabhaker N. Insecticidal control and resistance management for Bemisia tabaci. Crop Protection, 2001,20:739-765
    Pascual S, Callejas C. Intra and interspecific Competition between biotypes B and Q of Bemisia tabaci. In: Alomar O,Arno J,Castane C ed. Biology of Bemisia Semssion Ⅰ:3rd International Bemisia Workshop. Barcelona, Spain, 2004, 94:369-375
    Paskewitz SM, Wesson DM, Collins FH. The internal transcribed spacers of ribosomal DNA in five members of the Anopheles gambiae species complex. Insect Mol Biol., 1993,2(4):247-257
    Paul DB, Felice D, John TWH, et al. Phylogenetic relationships of world populations of Bemisia tabaci(Gennadius) using ribosomal ITSI. Molecular phylogenetics and evolution, 2000,16:29-36
    Pejic I, Ajmone-Marsan P, Morgante M, et al. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs. Theoretical and Applied Genetics, 1998,97:1248-1255
    Pena SDJ, Chakraborty R.. Paternity testing in the DNA era. Trends Genet., 1994, 10:204-209
    Perring MT, Cooper AD, Rodriguez RJ, et al. Identification of a whitefly species by genomic and behavioral studies. Science, 1993,259(1): 74-77
    Perring TM, Cooper A, Kazmer DJ. Identification of the poinsettia strain of Bemisia tabaci (Homoptera: Aleyrodidae) in brocoli by electrophoresis. J. Econ. Entomol., 1992, 85:1278-1284
    Perring TM. Identification of a whitefly species by genomic and behavioral studies. Science, 1993, 259(1):74-77
    Perring TM. The Bemisia tabaci species complex. Crop protection, 2001, 20:725-732
    Picciotto MR, Calddarone BJ, Brunzell DH, et al. Neuronal nicotinic acetylcholine receptor subunit knockout mice: physiological and behavioral phenotypes and possible clinical implication. Pharm Therap, 2001, 92:89-108
    Pilowsky TM, Hohen S. Tolerance to tomato yellow leaf curl virus derived from Lycopersicon peruvianum. Plant Dis., 1990,74:248-250
    Powell W, Morgante M, Andre C, et al. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular. Breed, 1996, 2:225-238
    Prabhaker AW, Coudriet DL, Meyerdick DE. Determination of three whitefly species by electrophoresis of nonspecific esterases. J.Appl.Entomol., 1987, 103:447-451
    Prabhaker AW, Coudriet DL, Meyerdick DE. Insecticide resistance in the sweetpotato whitefly, Bemisia tabaci (Homopera: Aleyrodidae). J.Econ. Entomol., 1985,78:748-752
    Prabhaker N, Toscano NC, Castle SJ, et al. Selection forimidacloprid resistance in silverleaf whiteflies from the Impe-rial Valley and development of a hydroponic bioassay for resis-tance monitoring. Pestic Sci., 1997, 51:419-428
    Pulliam HR. sources, sinks, and population regulation. Am. Nat., 1988,132:652-661
    Puterka GJ, Black WC, Steiner WM, et al. Genetic variation and phylogenetic relationships among worldwide collections of the Russian wheat aphid, Diuraphis noxia (Mordvilko), inferred from allozyme and RAPD-PCR markers.Heredity, 1993,70:604-618
    Rauch N, Nauen R. Identification of biochemical markers linked to neonicotinoid cross resistance in Bemisia tabaci (Hemiptera:Aleyrodidae). Archives of insect biochemistry and physiology, 2003,54: 165-176
    Ren SX, Wang ZZ, Qiu BL, et al. The pest status of Bemisia tabaci in China and non-chemical control strategies. Entomol. Sin., 2001, 8 (3): 279-288
    Renz M, Kurz C. A colorimetric method for DNA hybridization. Nucleic Acids Res., 1984,12(8):3435-3444
    Revah RL, Bertrand D, Gaizi JL, et al. Mutations in the channal domain alter desensitization of a neuronal nicotinic receptor. Nature, 1991, 353:846-849
    Rokas A, Rachel JA, Lucy W, Gyorgy C, Graham N, 2003. Out of Anatolia: longitudinal gradients in genetic diversity support an eastern origin for a circum-Mediterranean oak gallwasp Andricus quercustozae. Molecular Ecology, 12:2 153-2 174.
