用户名: 密码: 验证码:
面向区域监控的无线传感网络技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着“普适计算”技术的出现与发展,无线传感网络作为一种新型数据采集与处理手段,越来越受到人们的普遍重视,并在未来具有广阔的应用前景。目前,无线传感网络的许多技术还处在探索阶段,如网络覆盖、传输安全、可靠性和服务质量等。只有有效地解决这些技术问题,无线传感网络才有机会真正应用到军事、医疗、商业、教育和环境等领域,发挥潜在的巨大价值,才能真正转化为生产力。本文从无线传感网络面向区域监控的应用问题入手,分别对其性能、策略和方法作了一些有益的探索,取得具有一定创新性的研究成果,主要反映在如下三个方面的内容:
     首先,从目标探测能力有限的角度出发,提出基于局部信息的目标入侵算法,打破了传统基于全局布置信息的假设,为衡量目标入侵对静态传感网络监控性能的影响提供了客观依据。受传统路由算法的启发,设计并实现了五种路径搜索算法,通过仿真实验比较发现其中FDP性能最优。此外,从目标探测概率的角度指出了隐藏技术是提高静态传感网络监控性能的重要方向。
     其次,向无线传感网络引入一致性移动的概念,推导了针对目标探测的传感网络移动方法f_s~-,以及相应的目标入侵方向f_t~⊥,分析了在区域监控应用中移动节点和目标之间存在的纳什均衡。在统一的节点移动模型基础上,根据节点移动和目标移动的相互位置关系推导了使得暴露程度趋于增大的节点移动方向,和使得暴露程度趋于减小的目标移动方向,仿真结果证实了上述结论的正确性。
     最后,面向区域入侵提出了目标捕获问题,即利用混合传感网络实现“无人值守”方式的区域监控。在大量静态节点对目标信息感知、计算的基础上,给出了以静态节点为地标的移动节点捕获策略,实现了移动节点快速捕获目标的方法。在此基础上,讨论了多目标-多移动节点情形下的任务分配问题,设计并实现了基于探测消息的PMB任务分配协议,仿真结果表明了上述算法具有良好的可行性和一定的有效性。
With the appearance and development of pervasive computing, wireless sensor networks have allured more and more eyeballs as a new type of data collecting and processing because of its wide appliance foreground. At present, many technologies of wireless sensor networks wait in an exploration stage yet, such as network coverage, transmission security, reliability, quality of service and so on. Only solving these technical questions effectively, wireless sensor networks then have the opportunity truly to apply to applications, including military affairs, medical treatment, commerce, education and environmental applications, to display the latent enormous value, and to transform truly as the productive forces. In this paper, we start from the field surveillance using wireless sensor networks, have done a few beneficial explorations and acuquired some creative research results according to its performance, strategy and methods. Our work is mainly shown in three aspects as follows:
     Firstly, supposing the finite ability of target detection, we propose target intruding algorithms based on local information, discard assumption for global information of sensor deployment and provide the real method for evaluating the performance of field surveillance using sensor networks. Enlightened from the traditional routing algorithm, we design and realize five path-finding algorithms and find out that FDP has the best performance through simulation. Based on the intruding algorithms of the target, we discuss the performance of field surveillance from the view of target detection probability, and point out the performance-improving direction of static sensor networks– hiding.
     Secondly, introducing coherent movement to wireless sensor networks, we show the optimal moving direction f_s~- and corresponding intruding direction f_t~⊥for mobile nodes and the target respectively. Moreover, we analyze the exiting Nash equilibrium between the mobile node and the target from the view of game theory. Based on the uniform moving model of the mobile node, we analysize the moving direction of mobile nodes for more degree of coverage and the intruding direction of target for less degree of exposure. Simulation result manifests the correctness of result above.
     Finally, putting forward the problem of interception against intruding target, we present unattended surveillance using hybrid sensor networks. We propose target intercepting method using mobile nodes with the help of static nodes sensing and computing as landmarks. Besides, according to the multiple targets - multiple mobile nodes case, we design a distributed task assignment protocol PMB based on probe message. Experimental results show that the algorithm above has good feasibility and some effectiveness.
引文
[1] Mark Weiser, The computer for the 21st century, Scientific American (1991) 94-104.
    [2] M.Satyanarayanan. Pervasive computing: vision and challenges. IEEE Personal Communications, August, 2001, vol.8, pp. 10-17.
    [3] MIT, Ten emerging technologies that will change the world. Technology Review, 2003(02), 106-1, pp. 33-49.
