用户名: 密码: 验证码:
舟山群岛海域泥沙运移及动力机制分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋泥沙在河口及邻近海域环境中具有重要的作用,因为它们既是营养盐和有机物的载体,又对污染物的迁移和循环产生显著影响;同时,由于人类活动和泥沙运移的相互作用,使得泥沙运移对港口开发、航道维护、海洋构筑物建设以及海底光缆的铺设等人类活动产生明显影响。因此,充分了解河口及邻近海域的泥沙运移和动力机制,一方面,对于港口开发等人类活动具有重要的实际意义,另一方面,对于探讨现代沉积过程和分析污染物扩散则具理论意义。
     舟山群岛海域北临长江口,西接杭州湾,既是长江水体南下的必经之路,也是杭州湾水体与东海水体交换的主要通道;同时,舟山群岛海域岛屿众多、水深地形多变、水动力条件复杂。因此,舟山群岛的泥沙分布及输运必然存在特殊性质。本文以实测资料为基础,利用不同的研究方法和计算公式,系统地分析了舟山群岛海域泥沙的分布和运移特性,揭示了泥沙运移的动力机制,探讨了群岛对泥沙分布和运移的影响。
     以实测资料为基础,对研究区的海流、悬浮泥沙和表层沉积物的分布特征进行了系统地分析。结果表明,研究区悬沙浓度自杭州湾向外海迅速降低;落潮平均含沙量一般高于涨潮平均含沙量;水位波动对潮周期内悬沙浓度的变化影响显著,由水位变化引起的泥沙运移掩盖了流速变化对悬沙浓度的影响;粉砂是研究区内分布最广的沉积物类型,主要分布受群岛影响较小的海域,局部分布有砂质粉砂、砂和砾,主要出现在岛屿周围;群岛对表层沉积物类型、粒度参数以及不同粒级组分的分布影响显著。
     利用通量机制分解方法和悬沙沉降公式,并结合前人的研究成果,分析了舟山群岛海域悬浮泥沙的输运通量、运移方向和动力机制,研究了悬浮泥沙的沉降特性。结果表明,研究区净悬沙通量自杭州湾内向外海迅速变小,悬沙总体由杭州湾向外海输运,但同时存在向杭州湾方向的净输沙;研究区基本处于水动力平衡带,悬沙输运具有往复搬运、净输沙量小的特点;平均流输运、Stokes漂移输运和垂向净环流输运是引起悬沙泥沙净输运的主要作用机制,自口门至外海,平流输运作用逐渐减弱,垂向净环流输沙在悬沙净输运中所占比例逐渐增加;舟山群岛海域既是杭州湾向东海输运泥沙的重要通道,也是东海沿岸流携带泥沙向南输运的过渡地带;研究区单颗粒泥沙沉降速度很小,远小于絮凝沉降速度,在研究本区悬沙沉降时必须考虑絮凝的影响。
     利用泥沙起动流速公式、沉积物输运通量公式以及粒度趋势分析方法,结合东海表层沉积物分布和东海流系,分析了表层沉积物的起动流速和输运通量,讨论了表层沉积物的运移趋势和影响因素。结果表明,研究区总体上从杭州湾向外海,泥沙起动流速越来越大,也就是说,越往外海泥沙越难以再悬浮;表层沉积物整体由湾口向外海运移,平均日单宽输沙通量总体由杭州湾内向外海减小;在群岛内,由于受到岛屿的限制,泥沙基本沿水道走向运移,在外海区,沉积物净运移存两个明显的运移趋势,分别对应长江口泥质区和闽浙沿岸泥质区;潮流是控制泥沙运移的主要动力因子,同时,潮汐、东海沿岸流、风浪、台湾暖流、群岛以及地形等因素对泥沙输运的影响亦不可忽视。
     在上述研究结果的基础上,借鉴河流的边滩理论,探讨和分析了群岛对泥沙分布和运移的影响。结果表明,舟山群岛的存在对研究区海流变化、泥沙分布和泥沙运移影响显著,具有明显的“群岛效应”;所谓“群岛效应”主要是指受群岛分布制约和水动力条件变化影响下的泥沙运移、沉降、再悬浮以及分布的过程;群岛的存在,使水道内产生涨落潮流控制下的“双向环流”,该环流控制着泥沙的横向分布和运移,而涨落潮流则控制泥沙的纵向分布和运移;舟山群岛海域对来自长江口和杭州湾的泥沙具有“过滤器”和“扩散器”的双重作用,即对粗颗粒物质具有过滤作用,而对细颗粒物质则有扩散作用。
Sediment transport processes play an important role in the estuarine and nearshore environment, because the sediments are not only important carriers of various nutrients and pollutants, but also have a stong impact on the transfer and recycling of pollutants. At the same time, sediment transport will significantly influence changes of landform and physiognomy; meanwhile, such changes will correspondingly have great effect on human activity such as port development, seaway maintenance, marine structures construction and laying of submarine cable and so on. Therefore, it is vital to understand the sediment transport and dynamic mechanism in the river mouth and adjacent areas. For one thing, it has important practical significance for human activities such as the development of the port; for another, it has theoretical significance for discussing modern sedimentary processes and spread of pollutants.
     Zhoushan Archipelago sea area is located in the southeast waters offshore the Changjiang River Mouth and outer edge of the Hangzhou Bay. The study area is not only the only way to the south for Changjiang Diluted Water, but also the main channel for the water exchange between Hangzhou Bay and the East China Sea. It is characteristic of numerous islands, changeful water depth and topography and complicated hydrodynamic conditions. Therefore, the distribution and transport of sediments in the study area must have special properties. Based on the measured data, using different research methods and formulas, sediment distribution and transport characteristics are systematically analyzed, sediment transport mechanisms are revealed, and impacts of Archipelago on the sediment distribution and transport are discussed.