    Rosell RC, Bedford ID, Frohlich DR, et al. Analysis of morphological variation in distinct populations of Bemisia tabaci (Homoptera:Aleyrodidae).Annals of the Entomological Society of America, 1997,90(5):575-589
    Salvato P, Battisti A, Concato S, et al. Genetic differentiation in the winter pine processionary moth (Thaumetopoea pityocampa--wilkinsoni complex), inferred by AFLP and mitochondrial DNA markers. Mol Ecol., 2002,11(11):2435-2444
    Sawruk E, Schloss P, Betz H, et al.Heterogeneity of Drosophila nicotinic acetylcholine receptors: SAD, a novel developmentally regulated α-subunit. J. EMBO, 1990a, 9:2671-2677
    Sawruk E, Udri C, Betz H, et al. a novel structural subunit of the Drosophila nicotinic acetylcholine receptor, shares its genomic localization with two α-subunit. FEBS Lett, 1990b, 273:177-181
    Saxena RC, Barrion AA. Biotypes of insect pests of agricultural crops. Insect Sci.Appl., 1987,8:453-458
    Scataglini MA, Confalonieri VA, Lanted AA. Dispersal of the cotton boll weevil in Sourth America: Evidence of RAPD analysis.Genetica, 2000, 108(2): 127-136
    Schloss P, Betz H, Schroder C, et al. Neuronal nicotinic acetylcholine receptors in Drosophila: antibodies agaist an α-like and a non-α-subunit recognize the same high affinity α-bungarotoxin binding complex. J Neurochem., 2000, 74:2537-2546
    Schloss P, Hermanns-Borgmeyer I, Betz H, et al. Neuronal acetylcholine receptor in Drosophila: the ARD protein is a component of a high-affinity, J.EMBO, 1988, 7:2889-2894
    Schulz R, Sawruk E, Mulhardt C, et al. D α 3, a new functional α subinit of nicotinic acetylcholine receptors from Drosophila. J Neurochem., 1998, 71:853-862
    Schuster R, Phannavong B, Schroder C, et al. Immunohistochemical localization of a ligand-binding and a central nervous system of Drosophila melanogaster. J Comp. Neurol., 1993, 335:149-162
    Schwerk A, Wahle P, Abmann T. Analysis of genetic diversity of the carabid beetle species Harpalus rubripes and Nebria brevicollis (Coleoptera: Carabidae) using RAPD fingerprinting and allozyme analysis. Zoologische Beitraege, 1998,38 (2): 245-260
    Sgard F, Obosi LA, King LA, et al. ALS and SAD-like nicotinic acetycholine receptor subunit genes are widely distributed in insects. Insect Mol. Biol., 1993, 2:215-223
    Shufran KA, Whalon ME. Genetic analysis of brown planthopper biotypes using random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). Insect Sci. Applic., 1995,16(1): 27-33
    Shuichi F, Kazuyoshi H. Use of random amplified polymorphic DNAs(RAPDs) for identification of rice accessions.Jpn. J.Genet., 1992,67:243-252
    Sibly RM. life-history evolution in spatially heterogeneous environments with and without phenotypic plasticity. Evol., 1995, 9:242-257
    Sidorenko AP, Berezovskaia OP. Genetic structure of populations of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). J. Genetika, 2002,38(11): 1485-1491
    Simon B, Moriones E, Sofia C, et al. Variacion genetica de poblaciones de Bemisia tabaci(Germ)enla Cuenca Mediterranea Occidental.Resumenes Ⅶ Jornadas Cientificas de la SEEA, Almeria, Spain, p.20.Junta de Andalucia. 1999.