    [4] www.dtic.mil/ndia/expeditionary/stack.pdf
    [5] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V. Mittal, H. Cao, M. Demirbas, M. Gouda, Y. Choi, T. Herman, S. Kulkarni, U. Arumugam, M. Nesterenko, A. Vora, and M. Miyashita. A line in the sand: a wireless sensor network for target detection, classification, and tracking. Computer Networks, Dec. 5, 2004, Elsevier Science, Vol. 46, Issue 5, pp. 605-634.
    [6] P. Ramanathan, K. Saluja, K.-C. Wang, T. Clouqueur. UW-API: A network routing application programmer's interface, Technical Documentation for DARPA SensIT Program, October 2001.
    [7] DARPA SensIT Program, Location-centric distributed computation and signal processing in micro-sensor networks, From the web site: http://www.ece.wisc.edu/~sensit/
    [8] I. A. Essa. Ubiquitous sensing for smart and aware environment. IEEE Personal Communication, October 2000, pp. 47-49.
    [9] C. Herring, S. Kaplan. Component-based software systems for smart environments. IEEE Personal Communications, October 2000, pp. 60-61.
    [10] E. M. Petriu, N. D. Geoganas, D.C. Petru, D. Makrakis, V. Z. Groza, Sensor-based information appliances. IEEE Instrumentation and Measurement Magazine. December 2000, pp. 31-35.
    [11] Mani Srivastava, Richard Muntz, and Miodrag Potkonjak. Smart kindergarten: sensor-based wireless networks for smart developmental problem-solving environments. In the Proceedings of the 7th ACM MOBICOM, Rome, Italy, 2001, ACM Press, pp. 132-138.
    [12] P. Johnsonetal, Remote continuous physiological monitoring in the home. Journal of Telemedicine and Telecare, 2(2), 1996, pp.107-113.
    [13] M .Ogawa,et al., Fully automated bio-signal acquisition in daily routine through 1 month. In the proceedings of International Conference on IEEE-EMBS, HongKong, 1998, pp.1947-1950.
    [14] B. G. Celler, et al., An instrumentation system for the remote monitoring of changes in functional health status of the elderly. International Conference IEEE-EMBS, New York, 1994, pp .908-909.
    [15] O. Coyle, et al., Home tele-care for the elderly. Journal of Telemedicine and Tele-care, (1) 1995, pp. 183-184.
    [16] Arslan Basharat, Necati Catbas, Mubarak Shah, A framework for intelligent sensor network with video camera for structural health monitoring of bridges, In the Proceedings of the 3rd International Conference on Pervasive Computing and Communications Workshops (PerCom 2005), pp. 385-389.
    [17] L .S chwiebert, S .K .S .Gupta, J. Weinmann, et al. Research challenges in wireless networks of biomedical sensors. MobiCOM, July 2001, p p.151-165.
    [18] J. Burrell, T. Brooke, R. Beckwith. Vineyyard computing: sensor networks in agricultural production, IEEE Pervasive Computing, Volume 3, Issue 1, Jan.-March2004, pp.38-45.
    [19] D. C. Steere, A. Baptista, D. McName, C. Pu, J. Walpole, Research challenges in environmental observation and forecasting systems, In the Proceedings of 6th Mobicom, August 2000, pp. 292-299.
    [20] Geoff Werner-Allen, Jeff Johnson, Mario Ruiz, et al. Monitoring volcanic eruptions with a wireless sensor network. In the proceedings of the 2nd European Workshop on Wireless Sensor Networks (EWSN2005), January 2005.
    [21] Abdelzaher T., EnviroTrack: Towards an Environmental Computing Paradigm for Distributed Sensor Networks, ICDCS 2004.
    [22] P. Bonnet, J. Gehrke, P. Seshadri. Querying the physical world. IEEE Personal Communications. October 2000, pp. 10-15.
    [23] A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler. Wireless sensor networks for habit monitoring. ACM WSNA, Atlanta, Georgia, September, 2002.
    [24] Habitat monitoring on great duck island. http://www.greatduckisland.net / index.php.
    [25] Arampatzis, Th.; Lygeros, J.; Manesis, S. A survey of applications of wireless sensors and wireless sensor networks, Intelligent Control, 2005. In the Proceedings of IEEE International Symposium on, Mediterrean Conference on Control and Automation. Vol. 1, 2005, pp. 719-724.
    [26] B. Rickett, A vision of future applications for an automotive radar network. In the 1st International Workshop on Intelligent Transportation (WIT 2004). Hamburg, Germany, March 2004, pp. 23-24.