     Characteristics of ocean current, distribution of suspended sediment and surface sediment are systematically analyzed on the basis of measured data. Results show that the suspended sediment concentration sharply decreases from the Hangzhou Bay to the offshore area. Average suspended sediment concentration of ebb tide is generally higher than that of flood tide. Changes of suspended sediment concentration are significantly affected by fluctuations of water level in a tidal cycle. Impact on the suspended sediment concentration caused by changes of flow velocity is covered up sediment transport induced by fluctuations of water level. Silt is the dominant sediment type which is primarily distributed in the open sea area where it is less affected by Zhoushan Archipelago. Sandy silt, sand and gravel are locally distributed around the islands. Distribution of surface sediment type, grain size parameters and the different components of surface sediments grain size are greatly affected by the Archipelago.
     Flux, transport direction and mechanism of suspended sediments are analyzed using flux decomposition method. Settlement characteristics are studied based on formula of suspended sediment settling velocity and previous research results. Results show that the suspended sediment flux quickly decreases from the Hangzhou Bay to the offshore area. Although the suspended sediments are primarily transported towards the offshore area, net transport towards the Hangzhou Bay is also found in the study area. The study area is basically located in hydrodynamic balance belt, and the suspended sediment transport is characteristics of reciprocating movement and small amount of net sediment discharge. The net suspended sediment transport is mainly controlled by average current transport, Stokes drift-induced transport and gravitational circulation transport. The advection transport effect gradually weakens and gravitational circulation transport evidently intensifies from Hangzhou Bay to the offshore area. Settling velocity of single particles is far smaller than that of floccules, so, influence of flocculation of suspended sediments must be taken into the consideration.
     Incipient velocity and transport flux of surface sediments are analyzed using formulas of incipient velocity and transport flux. Transport trend and controlling factors of surface sediments are studied by the method of grain size trend analysis. Results show that surface sediments become more and more difficult to be resuspended from the Hangzhou Bay to the offshore area. The surface sediments are mainly transported from the Hangzhou Bay to the offshore area; meanwhile, the net transport fluxes per day rapidly decrease towards the offshore area. In the area of archipelago, the surface sediments are mainly transported along the trend of channel because of the restriction of archipelago. In the offshore area, there are two obvious sediments transport trends that correspond to the Changjiang Estuary mud area and Zhejiang Fujian coastal mud area. Tidal current is the major dynamic factor dominating in the sediment transport. Meanwhile, the East China Sea Coastal Current, Taiwan Warm Current, wind waves and topography also play important roles in the sediment transport.
     The impact on the sediment distribution and transport of the archipelago is discussed according to the research results of this article and the reference of theory about point bar of river. Results show that the changes of ocean currents, distribution and transport of sediments are significantly affected by the archipelago that has obvious“archipelago effect”. The“archipelago effect”means processes of transport, deposition, resuspension and distribution of sediments controlled by the restriction of the archipelago and changes of hydrodynamic conditions. "Two-way circulation" is dominated by flood/ebb tide because of the existence of the archipelago. It controls the transverse distribution and transport of sediments, meanwhile, the flood/ebb tide masters the lengthways distribution and transport of sediments. The Zhoushan Archipelago has a dual role in the sediments derived from the Changjiang Estuary and the Hangzhou Bay that is“filter”process and“diffuser”process. Coarse particulate matter is filered and fine particulate matter is diffused by the archipelago.
引文
[1] Ackers P, White W R. Sediment transport: new approach and analysis. Journal of the Hydraulics Division,1973, 99(11): 2041~2660.
    [2] Ahrens J P. A fall-velocity equation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2000, 126(2): 99~102.
    [3] Asselman N E M. Grain~size trends used to assess the effective discharge for floodplain sedimentation, river Waal, the Netherlands. Journal of Sedimentary Researc
    [4] Bartholdy J, Bartholomae A, Flemming B W. Grain-size control of large compound flow-transverse bedforms in a tidal inlet of the Danish Wadden Sea. Marine Geology,
    [5] Basson G R. The development of a new sediment transport equation based on applied stream power. In: Balkema A A, (eds). River Sedimentation: Theory and Applicatio
    [6] Beardsley R C, Limeburner R, Yu H, et al. 1985. Discharge of the Changjiang (Yangtze River) into the East China Sea. Continental Shelf Research, 4(1-2): 57~76.
    [7] Bowden K F. The mixing processes in a tidal estuary. International Journal of Air and Water Pollution, 1965, 7: 343~356.
    [8] Camenen B. Simple and general formula for the settling velocity of particles. Journal of Hydraulic Engineering, 2007, 133(2): 229~233.
    [9] Che Y, He Q, Lin W Q, et al. The distributions of particulate heavy metals and its indication to the transfer of sediments in the Changjiang Estuary and Hangzhou
    [10] Chen J Y, Li D J, Chen B L, et al. The processes of dynamic sedimentation in the Changjiang Estuary. Journal of Sea Research, 1999, 41: 129~140.
    [11] Chen S L, Zhang G A, Yang S L, et al. Temporal variations of fine suspended sediment concentration in the Changjiang River estuary and adjacent coastal waters, Ch
    [12] Chen S L. Seasonal, neap-spring variation of sediment concentration in the joint area between Yangtze Estuary and Hangzhou Bay. Science in China, 2001, 44: 57~62.
    [13] Chen Z, Saito Y, Kanai Y et al. Low concentration of heavy metals in the Yangtze estuarine sediments, China: a diluting setting. Estuarine, Coastal and Shelf Scie
    [14] Cheng N S. Simplified settling velocity formula for sediment particle. Journal ofHydraulic Engineering, 1997, 123(2): 149~152.
    [15] Colby B R. Pratical computations of bed-material discharge. Journal of the Hydraulics Division, 1964, 90(2): 217~246.
    [16] Demaster D J, Mckee B A, Nittrouer C A et al. Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf dep
    [17] DeMaster D J, McKee B A, Nittrouer C A, et al. Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf de
    [18] Dietrich W. Settling velocities of natural particles. Water Resources Research, 1982, 18(6), 1615~1626.