    Simon C, Frati F, Beckenbach A, et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compliation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 1994,87:651-701
    Sinom S, Franke A, Martin A. The polymerase chain reaction: DNA extraction and amplification. In Molecular Techniques in Taxonomy. NATO ASI Ser., ed. GM Hewitt, AWB Johnston, JPW Young, pp.329-55 Berlin: Springer-Verlag, 1991
    Soltis PS, Soltis D E.Genetic variation in endemic and widespread plant species: examples from Saxifragaceae and Polystichum.Aliso, 1991,13:215-223
    Suarez AV, Tsutsui ND, Holway DA. Behavioral and genetic differentiation between native and introduced populations of the Argentine ant. Biological Invasions, 1999,1:43-53
    Sulston J. International Human Genome Sequencing Consortium. Biochem Soc Trans. 2001,29(2):27-31
    Summers CG, Elamp, Newton ASJ. Colonization of ornamental landscape plants by Bemisia argentifolii Bellows & Pering (Homoptera:Aleyrodidae). Pan-Pacific Entomologist, 1995,71 (3): 190-198
    Taberlet P, Camarra JJ, Griff S. Noninvasive genetic tracking of the endangered Pyrenean brown bear population. Mol. Ecol., 1997,6:869-876
    Taberner A, Dopazo J, Castanera P. Genetic characterization of population of a denovo arisen sugar beet,Aubeonymus mariaefranciscae by RAPD analysis. Journal of Molecular Evelution, 1997,45(1):24-31
    Tahiri A, Laghchimi A, Sekkat A, et al. Diversity of Bemisia tabaci (Gennadius) in Morocco and its potential to be vector of tomato yellow leaf curl virus.in Session Ⅲ: virus vector relationship and epidemiology [A].3rd Internatioanl Bemisia Workshop,Barcelona. 2003
    Tan YD, Wan C, Zhu Y, et al. An amplified fragment length poiymorphism map of the silkworm.Genetics, 2001,157(3): 1277-1284
    Tang JD, Collins HL, Metz TD, et al. Greenhouse tests on resistance management of Bt transgenic plants using refuge strategies. J.Econ.Entomol., 2001, 94 (1): 240-247
    Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes.Nucleic Acids Res., 1984,12:4127-4138
    Taylor Ak, Lueken SA, Libanati C, et al. Biochemical markers of bone turnover for the clinical assessment of bone metabolism.. Rheum Dis Clin North Am., 1994,20(3):589-607
    Tayor LR. Assessing and interpreting the spatial distributions of insert populations. Annu.Rev.Ent., 1984 (29):325-357
    Toscano NC, Prabhaker N, Castle SJ, et al. Inter-regionaldifferences in baseline toxicity of Bemisia argentifolii(Homoptera: Aleyrodidae) to two insect growth regulators,buprofezin and pyriproxyfen. J. Econ. Entomol., 2001, 94(6): 1538-1546
    Travis CG, Ryan SO, Wolfgang S, et al. Microsatellite DNA loci for genetic studies of Cranes. PNACWorkshop, 1997, 7:36-45
    Trewick SA, Wallis GP, Morgan-Richa M. Phylogeographical pattern correlates with pliocene mountain building in the alpine scree weta (Orthoptera, anostostomatidae). Mol. Ecol., 2000,9(6):657-666
    Tsai JH, Wang KH. Development and reproduction of Bemisia argentifolii (Homoptera:Aleyrodidae)on five host plants. Environ.Entomol., 1996, 25(4):810-816
    Ullmann AJ, Piesman J, Dolan MC, et al. A preliminary linkage map of the hard tick, Ixodes scapularis. Insect Mol Biol., 2003,12(2): 201-210