    [27] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci. Wireless sensor networks: a survey, Computer Networks, Elsevier Science 2002, (38), pp. 393-422.
    [28] David Culler, et al. Overview of Sensor Networks, IEEE Transactions on Computer, August 2004 pp. 41-49.
    [29] David Johnson, Tim Stack, Russ Fish, Daniel Flickinger, Robert Ricci, Jay Lepreau. TrueMobile: A mobile robotic wireless and sensor network test bed. In the Proceedings of Infocom 2006, April 2006.
    [30] Joseph Kahn, Randy Katz, and Kris Pister. Next century challenges: Mobile networking for smart dust. In Proceedings of Mobile Computing and Networking, Seattle, WA, USA, August 1999, ACM.
    [31] Wen Hu, Nirupama Bulusu, and Sanjay Jha. A communication paradigm for hybrid sensor / actuator networks, In the Proceedings of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2004), Barcelona, Spain, 2004.
    [32] Martin Haenggi. Mobile sensor-actuator networks: Oppotunities and challenges. In the Proceedings of the 7th IEEE International Workshop on Cellular Neural Networks and Their Applications, July 2002, pp. 283-290.
    [33] Zack Butler and Daniela Rus. Event-based motion control for mobile sensor networks. Pervasive Computing, October-December, 2003, pp. 34-42.
    [34] 雷鸣, 一种基于传感器网络的战场目标监测技术, 信号与系统, 2005(2), pp. 29-33.
    [35] 刘刚等, 自组织、自适应无限传感器网络理论研究, 计算机应用研究, 2005(5), pp.30-33.
    [36] 崔莉等, 无限传感器网络研究进展, 计算机研究与发展, 2005-42(1), pp. 163-174.
    [37] Chao Gui and Prasant Mohapatra. Power conservation and quality of surveillance in target tracking sensor networks. MobiCom 2004, Sept. 26Oct. 1, 2004, Philadelphia, Pennsylvania, USA. pp. 129-143.
    [38] Bang Wang, Kee Chaing Chua, Vikram Srinivasan, Wei Wang. Sensor density for complete information coverage in wireless sensor networks. EWSN 2006: pp. 69-82.
    [39] Jing Ai, Alhussein A. Abouzeid. Coverage by directional sensors in randomly deployed wireless sensor networks. Journal of Combinatorial Optimization, Volume 11, Number 1, 2006(2), pp. 21-41.
    [40] Mihaela Cardei and Jie Wu. Coverage in wireless sensor networks. In Handbook of sensor networks (chapter 19), Mohammad Ilyas and Imad Mahgoub, Eds. CRC Press, 2004.
    [41] Santosh Kumar, On k-coverage in a mostly sleeping sensor network, MobiCom, 2004. pp. 144-158.
    [42] Santpal S. Dhillon, Krishnendu Chakrabarty and S.S. Iyengar, Sensor placement for grid coverage under imprecise detections. In the proceedings of International conference on information fusion (Fusion2002), 2002, pp. 1581-1587.
    [43] Maxim A. Batalin and Gaurav S. Sukhatme, Coverage, exploration, and deployment by a mobile robot and communication network, IPSN 2003, LNCS 2634, 2003, pp. 376-391.
    [44] Yi Zou and Krishnendu Chakrabarty. Sensor deployment and target localization in distributed sensor networks. ACM Transactions on Emebedded Computing Systems, 2004, vol. 3, no. 1, pp. 61-91.
    [45] Sameera Poduri and Gaurav S. Sukhatme, Constrained coverage for mobile sensor networks. In IEEE International Conference on Robotics and Atuomation, 2004, vol.1, pp. 165-171.
    [46] Michael Hecker, Alankar Karol, Christopher Stanton, Mary-Anne Williams. Smart sensor networks: communication, collaboration and business decision making in distributed complex environments. International Conference on Mobile Business (ICMB'05), 2005, pp. 242-248.
    [47] Veradej Phipatanasuphorn, Parameswaran Ramanathan. Vulnerability of Sensor Networks to Unauthorized Traversal and Monitoring. IEEE Trans. Computers 53(3), 2004, 364-369.
    [48] M. Hata, Empirical formula for propagation loss in land mobile radio services. IEEE Transactions on Vehicular Technology, August 1980, vol. 29, pp. 317-325.