    [19] Do M D, Mai T Nn, Chu V N et al. Sediment distribution and transport at the nearshore zone of the Red River delta, Northern Vietnam. Journal of Asian Earth Scienc
    [20] Dyer K R. The salt balance in stratified estuaries. Estuarine and Coastal Marine Science. 1974, 2 : 273~281.
    [21] Einstein H A. The bed-load function for sediment transportation in open channel flows. U.S. Department of Agriculture, Soil Conservation Service , Technical Bulle
    [22] Engelund F, Hansen E. A monograph on sediment transport in alluvial streams. Teknisk Forlag, Copenhagen, 1967, 1~62.
    [23] Fisher H B. Mixing and dispersion in estuaries. Annual Review of Fluid Mechanics, 1976, 8: 107~133.
    [24] Folk R L, Andrews P B, Lewis D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand. New Zealand Journalo of Geology and Geophysics
    [25] Folk R L, Ward W C. Brazos River bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology, 1957, 27(1): 3~26.
    [26] Gadd P E, Lavelle J W, Swift D J R. Estimate of sand transport on the New York shelf using near-bottom current meter observations. Journal of Sedimentary Geology,
    [27] Gao S, Collins M B, Lanckneus J, et al. Grain size trends associated with net sediment transport patterns: an example from the Belgian continental shelf. Marine G
    [28] Gao S, Collins M. Analysis of grain size trends for defining sediment transport pathwaysin marine environments. Journal of Coastal Research, 1994, 10(1): 70~78.
    [29] Gao S, Collins M. Net sediment transport patterns inferred from grain size trends based upon definition of“transport vectors”. Sedimentary Geology, 1992, 81: 4
    [30] Gessler J. Beginning and ceasing of sediment motion. Chapter 7. In: Shen H W, (eds). River Mechanics. Fort Collins, Colorado, U. S. A. 1971, 22.
    [31] Greenwood B, Aagaard T, Nielsen J. Swash Bar Morphodynamics in the Danish Wadden Sea: Sand Bed Oscillations and Suspended Sediment Flux during an Accretionary Pha
    [32] Guo J. Logarithmic matching and its applications in computational hydraulics and sediment transport. Journal of Hydraulic Research, 2002, 40 (5): 555~565.
    [33] Haner B.E. Santa Ana River: an example of a sandy braided fioodPlain system showing sediment source area imprintation and selective sediment modification. Sedimen
    [34] Hansen D V. Current and mixing in the Columbia River estuary. Transactions of the Joint Conference on Ocean Science and Ocean Engineering. 1965, 943~955.
    [35] Hardisty J. An assessment and calibration of formulations for Bagnold’s bedload equation. Journal of Sedimentary Petrology, 1983, 53(3): 1007~1010
    [36] Helland-Hensen F, Milhous R T, Klingeman P C. Sediment transport at low Shields Parameter values. Journal of the Hydraulics Division, 1974, 100(1): 261~265.
    [37] Ibad-zade Y A. Movement of sediment in open channels. Translated by Ghosh S P. Russian Translations, 1992, 49.
    [38] Ingram R. G, Characteristics of the Great Whale River Plume. Journal of Geophysical Research, 1981, 86(C3): 2017~2023.
    [39] Jay D A, Geyer W R, Uncles R J, et al. A review of recent development in estuarine scalar flux estimation. Estuaries, 1997, 20(2): 262~280.
    [40] Kramer H. Sand mixtures and sand movement in fluvial models. Translation of American Society of Civil Engineers, 1935, 100: 798~838.
    [41] Krumbein W.C. Size frequeney distributions of sediments and the normal Phieurve, Journal of Sedimentary Petrology, 1938, 8: 84~90.
    [42] Le Roux J P, O'Brien R D, Rios F, et al. Analysis of sediment transport paths usinggrain-size parameters. Computers&Geosciences, 2002, 28(5): 717~721.
    [43] Le Roux J P. An alternative approach to the identification of net sediment transport paths based on grain~size trends. Sedimentary Geology, 1994b, 94: 97~107.
    [44] Le Roux J P. Net sediment transport patterns inferred from grain-size trends,based upon definition of“transport vectors”-comment. SedimentaryGeology, 1994a, 90
    [45] Lee H J, Chao S Y. A climatological description of circulation in and around the East China Sea. Deep-Sea Research, 2003, 50 (6-7): 1065-1084.
    [46] Li G X, Han X B, Yue S H, et al. Monthly variations of water masses in the East China Seas. Continental Shelf Research, 2006, 26: 1954~1970.
    [47] Li G X, Yue S H, Wen G Y, et al. Monthly variation of the water masses in the East China Seas on a simple spiciness index. Journal of Marine System. 2005b.
    [48] Li J F, Zhang C. Sediment resuspension and implications for turbidity maximum in the Changjiang Estuary. Marine Geology, 1998, 148: 117~124.
    [49] Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea. Continental Shelf Research,
    [50] Liu J P, Xu K H, Li A C et al. Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorphology, 2007, 85: 208~224.
    [51] Liu J, Saito Y, Wang H, et al. Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea. Marine Geology, 2007, 236:
    [52] Mason C C, Folk R L. Differentiation of beach, dune, and aeolian flat environments by size analysis, Mustang Island, Texas. Journal of Sedimentary Petrology, 1958
    [53] Mccave I N. Grain-size trends and transport along beaches: Example from eastern England. Marine Geology, 1978, 28(1-2): M43~M51.
    [54] McKee B A, Nittrouer C A, DeMaster D J. Concepts of sediment deposition and accumulation applied to the continental shelf near the mouth of the Yangtze River. Geo
    [55] McLaren P, Bowles D. The effects of sediment transport on grain size distribution. Journal of Sedimentary Petrology, 1985, 55(4): 457~470.
    [56] McLaren P. An interpretation of trends in grain size measures, Journal of SedimentaryResearch, 1981, 51(2): 611~624.