    Via S. Ecological genetics and host adaptation in herbivorous insects: the experimental study of evolution in nature and agricultural systems. Ann. Rev. Entomol., 1990, 35: 421-446
    Via S. Sympatric speciation in animals: the ugly duckling grows up. Trends Ecol. Evol., 2001,16:381-390
    Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res., 1995,23:4407-4414
    Vos P, Kuiper M. AFLP analysis. In: Caetano-Anolles G, Gresshoff P Meds. DNA Markers: Protocol, Applications and Overviews. Wiley. 1997,115-131
    Walczak IM. Diabetes technology news. International Consortium completes human genome sequencing. Diabetes Technol Then, 2003,5(3):493-494
    Wang N, Orr Urtreger A, Korczyn A.The role of neuronal nicotinic acetycholine receptor subunits in autonomic ganglia: lessons from knockout mice. Progress in Neurobiology, 2002,68:341-360
    Waugh R. Using RAPD markers for crop improvement. J.Tlbtech, 1992,10:186-192
    Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res., 1990,18(24): 7213-7218
    WilliamsJGK, Kubelik, AR, Livaketal KJ. DNA polymorphism samplified by arbitrary primer sareu sefulgenetic markers.Nucl.Acids Res., 1990,18:6531-6535
    Willerson RC, Parsons TJ, Albright DG, et al. Random amplified polymorphic DNA (RAPD)markers readily distinguish cryptic mosquito species(Diptera: Culicidae: Anopheles).Insect Mol.biol., 1993,1:205-211
    Williams CL, Goldson SL, Baird DB, et al. Geographical origin of an introduced insect pest, Listronotus bonariensis (Kuschel), determined by RAPD analysis. Heredity, 1994,72 (4):412-419
    Williams JGK, Kubelik AR, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. J. Nucleic Acids Res., 1990,18(22):6531-6535
    Willians C, Lenney. Geographical origin of as introduced insect pest, Listrauatus bonariensis, determined by RAPD analysis.Heredity, 1994,72(4):412-419
    Wilson AC, Sunnucks P, Hales DF. Microevolution, low clonal diversity and genetic affinities of parthenogenetic sitobion aphids in new Zealand. Mol. Ecol., 1999,8:1655-1666
    Wohlford DL, Krafsur ES, Griffiths NT, et al. Genetic differentiation of some Glossina morsitans morsitans populations .Med Vet Entomol., 1999,13(4): 377-385
    Wool D, Gerling D, Bellotti AC, et al. Esterase electrophoretic variation in Bemisia tabaci (Genn.) (Hom., Aleyrodidae) among host plant and localities in Israel. J. Appl. Entomol, 1993,115:185-196
    Wool D, Gerling D, Nolt BL, et al. The use of electrophoresis for identification of adult whiteflies(Homoptera. Aleyrodidae) in Israel and Columbia J. Appl. Entomol., 1989, 107: 344-350
    Wool D, Greenberg S. Esterase activity in whiteflies {Bemisia tabaci) in Israel in relation to insecticide resistance. Entomol. Exp. Appl., 1990,57:251-258
    Wu XX, Hu DX, Li ZX, et al. Using RAPD-PCR to distinguish biotypes of Bemisia tabaci (Homoptera: Aleyrodidae) in China. Entomologia Sinica, 2002,9 (3): 1-8
    Wu XX, Li ZX, Hu DX, et al. Identification of Chinese populations of Bemisia tabaci (Gennadius) by analyzing ribosomal ITS1 sequence. Progress in Natural Science, 2003,13(4): 276-281
    Xu M, Huaracha E, Korban SS. Development of sequence-charaterized amplified regions (SCARs) from amplified fragment length polymorphism (AFLP)markers tightly linked to the Vf gene in apple. Genome, 2001,44(1):63-70