    [49] T. Clouqueur, P. Ramanathan, K. K. Saluja, and K. C. Wang. Value-fusion versus decision-fusionfor fault-torlerance in collaborative target detection in sensor networks. In the Proceedings of 4th International Conference on Information Fusion, August 2001.
    [50] Akyildiz, I.F.; Kasimoglu, I.H. Wireless .sensor and actor networks: research challenges. Ad Hoc Networks, Vol. 2, No. 4, October 2004, pp 351-367.
    [51] Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler, John Anderson. Wireless sensor networks for habitat monitoring. In: ACM International Workshop on Wireless Sensor Networks and Applications (WSNA), Atlanta, Georgia, USA, 2002. pp. 88-97.
    [52] Anthony D.Wood, John A. Stankovic. Denial of service in sensor networks [J]. IEEE Trans. on Computers, 2002, 35(10) pp. 54-62.
    [53] Phipatanasuphorn V, Ramanathan P. Vulnerability of sensor networks to unauthorized traversal and monitoring. IEEE Trans. on Computers, 2004, 53(3), pp. 364-369.
    [54] Veltri G, Huang Q, Qu G, Potkonjak M. Minimal and maximal exposure path algorithms for wireless embedded sensor networks. In: Akyildiz IF, Estion D, eds. Proc. of the ACM International Conference on Embedded Networked Sensor Systems (SenSys). New York: ACM Press, 2003 pp. 40-50.
    [55] Li XiangYang, Peng-JunWan, Ophir Frieder. Coverage in wireless ad hoc sensor networks. IEEE Trans. on Computers, 2003, 52(6) pp. 753-763.
    [56] Megerian S, Koushanfar F, Potkonjak M, Srivastava M. Worst and best-case coverage in sensor networks, IEEE Trans. on Mobile Computing, 2005, 4(1) pp. 84-92.
    [57] Meguerdichian S, Koushanfar F, Potkonjak M, Srivastava M, Coverage problems in wireless ad-hoc sensor networks. In: IEEE INFOCOM, Bhaskar Sengupta ed. Anchorage, Alaska, April 22-26, 2001, pp. 1380-1387.
    [58] Seapahn Meguerdichian, Farinaz Koushanfar, Gang Qu, Miodrag Potkonjak. Exposure in wireless ad-hoc sensor networks. In: ACM MobiCom, Rome, Italy, 2001, pp. 139-150.
    [59] David Kiyoshi Goldenberg, Krishnamurthy A, Maness WC, Yang Richard Yang, Young A, Stephen Morse A, Savvides A. Network localization in partially localizable networks. In: Infocom. Miami, FL,USA.2005, pp. 313-326.
    [60] Shu Zhou, Wei Shu, Terrain-constrained mobile sensor networks, in: Global Telecommunications Conference, 2005. GLOBECOM '05. IEEE Volume 1, 28 Nov.-2 Dec. 2005.
    [61] Aurenhammer F. Voronoi diagrams – a survey of a fundamental geometric data structure. ACM Computing Surveys, 1991, 23(3), pp. 345- 405.
    [62] Mulmuley K. Computational geometry: an Introduction through randomized algorithms. Prentice Hall, Upper Saddle River, N. J., 1994.
    [63] Bose P, Morin P. Online routing in triangulations. In: the 10th International Symposium on Algorithms and Computation (ISAAC), Alok Aggarwal, C. Pandu Rangan Eds. Springer-Verlag, Chennai, India. 1999, pp. 113-122.
    [64] Bose P, Morin P, Stojmenovic I, Urrutia J. Routing with guaranteed delivery in ad hoc wireless networks. ACM/Kluwer Wireless Networks, 2001, 7(6), pp. 609-616.
    [65] Kranakis E, Singh H, Urrutia J. Compass routing on geometric networks. In: the 11th Canadian Conference on Computational Geometry, UBC, Vancouver, British Columbia, Canada, 1999. pp. 52-54.
    [66] The network simulator – NS2, http://www.isi.edu/nsnam/ns/
    [67] T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan, and K. K. Saluja. Sensor Deployment Strategy for Target Detection. 1st ACM International Workshop on Wireless Sensor Networks and Applications, 2002.
    [68] B. Liu and D. Towsley. A study of the coverage of large-scale sensor network. IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS), Oct. 2004, pp. 475-483.
    [69] S. Shakkottai, R. Srikant, and N. Shroff. Unreliable Sensor Grids: Coverage, Connectivity and Diameter. In the Proceedings of IEEE Infocom, 2003, vol. 2, pp. 1073-1083.