    [57] McManus J. Grain-size determination and interpretation. Techniques in sedimentology. Backwell, Oxford, 1988, 63~85.
    [58] Milliman J D, Shen H T, Yang Z S, et al. Transport and deposition of river sediments in the Changjiang estuary and adjacent continental shelf. Continental Shelf R
    [59] Millman J D, Qin Y S, Park Y A. Sediments and sedimentary processes in the Yellow and East China Seas. In: Taira A, Masuda F (eds.), Sedimentary Facies in the Act
    [60] Molinas A, Wu B S. Transport of sediment in large sand-bed rivers. Journal of Hydraulic Research, 2001, 39(2): 135~146.
    [61] Mothersill J S. A grain size analysis of longshore-bars and troughs, lake superior, Ontario. Journal of Sedimentary Research, 1969, 39(4): 1317~1324.
    [62] Nordstrom K F, Downward coarsening of beach foreshore sediments at tidal inlets: an example from the coast of New Jersey, Earth Surface Processes and Landform, 19
    [63] Pedreros R, Howa H L, Michel D. Application of grain size trend analysis for the determination of sediment transport pathways in intertidal areas. Marine Geology,
    [64] Perillo G M E, Piccolo M C, Mosquera J, et al. Algorithm to calculate equal-area grid cells in irregular estuarine cross-sections. Computers & Geosciences, 1999,
    [65] Perillo G M E, Piccolo M C. An interpolation method for estuarine and oceanographic data. Computers & Geosciences, 1991, 17 (6): 813~820.
    [66] Perillo G M E, Piccolo M C. Importance of grid-cell area in the estimation of estuarine residual fluxes. Estuaries, 1998, 21(1): 14~28.
    [67] Poizota E, Meara Y, Thomas M, et al. The application of geostatistics in defining the characteristic distance for grain size trend analysis. Computers&Geosciences
    [68] Rouse H. Modern conceptions of the mechanics of fluid turbulence. Transactions of American Society of Civil Engineers, 1937, 102: 436~505.
    [69] Sahu B K. Depositional mechanisms from the size analysis of elastic sediments. Journal of Sedimentary Petrology, 1964, 34(1): 73~83.
    [70] Saito Y, Yang Z S. Historical change of the Huanghe (Yellow River) and its impact on thesediment budget of the East China Sea. In: Iseki K, Koike I, Tsunogai S e
    [71] Self R P. Longshore variation in beach sands, Nautla area, Veracruz, Mexico. Journal of Sedimentary Research, 1977, 47(4): 1437-1443.
    [72] She K, Trim L, Pope D. Fall velocities of natural sediment particles: A simple mathematical presentation of the fall velocity law. Journal of Hydraulic Research,
    [73] Shi Z, Ren L F, Lin H L Vertical suspension profile in the Changjiang Estuary. Marine Geology, 1996, 130: 29~37.
    [74] Shi Z, Zhou H J, Eittreim S L, et al. Settling velocities of fine suspended particles in the Changjiang Estuary, China. Journal of Asian Earth Sciences, 2003, 22:
    [75] Shi Z. Behaviour of fine suspended sediment at the North passage of the Changjiang Estuary, China. Journal of Hydrology, 2004, 293: 180~190.
    [76] Soulsby R L. Dynamics of Marine Sands. London: Thomas Telford, Ltd., 1998, 182.
    [77] StaPor F W, Tanner W E. Hydrodynamic implications of beach, beach ridge and dune grain size studies, Journal of Sedimentary Petrology, 1975, 45: 926~931.
    [78] Stevens R L, Bengtsson H, Lepland A. Textural provinces and transport interpretations with fine~grain sediments in the Skagerrak. Journal of Sea Research, 1996, 9
    [79] Stokes G. On the effect of internal friction of fluids on the motion of pendulums, Transactions of the Cambridge Philosophical Society, 1851, IX: 8~106.
    [80] Su C C, Huh C A. 210Pb, 137Cs and 239, 240Pu in East China Sea sediments: sources, pathways and budgets of sediments and radionuclides. Marine Geology, 2002, 183:
    [81] Su J L, Wang K S, Li Y. Fronts and transport of suspended matter in the Hangzhou Bay. Acta Ocenaologica Sinica, 1992, 12(1): 1~15.
    [82] Su J L, Wang K S. Changjiang river plume and suspended sediment transport in Hangzhou Bay. Continental Shelf Research, 1989, 9(1): 93~111.
    [83] Su J L, Wang K S. The suspended sediment balance in Changjiang Estuary. Estuarine, Coastal and Shelf Science, 1986, 23: 81~98.
    [84] Talkea S A, Stacey M T. Suspended sediment fluxes at an intertidal flat: The shifting influence of wave, wind, tidal, and freshwater forcing. Continental Shelf Re
    [85] Toffaleti F B. Definitive computations of sand discharge in rivers. Journal of the Hydraulics Division, 1969, 95(1): 225~248.
    [86] Uncle R J, Elliott R C A, Weston S A. Observed fluxes of water, salt and suspended sediment in a partly mixed estuary. Estuarine, Coastal and Shelf Science, 1985,
    [87] Uncles R J, Elliott R C A, Weston S A. Dispersion of salt and suspended sediment in a partly mixed estuary. Estuaries, 1985, 8: 256~269.
    [88] Van-Rijn L C. Handbook: Sediment transport by currents and waves. Report H461, Delft Hydraulics, Netherlands. 1989.
    [89] Vincent C E, Young R A, Swift D J P, Bedload transport under waves and currents. Marine Geology, 1981, 39: M71~M80.
    [90] Vinther N, Christiansen C, Bartholdy J, et al. Sediment transport across a tidal divide in the Danish Wadden Sea. Danish Journal of Geography, 2004, 104 (1): 71~8
    [91] Visher G S. Grain size distributions and depositional processes, Journal of Sedimentary Petrology, 1969, 39(3): 1074~1106.
    [92] Wang Y H. Formula for predicting bedload transport rate in oscillatory sheet flows. Coastal Engineering, 2007, 54: 594~601.