    Xu RM. The occurrence and distributing of Bemisia in China. In: Gerling D, Mayer R T. ed. Bemisia 1995:Taxonomy, Biology, Damage Control and Management. Andover, Hants, UK. 1996, 125-131
    Yan G, Romero-Severson J, Walton M, et al. Population genetics of the yellow fever mosquito in Trinidad: comparisons of amplified fragment length polymorphism(AFLP)and restriction fragment length polymorphism(RFLP)markers.Mol.Eol., 1999,8(6):951-963
    Zabeu M, Vos P. Selective restriction fragment amplification a general method for DNA fingerprinting. European patent Appcication 94202629.7(publicztion NO.05348 AI) paris: European Patent Office. 1993
    Zeidan M, Czosnek H. Acquisition and transmission of Agrobacteriun by the whitefly Bemisia tabaci. Molecular Plant-Microbe Interactions, 1994,7(6):792-798
    安瑞生,谭声江,陈晓峰.小型昆虫DNA提取时匀浆方法的改进.昆虫知识,2002,39(4):311-312
    陈连根.烟粉虱在园林植物上危害及其形态变异.上海农学院学报,1997,15(3):186-189,208
    陈巍巍,冯明光.玫烟色拟青霉的研究与应用现状.昆虫天敌,1999,21(3):140-144
    陈文雄,张焕英.台南区农业改良场技术专刊,1997,67:86-91
    陈之浩,刘传秀,李凤良,韩招久.小菜蛾对杀虫双的抗药性检测、交互抗性测定及药剂防治研究.西南农业学报,1994,7(3):68-73
    成新跃,周红章,张广学.2000.分子生物学技术在昆虫系统学研究中的应用.动物分类学报,25(2):121-129
    冯兰香,杨宇,谢丙炎,等.警惕烟粉虱大暴发导致新的蔬菜病毒病流行.中国蔬菜,2001,2:34-35
    盖宇.粉虱拟寄生蜂丽蚜小蜂不同品系的分子生态学研究:[博士学位论文].北京:北京师范大学,1999
    戈峰主编.现代生态学.北京:科学出版社,2002
    韩招久.二化螟对杀虫单和甲胺磷的抗性机理及神经靶标乙酰胆碱受体的基因克隆:[博士学位论文].南京:南京农业大学,2002
    黄海根,孟安明等.DNA指纹图谱与鸡的蛋重复性状的遗传相关.遗传,1998,20(3):13-15
    黄原.分子系统学—原理、方法及应用.北京:中国出版社.1998,1-100
    蓝翎,张小为等.用寡聚核苷酸探针(CAC)5/(GAG)5进行人的DNA指纹分析.遗传学报,1993,20(1):81-87
    李传友,伏建民,金德敏,等.AFLP分析中多态性扩增产物的回收、克隆及鉴定.遗传,1998,20(4):1-4
    李飞.棉蚜的杀虫剂神经靶标分子生物学研究:[博士学位论文].南京:南京农业大学,2003
    林克剑,吴孔明,魏洪义,等.烟粉虱在不同寄主作物上的种群动态及化学防治.昆虫知识,2002,39(4):284—288
    龙漫远.利用RFLP资料估计遗传变异.遗传,1993,15(3):44-48
    鲁成,赵爱春,向仲怀,万春玲.中国野生蚕遗传多样性的AFLP分析.动物学研究,2002,23(2):166-172
    罗晨.烟粉虱的寄主调查、生物学特性和分子系统学研究.[博士学位论文].北京:中国农业大学,2002
    罗晨,姚远,王戎疆,等.利用mtDNA COI基因序列鉴定我国烟粉虱的生物型.昆虫学报,2002,45(6):759—763
    罗晨,张君明,石保才,等.北京地区烟粉虱调查初报.北京农业科学,2000,(增刊),42-47
    罗晨,张芝利.烟粉虱Bemisia tabaci(Gennadius)研究概述.北京农业科学(增刊),2000,18:4-13
    乔传令,黄瑶.不同地区有机磷杀虫剂抗性库蚊复合组酯酶B1抗增的研究.昆虫学报,1996,39(3):225-231
    邱宝利,任顺详,孙同兴,等.广州地区烟粉虱寄主植物调查初报.华南农业大学学报,2001,22(4):43-47
    沈晋良,吴益东.棉铃虫抗药性及其治理.北京:中国农业出版社,1995
    孙珊,徐茂磊,王戎疆,等.RAPD方法用于亚洲玉米螟地理种群分化的研究。昆虫学报,2000,43(1):29-32
    唐振华,吴士雄.昆虫抗药性遗传与进化.上海:上海科学技术文献出版社,1999
    唐振华.我国昆虫抗药性研究的现状与展望.昆虫知识,2000,37(2):26-34
    田英芳,郑哲民.七种蟋蟀基因组DNA的RAPD多态性研究(直翅目:蟋蟀总科).昆虫分类学报,2001,23(4):248-252
    徐维红,朱国仁,张友军,等.烟粉虱在七种寄主植物上的生命表参数分析.昆虫知识,2003,40(5):453-455
    许占友,常汝镇,邱丽娟,李向华.不同DNA分子遗传标记信息量比较.植物遗传科学,2000,4(1):41-46
    张慧杰,张战备,雷逢进,等.重要经济害虫烟粉虱的发生.昆虫知识,2002,39(1):79-80
    张民照,康乐.AFLP标记的特点及其在昆虫学研究中的应用.昆虫学报,2002,45(4):538-543
    张云武,张亚平.微卫星标记及其应用.动物学研究,2001,22(4):315-320
    张芝利.关于烟粉虱大发生的思考.北京农业科学(增刊),2000,18:1-3
    赵莉,张荣,等.危害棉花的重要害虫烟粉虱在新疆发现.新疆农业科学,2000,1:27-28
    赵志模,周新远.生态学引论.重庆:科学科技文献出版社,1984,93-153
    郑敏,罗玉萍.真核生物基因组多态性分析的DNA指纹技术.生物技术,1999,9(3):35-38
    周福才,杜予州,孙伟,等.江苏省烟粉虱寄主植物调查及其危害评价.扬州大学学报(农业与生命科学版),2003,24(1):71-74
    周尧.中国粉虱名录.中国昆虫学,1949,3(4):1-18
    朱道弘,安藤喜一.利用RAPD对稻蝗属昆虫亲缘关系的研究.昆虫学报,2001,44(3):316-320

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700