    [70] S. Kumar, T. H. Lai, and J. Balogh. On k-Coverage in a Mostly Sleeping Sensor Network. In the Proceedings of MobiCom, 2004, pp. 144-158.
    [71] Q. Cao, T. Yan, J. Stankovic, and T Abdelzaher. Analysis of target detection performance for wireless sensor networks. International Conference on Distributed Computing in Sensor Networks, June2005.
    [72] O. Dousse, C. Tavoularis, and P. Thiran. Delay of intrusion detection in wireless sensor networks. In the Proceedings of ACM MobiHoc, May 2006, pp. 155-165.
    [73] C. Gui and P. Mohapatra. Power conservation and quality of surveillance in target tracking sensor networks. Proceedings of ACM MobiCom, Sept. 2004.
    [74] S. Kumar, T. H. Lai, and A. Arora. Barrier coverage with wireless sensors. In the Proceedings of MobiCom, August 2005, Cologne, Germany, 2005, pp. 284-298.
    [75] M. Batalin and G. Sukhatme. Spreading out: A Local Approach to Multi-robot Coverage. the 6th International Conference on Distributed Autonomous Robotic Systems, 2002.
    [76] A. howard, M. Mataric, and G. Sukhatme. Mobile Sensor Network Deployment Using Potential Fields: a Distributed, Scalable Solution to the Area Coverage Problem. the 6th International Conference on Distributed Autonomous Robotic Systems, 2002.
    [77] Archana Sekhar, B. S. Manoj, and C. Siva Ram Murthy, Dynamic Coverage Maintenance Algorithms for Sensor Networks with Limited Mobility, Percom 2005.
    [78] Morteza Maleki et al. QoM and Lifetime-constrained Random Deployment of Sensor Networks for Minimum Energy Consumption, IPSN 2005, pp.293-300.
    [79] Guanqun Yang, Wei Zhou, Daji Qiao. Defending Against Barrier Intrusions with Mobile Sensors. International Conference on Wireless Algorithms, Systems and Applications. 2007, pp.113-120.
    [80] B. Liu, P. Brass, O. Dousse, P. Nain, and D. Towsley. Mobility Improves Coverage of Sensor networks. Proceedings of ACM MobiHoc, 2005, pp. 300-308.
    [81] H. Zhang and J. C. Hou. Is Deterministic Deployment Worse than Random Deployment for Wireless Sensor Networks? In the Proceedings of IEEE Infocom, March 2006.
    [82] P. Hall, Introduction to the theory of coverage process, John Wiley & Sons, 1998.
    [83] M. Shaw, P. Levin, and J. Martel. The Dod: stewards of a global information resource, The navstar global position system. In the Proceedings of the IEEE, Jan. 1999, vol. 87, no. 1, pp. 16-23.
    [84] S. C. Fisher and K. Ghassemi. GPS IIF-the next generation. In the Proceedings of the IEEE, January. 1999, vol. 87, no.1, pp. 24-47.
    [85] M. S. Braasch and A. J. Van Dierendonck. GPS receiver architectures and measurements. In the Proceedings of the IEEE, Jan. 1999, vol. 87, no. 1, pp. 48-64.
    [86] J. Caffery Jr and G. L. Stuber. Nonlinear multiuser parameter estimation and tracking in CDMA systems. IEEE Transactions on Communications, Dec. 2000, vol. 48, no. 12, pp. 2053-2063.
    [87] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket location-support system. In the Proceedings of ACM MobiCom, Aug. 2000, pp. 32-43.
    [88] N. Patwari and A. O. Hero III. Using proximity and quantized RSS for sensor localization in wireless networks. IEEE/ACM 2nd Workshop on Wireless Sensor Nets & Applications, 2003.
    [89] L. Hu and D. Evans. Localization for mobile sensor networks. In the Proceedings of ACM MobiCom, 2004, pp. 45-57.
    [90] G. Yang, W. Zhou, and D. Qiao, Defending the Barrier with Mobile Sensors: A Game Theory Approach, Technical Report CPRE, Iowa State University, Jan. 2006. [ 91 ] 张维迎 ,博弈 论 与信息 经 济 学 , 上 海 三 联 出 版 社 上 海 人 民出 版 社, ISBN :7-309-03792-8/F.821,2003 年 4 月.
    [92] E. Biagioni and K. Bridges, The application of remote sensor technology to assist the recovery of rare and endangered species, International Journal of High Performance Computing Applications, 16(3):315–324, Aug 2002.