    [93] Wang Z H, Li L Q, Chen D C, et al. Plume front and suspended sediment dispersal off the Yangtze(Changjiang) River mouth, China during non-flood season. Estuarine,
    [94] Wei T Y, Chen Z Y, Duan LY, et al. Sedimentation rates in relation to sedimentary processes of the Yangtze Estuary, China. Estuarine, Coastal and Shelf Science, 2
    [95] Yalin M S. An expression for bed-load transportation. Journal of the Hydraulics Division, 1963, 89: 221~250.
    [96] Yang S Q. Formula for sediment transport in rivers, estuaries and coastal waters. Journal of Hydraulic Engineering, 2005, 131, 968~979.
    [97] Yang Z S, Saito Y, Guo Z G et al. Distal mud area as a material sink in the East China Sea. In: Iseki K, Koike I, Tsunogai S et al (eds.), Proceedings of Internat
    [98] Yeakel L S. Tuscarora, Juniata, and Bald Eagle paleocurrents and paleogeography in the Central Appalachians. GSA Bulletin, 1962, 73(12):1515~1539.
    [99]曹沛奎,董永发,周月琴.杭州湾北部潮流冲刷槽演变的分析.地理学报, 1989, 44(2): 157~166.
    [100]曹沛奎,谷国传,董永发,等.杭州湾泥沙运移的基本特征.华东师范大学(自然科学版), 1985, (3): 75~84.
    [101]曹沛奎,严肃庄.长江口悬沙锋及其对物质输移的影响.华东师范大学学报(自然科学版), 1996, (1): 85~94.
    [102]曹振轶,胡克林.长江口二维非均匀悬沙数值模拟.泥沙研究, 2002,(6): 66~73.
    [103]陈吉余,陈沈良,丁平兴.长江口南汇咀近岸水域泥沙输移途径.长江流域资源与环境, 2001, 10(2): 166~172.
    [104]陈吉余,陈沈良.中国河口海岸面临的挑战.海洋地质动态, 2002, 18(1): 1~5.
    [105]陈沈良,谷国传,张国安.长江口南汇近岸水域悬沙沉降速度估算.泥沙研究, 2003, (6): 458~51.
    [106]陈沈良,谷国传.杭州湾口悬沙浓度变化与模拟.泥沙研究, 2000, (5): 45~50.
    [107]陈沈良,杨世伦,吴瑞明.杭州湾北岸潮滩沉积物粒度的时间变化及其沉积动力学意义.海洋科学进展, 2004, 22(3): 299~305.
    [108]陈沈良,张国安,杨世伦.长江口水域悬沙浓度时空变化与泥沙再悬浮.地理学报, 2004, 59(2): 260~266.
    [109]陈沈良.杭州湾口南汇咀近岸水域水沙特征与通量.海洋科学, 2004, 28(3): 18~22.
    [110]陈沈良.崎岖列岛海区百年冲淤特征及其原因.海洋通报, 2000, 19(1): 58~67.
    [111]陈沈良.崎岖列岛海区的水文泥沙及其峡道效应.海洋学报(中文版), 2000, 22(3): 123~131.
    [112]陈卫跃.潮滩泥沙输移及沉积动力环境—以杭州湾北岸、长江口南岸部分潮滩为例.海洋学报, 1991, 13: 813~821.
    [113]陈夏法.应用遥感技术研究杭州湾秋季悬沙的动态特征.东海海洋, 1988, 6(2): 37~43.
    [114]陈义中.黄海东海环流和长江冲淡水季节连续变化的数值模拟(硕士学位论文).上海:华东师范大学, 2007.
    [115]陈子燊.伶仃河口湾铜鼓水域水沙净输运分析.海洋工程, 1999, 17(1): 79~85.
    [116]陈宗镛.潮汐学.北京:科学出版社, 1980, 301.
    [117]程江,何青,王元叶.利用LISST观测絮凝体粒径、有效密度和沉速的垂线分布.泥沙研究, 2005, (1): 33~39.
    [118]程鹏,高抒.北黄海西部海底沉积物的粒度特征和净输运趋势.海洋与湖沼, 2000, 31(6): 604~615.
    [119]董永发.杭州湾底质的粒度特征和泥沙来源.上海地质, 1991, (39): 44~51.
    [120]窦国仁.论泥沙起动流速.水利学报, 1960, (4): 44~60.
    [121]窦国仁.全沙模型相似律及设计实例.水利水运科技情报, 1977, (3): 1~20.
    [122]窦国仁.再论泥沙起动流速.泥沙研究, 1999, (6): 5~9.
    [123]范宝山.泥沙输移的理论研探.泥沙研究, 1995, (3): 72~781.
    [124]范代读,郭艳霞,李从先.杭州湾庵东浅滩潮坪层序粒度特征及应用.同济大学学报(自然科学版), 2005, 33(5): 687~691.
    [125]冯应俊,李炎.杭州湾近期环境演变与沉积速率.东海海洋, 1993, 11(2): 13~24.
    [126]高抒,程鹏,汪亚平,等.长江口外海域1998年夏季悬沙浓度特征.海洋通报, 18(6): 44~50.
    [127]郜昂,赵华云,杨世伦,等.径流、潮流和风浪共同作用下近岸悬沙浓度变化的周期性探讨—以杭州湾和长江口交汇处的南汇嘴为例.海洋科学进展, 2008, 26(1): 44~50.
    [128]谷国传.长江口外水域悬沙分布特征.东海海洋, 1986, 4(1): 12~20.
    [129]关许为,陈英祖.长江口泥沙絮凝静水沉降动力学模式的试验研究.海洋工程, 1995, (1): 46~50.
    [130]关许为等.长江口泥沙絮凝临界粒径试验研究.见:陈松等.海洋沉积物一海水界面过程研究.北京:海洋出版社, 1997.