    [93] Haenggi M. Mobile sensor-actuator networks: opportunities and challenges. In: Proceedings of the 7th. IEEE International Workshop on Cellular Neural Networks and Their Applications, 2002. (CNNA 2002), Frankfurt, Germany, July 2002. pp. 283-290.
    [94] BAA #01-06, Networked Embedded Software Technology (NEST), CBD Reference, from the site of http://webs.cs.berkeley.edu/CBD_01-06
    [95] M. A. Batalin, G. S. Sukhatme, and M. Hattig, Mobile robot navigation using a sensor network, In Proceedings of the IEEE International Conference on Robotics and Automation, pages 636–642, NewOrleans, USA, April 2003.
    [96] J. Borenstein and H. R. Everett, Navigating Mobile Robots: Sensors and Techniques, John Wiley & Sons, 1992.
    [97] J. Borenstein and Y. Koren, The vector field histogram – fast obstacle-avoidance for mobile robots, IEEE Journal of Robotics and Automation, 7(3):278–288, 1991.
    [98] Seapahn Meguerdichian, Farinaz Koushanfar, Gang Qu, and iodrag Potkonjak, Exposure in wireless ad hoc sensor networks, In Proc. of 7th Annual International Conference on Mobile Computing and Networking, pages 139–150, July 2001.
    [99] Qun Li, Michael De Rosa, and Daniela Rus, Distributed algorithms for guiding navigation across a sensor network, Proceedings of the 9th Annual International Conference on Mobile Computing and Networking, San Diego, CA, USA, pp. 313–325, 2003, ACM Press.
    [100] J.J. Liu, J. Liu, J. Reich, P. Cheung, and F. Zhao, Distributed group management for track initiation and maintenance in target localization applications, In Proc. of 2nd workshop on Information Processing in Sensor Networks (IPSN), April 2003.
    [101] Atul Verma, Hemjit Sawant, Jindong Tan, Selection and Navigation of Mobile Sensor Nodes Using a Sensor Network, Third IEEE International Conference on Pervasive Computing and Communications (PERCOM'05), pp. 41-50.
    [102] A. J. Briggs, C. Detweiler, D. Scharstein, and A. Vandenberg-Rodes, Expected shortest paths for landmark-based robot navigation, International Journal of Robotics Research, 23:717–728, July 2004.
    [103] J.J. Liu, J. Liu, M. Chu, J.E. Reich, and F. Zhao, Distributed state representation for tracking problems in sensor networks, In Proc. of 3nd workshop on Information Processing in Sensor Networks (IPSN), April 2004.
    [104] Kim WooYoung, Kirill Mechitov, Jeung-Yoon Choi, Soo Ham. On Target Tracking with Binary Proximity Sensors, Fourth International Conference on Information Processing in Sensor Networks (IPSN) , 2005, pp. 301-308.
    [105] Songhwai Oh, Luca Schenato, and Shankar Sastry, A hierarchical multiple-target trackingalgorithm for sensor networks, In Proc. of the International Conference on Robotics and Automation, Barcelona, Spain, April 2005.
    [106] L. Schenato, S. Oh, P. Bose, and S. Sastry, Swarm coordination for pursuit evasion games using sensor networks, In Proc. of the International Conference on Robotics and Automation, 2005.
    [107] R. Isaacs. Differential games. John Wiley and Sons, New York, 1965.
    [108] Peng Zhuang, Yi Shang, and Hongchi Shi. A new method of using sensor network for solving pursuit-evasion problem. Journal of networks, February 2007, vol. 2, No. 1, pp. 9-16.
    [109] Ossama Younis, and Sonia Fahmy. HEED: A hybrid, Energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, Vol. 3, No. 4, October-December 2004, pp. 366-379.
    [110] Kemal Efe, Heuristic Models of Task Assignment Scheduling in Distributed Systems, IEEE Computer, June 1982, pp. 50-56.
    [111] Ahmed K. Ezzat, R. Daniel Bergerson and John L. Pokoski, Task Allocation Heuristics for Distributed Computing Systems, in Proc. of Intl. Conf. on Distributed Computing Systems, pp. 337-346, 1986.
    [112] J.P. Hespanha, H.J. Kim, and S.S. Sastry, Multiple-agent probabilistic pursuit-evasion games, In IEEE Int. Conf. on Decision and Control, pp. 2432-2437, 1999.
    [113] Robert T. COLLINS, Algorithms for Cooperative Multi-sensor Surveillance, In the proceedings of the IEEE, VOL. 89, NO. 10, pp. 1456-1477, OCTOBER 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700