    [131]管秉贤,陈上及.中国近海的环流系统.全国海洋综合调查报告(第五册).北京:中华人民共和国科学技术委员会海洋组海洋综合调查办公室. 1984.
    [132]郭志刚,杨作升,雷坤,等.东海陆架北部泥质区沉积动力过程的季节性变化规律.青岛海洋大学学报, 1999, 29(3): 507~513.
    [133]郭志刚,杨作升,曲艳慧等.海陆架泥质区沉积地球化学比较研究.沉积学报,2000, 18(2): 284~289.
    [134]郭志刚,杨作升,张东奇,等.冬、夏季东海北部悬浮体分布及海流对悬浮体输运的阻隔作用.海洋学报, 2002, 23(5): 71~80.
    [135]何文社,方铎,杨具瑞,等.泥沙起动流速研究.水利学报, 2002, (10): 51~56.
    [136]贺松林,孙介民.长江口最大浑浊带的悬沙输移特征.海洋与湖沼, 1996, 27(1): 60~66.
    [137]胡敦欣,杨作升.东海海洋通量关键过程.北京:海洋出版社, 2001, 3~13.
    [138]黄才安,梅小文.垂线平均含沙量两种表述方法之比较.泥沙研究, 1999, (1): 70~73.
    [139]黄才安,赵晓冬,龚敏飞.全沙输沙公式的比较研究.水道港口, 2004, 25(3): 129~134
    [140]贾建军,程鹏,高抒.利用插值试验分析采样网格对粒度趋势分析的影响.海洋地质与第四纪地质, 2004, 24(3): 135~141
    [141]贾建军,高抒,薛允传.图解法与矩法沉积物粒度参数的对比.海洋与湖沼, 2002, 33(6): 576~582.
    [142]蒋国俊,陈吉余,王宗涛.舟山群岛峡道底部高程及其冲刷对浙闽沿海泥沙供给的影响.海洋地质与第四纪地质, 1997, 17(2): 29~38.
    [143]蒋国俊,陈吉余.舟山群岛峡道潮滩动力沉积特性.海洋学报, 1998, 20(2): 139~147.
    [144]蒋国俊,金如义,顾建明,等.舟山马岙峡道的水文泥沙特性和峡道效应.海洋通报, 2001, 20(1): 15~22.
    [145]蒋国俊,张志忠.长江口阳离子浓度与细颗粒泥沙絮凝沉积.海洋学报, 1995, 17(1): 76~82.
    [146]蒋国俊.舟山群岛峡道水动力及沉积特性.浙江大学学报(理学版), 2001, 28(1): 82~91.
    [147]解刚,刘兴年.非均匀沙分级起动切应力探讨.水利水电科技进展., 2003, 23(6): 1~3.
    [148]金鏐,虞志英,何青.关于长江口深水航道维护条件与流域来水来沙关系的初步分析.水运工程, 2009, (1): 91~96.
    [149]金翔龙.东海海洋地质.北京:海洋出版社, 1992, 185~204.
    [150]金鹰,王义刚,李宇.长江口粘性细颗粒泥沙絮凝试验研究,河海大学学报. 2002, 30(3): 61~63.
    [151]金元欢.我国入海河口的基本特点.东海海洋, 1988, 6(3): 1~11.
    [152]孔亚珍,丁平兴,贺松林,等.长江口外及其邻近海域含沙量时空变化特征分析.海洋科学进展, 2006, 24(4): 446~454.
    [153]李安春,陈丽蓉, D.Eisma.伊姆斯一道拉德河口悬浮体絮凝过程及其控制因素.海洋与湖沼, 1996, 27(2): 138~144.
    [154]李风岐,苏育嵩.海洋水团分析.青岛:青岛海洋大学出版社, 2000, 348~385.
    [155]李广雪,杨子赓,刘勇.中国东部海域海底沉积环境成因研究.北京:科学出版社, 2005, 33~44.
    [156]李华,杨世伦, T.Ysebaert等.长江口潮间带淤泥质沉积物粒径空间分异机制.中国环境科学, 2008,28(2): 178~182.
    [157]李徽翡,赵保仁.渤、黄、东海夏季环流的数值模拟.海洋科学, 2001, 25(1): 28~32.
    [158]李加林.杭州湾南岸互花米草潮滩底质粒度及其分布特征.海洋科学, 2008, 32(8): 53~57.
    [159]李九发.长江河口南汇潮滩泥沙输移规律探讨.海洋学报(中文版), 1990, 12(1): 75~82.
    [160]李身铎,孙卫阳.杭州湾潮致余流数值研究.海洋与湖沼, 1995, 26(3): 254~261.
    [161]李玉中,陈沈良,谷国传.崎岖列岛海区现代沉积环境.上海地质, 2002, (2): 11~16.
    [162]李占海,高抒,沈焕庭.金塘水道的悬沙输运和再悬浮作用特征.泥沙研究, 2006, (3): 55~62.
    [163]林承坤.长江口及其邻近海域粘性泥沙的数量与输移.地理学报, 1992, 47(2): 108~112.
    [164]刘阿成,顾君晖,陆琦.舟山群岛册子水道现代潮流沙脊的初步研究.海洋通报,2007, 26(5): 49~55.
    [165]刘阿成.杭州湾金山深槽的地貌特征及其控制因素.海洋通报, 1992, 11(5): 71~77.
    [166]刘阿成.杭州湾口北部的表层沉积物粒度分布和动力沉积作用研究.海洋通报, 2002, 21(1): 49~56.
    [167]刘苍字,董永发.杭州湾的沉积结构与沉积环境分析.海洋地质与第四纪地质, 1990, 10(4): 53~65.
    [168]刘红,何青,孟翊,等.长江口表层沉积物分布特征及动力响应.地理学报, 2007, (1): 62(1): 81~92.
    [169]刘升发,刘焱光,朱爱美,等.东海内陆架表层沉积物粒度及其净输运模式.海洋地质与第四纪地质, 2009, 29(1): 1~6.
    [170]刘新成,沈焕庭.运用等面积时变网格估算长江口南北港断面净水沙通量.泥沙研究, 2002, (2): 46~52.
    [171]刘毅飞,夏小明,贾建军.舟山外钓山海岸边坡泥沙动力与冲淤演变特征.海洋通报, 2007, 26(6): 53~60.
    [172]吕平,谈广鸣,王军.粘性泥沙淤后起动流速试验研究. 2008, (2): 56~58.
    [173]茅志昌,郭建强.长江口南支新浏河沙的演变过程.泥沙研究, 2009, (1): 33~37.
    [174]茅志昌,潘定安,沈焕庭.长江河口悬沙的运动方式与沉积形态特征分析.地理研究, 2001, 20(2): 170~177.
    [175]倪勇强,耿兆铨,朱军政.杭州湾水动力特性研讨.水动力学研究与进展, 2003, 18(4): 439~445.
    [176]潘定安,沈焕庭,茅志昌.长江口浑浊带的形成机理与特点.海洋学报(中文版), 1999, 21(4): 62~69.
    [177]潘玉球,黄树生.长江冲淡水输运和扩散途径的分析.东海海洋, 1997, 15(2): 25~34.
    [178]庞重光,土凡.东海悬浮体的分布特征及其演变.海洋科学集刊, 2004, 46: 22~31.
    [179]庞重光,王凡.东海悬浮体的分布特征及其演变.海洋科学集刊, 2004, (46):22~31.
    [180]秦蕴珊,李凡,徐善民,等.南黄海海水中悬浮体的研究.海洋与湖沼, 1989, 20(2): 101~111.
    [181]秦蕴珊,郑铁民.东海大陆架沉积初分布特征的初步探讨.见:中国科学院海洋研究所海洋地质研究室编.黄东海地质.北京:科学出版社, 1982, 3l~51.
    [182]秦蕴珊,郑铁民.东海大陆架沉积物分布特征的初步探讨.黄东海地质.北京:科学出版社, 1982, 39~51.
    [183]任杰,周作付,林卫强.伶仃洋低频水流与水沙纵向输运.海洋通报, 2001, 20(1): 8~14.
    [184]茹荣忠.杭州湾海域水体悬沙粒度统计分析.东海海洋, 2000, 20(4): 13~18.
    [185]阮文杰.细颗粒泥沙动水絮凝的机理分析.海洋科学, 1991, (5): 46~49.
    [186]沙旭光.东海舟山群岛海域泥质沉积特征和物源分析(硕士学位论文).长春:吉林大学, 2007, 40.
    [187]沙玉清.泥沙运动的基本规律.泥沙研究, 1956, 1(2): 1~54.
    [188]沈焕庭,李九发,朱慧芳,等.长江河口悬沙输移特性.泥沙研究, 1986, (1): 1~13.
    [189]沈健,沈焕庭,潘定安,等.长江河口最大浑浊带水沙输运机制分析.地理学报, 1995, 50(5): 411~419.
    [190]石学法,陈春峰,刘众光,等.南黄海中部沉积物粒径趋势分析及搬运作用.科学通报, 2002, 47(6): 452~456.
    [191]时伟荣,李九发.长江河口南北槽输沙机制及浑浊带发育分析.海洋通报, 1993, 12(4): 69~76.
    [192]时伟荣.长江口浑浊带含沙量的潮流变化及其成因分析.地理学报, 1993, 48(5): 412~420.
    [193]时钟,陈伟民.长江口北槽最大浑浊带泥沙过程.泥沙研究, 2000, (2): 28~39.
    [194]时钟,朱文蔚,周洪强.长江口北槽口外细颗粒悬沙沉降速度.上海交通大学学报, 2000, 34(1): 18~23.
    [195]宋立松,余祈文.杭州湾悬沙净输移机制探讨.泥沙研究, 2003, (3): 48~52.
    [196]孙效功,方明,黄伟.黄、东海陆架区悬浮体输运的时空变化规律.海洋与湖沼, 2000, 31(6): 581~587.
    [197]孙效功,方明,黄伟.黄、东海陆架区悬浮体输运的时空变化规律.海洋与湖沼, 2000, 31(6): 581~587.
    [198]孙英,黄文胜.浙江海岸的淤涨及泥沙来源.东海海洋, 1984, 2(4): 34~42.
    [199]孙英.浙江金塘水道南岸的泥沙运.移浙江大学学报(理学版), 1979, (3): 87~104.
    [200]孙志林,黄赛花,祝丽丽,等.黏性非均匀沙的起动概率.浙江大学学报(工学版), 2007, 41(1): 18~22.
    [201]汤毓祥,邹娥梅, Lie H J,等.南黄海环流的若干特征.海洋学报, 2000, 22(1): 1~16.
    [202]汤毓祥,邹娥梅, Lie H J.冬至初春南黄海暖流的路径和起源.海洋学报, 2001, 23(1): 1~12.
    [203]唐建华.长江口及其邻近海域粘性细颗粒泥沙絮凝特性研究(硕士学位论文).上海:华东师范大学, 2007.
    [204]万新宁,李九发,沈焕庭.长江口外海滨典型断面悬沙通量计算.泥沙研究, 2004, (6): 64~70.
    [205]万新宁,李九发,沈焕庭.长江口外海滨悬沙分布及扩散特征.地理研究, 2006, 25(2): 294~302.
    [206]汪亚平,高抒,贾建军.胶州湾及邻近海域沉积物分布特征和运移趋势.地理学报, 2000, 55(4): 449~458.
    [207]王爱军,汪亚平,杨旸.江苏王港潮间带表层沉积物特征及输运趋势.沉积学报, 2004, 22(1): 124~129.
    [208]王国庆,石学法,刘焱光,等.粒径趋势分析对长江南支口外沉积物输运的指示意义.海洋学报, 2007, 29(6): 161~166.
    [209]王华强,高抒.杭州湾北岸高潮滩沉积与沿岸物质输运趋势.海洋地质与第四纪地质, 2007, 27(1): 25~29.
    [210]王凯,冯士笮.渤海、黄海、东海冬季环流的一个三维斜压模式.海洋学报, 2000, 22(增刊): 89~94.
    [211]王康缮,苏纪兰.长江口南港环流及悬移物质输运的计算分析.海洋学报, 1987, 9(5): 627~637.
    [212]王士强,陈骥,惠遇甲.明槽水流的非均匀挟沙力研究.水利学报, 1998, (1): 1~9.
    [213]王协康,敖汝庄,方铎.泥沙起动条件及机理的非线性研究.长江科学院院报, 1999, 16(4): 39~41.
    [214]吴德安,张忍顺,严以新,等.辐射沙洲东大港潮流水道悬沙输移机制分析.河海大学学报(自然科学版), 2006, 34(2): 219~222.
    [215]吴祥柏,汪亚平,潘少明.长江河口悬沙与盐分输运机制分析.海洋学研究, 2008, 26(4): 8~19.
    [216]武汉水利电力学院编.河流动力学.北京:中国工业出版社, 1961.
    [217]武汉水利电力学院水流和泥沙研究组(张瑞瑾等).长江中下游水流挟沙力研究.泥沙研究, 1959, (2): 54~73.
    [218]夏小明,杨辉,李炎,等.长江口-杭州湾毗连海区的现代沉积速率. 2004, 22(1): 130~135.
    [219]谢小平,王兆印,沈焕庭.长江口九段沙现代潮滩沉积特征.沉积学报, 2005, 23(4): 599~573.
    [220]徐建卿,邵虚生.杭州湾南岸庵东潮坪现代沉积特征.上海地质, 1988(2): 39~46.
    [221]徐林.长江口和邻近海域表层沉积物组成和来源研究(硕士学位论文).青岛:中国海洋大学, 2008.
    [222]徐元,王宝灿.淤泥质潮滩季节性冲淤状态的探讨─以杭州湾北岸张家厍潮滩为例.华东师范大学学报(自然科学版), 1995(4): 88~96.
    [223]严钦尚,项立篙,张国栋,等.舟山普陀岛现代海岸带沉积.地质学报, 1981, (3): 205~214.
    [224]严肃庄,曹沛奎.长江口外海滨悬浮体的粒度特征及其与锋面的关系.华东师范大学学报(自然科学版), 1995, 4(1): 54~57.
    [225]杨世伦,徐海根.长江口长兴、横沙岛潮滩沉积特征及其影响机制.地理学报, 1994, 49(5): 449~456.
    [226]杨旸,高抒,汪亚平.杭州湾北部潮流深槽区细颗粒物质输运与再悬浮过程.海洋学报(中文版), 2008, 30(2): 92~101.
    [227]杨作升,陈晓辉.百年来长江口泥质区高分辨率沉积粒度变化及影响因素探讨.第四纪研究, 2007, 27(5): 690~699.
    [228]余祈文,符宁平.杭州湾北岸深槽形成及演变特性研究.海洋学报(中文版), 1994, 16(3): 74~85.
    [229]俞航,陈沈良,谷国传.崎岖列岛海区水沙特征及近期冲淤演变.海洋工程, 2008, 27(1): 10~20.
    [230]恽才兴,蔡孟裔,王宝全.利用卫星象片分析长江入海悬浮泥沙扩散问题海洋与湖沼, 1981, 12(5): 391~401.
    [231]张国栋,王益友,朱静昌,等.现代滨岸风暴沉积—以舟山普陀岛-朱家尖岛为例.沉积学报, 1987, 5(2): 17~28.
    [232]张金善.杭州湾泥沙数学模型计算与应用.第八届全国海岸工程学术讨论会暨1997年海峡两岸港口及海岸开发研讨会论文集.北京:海洋出版社, 1997, 432 ~438.
    [233]张瑞,汪亚平,高建华,等.长江口泥质区垂向沉积结构及其环境指示意义.海洋学报, 2008, 30(2): 80~91.
    [234]张晓东,翟世奎,许淑梅.长江口外近海表层沉积物粒度的级配特性及其意义.中国海洋大学学报, 2007, 37 (2) : 328~334.
    [235]张志忠,王允菊,徐志刚.长江口细颗粒泥沙絮凝若干特性探讨.见:第二次河流泥沙国际学术讨论会论文集.北京:水利水电出版社, 1983, 274~285.
    [236]中华人民共和国交通部.港口工程技术规范(上册).北京:人民交通出版社, 1987.
    [237]钟亮,许光祥,马明生.无黏性均匀沙起动临界条件的统一.水运工程, 2007, (6): 13~16.
    [238]周济福,王涛,李家春.径流与潮流对长江口泥沙输运的影响.水动力学研究与进展A辑, 1999, 14(1): 90~100.
    [239]周晓静,高抒.底质粒度信息的空间分异与代表性:以杭州湾舟山岛-金山卫断面为例.科学通报, 2004, 49(21): 2228~2232.
    [240]朱建荣,丁平兴,胡敦欣. 2000年8月长江口外海区冲淡水和羽状锋的观测.海洋与湖沼, 2003, 34(3): 249~255.
    [241]朱静昌,张国栋,王益.舟山现代滨岸滩脊坝沟槽体系迁移与沉积特征.海洋与湖沼, 1988, 19(1): 35~43.
    [242]朱立俊和程年生.泥沙颗粒沉降研究报告.南京:南京水利科学研究院, 1993.
    [243]朱首贤,丁平兴,史峰岩,等.杭州湾、长江口余流及其物质输运作用的模拟研究II.冬季余流及其对物质的输运作用.海洋学报, 2000, 22(6): 1~12.
    [244]朱首贤.流、浪模式和物质长期输运分离研究(博士学位论文).上海:华东师范大学, 2005.
    [245]朱志恩.野鸭山至螺头山岸段海域水沙特征及冲淤变化.东海海洋, 2004, 22(1): 1~10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700