用户名: 密码: 验证码:
京杭大运河(苏北段)底泥重金属污染与释放规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
京杭大运河(苏北段)是我国南水北调工程的东线输水通道,其水质情况将严重影响南水北调的水质安全。输水水质除受调入水质影响外,输水通道的沉积物中的重金属也将对水质有较大影响。本课题在教育部博士点专项科研基金的支持下对京杭大运河(苏北段)沉积物的重金属污染情况进行了系统研究。
     本论文运用X-衍射技术对京杭大运河(苏北段)23个底泥样品进行了矿物组成分析,结果表明:粘土矿物均主要为伊利石、绿泥石、高岭石、伊蒙混层,有部分蒙脱石。伊利石含量较高,约占总体的31-45%。蒙脱石含量较少,大部分断面底泥中不超过10%,其中苏波港口含量较高达到17%,石英是其中的主要矿物。
     采用电感耦合等离子质谱、双道原子荧光光度计和总有机碳测试仪分别对京杭大运河(苏北段)55个底泥样品中重金属(Cu、Cd、Pb、Zn、Cr、Hg、As)进行了总量、形态和有机碳的测试,并且采用SPSS(15.0)软件进行了相关性分析和主成分分析,结果表明(1)TOC与各元素的总量相关性并不显著,显著水平仅在Cu和Zn之间相关系数仅为0.76;(2)TOC的含量与可氧化提取态之间的相关系数Pb:r=0.52,(P<0.01)、Cd:r=0.51,(P<0.01),Cu:r=0.62,(P<0.01)。TOC的含量和可氧化提取态之间的相关性很好。(3)采用主成分分析(PCA),Cu、Pb、Zn、Cd构成了第一组(PC1),贡献率43.68%;表明重金属的分布具有相同的特征。
     采用地积累指数法、生态风险评价法和健康风险评价方法对底泥的重金属污染风险进行了评价,结果表明京杭大运河苏北段底泥未受到Cr元素的污染,受到Zn、Hg、As的污染也较轻,只在个别采样点上受Cu和Pb元素的中或中-强程度的污染,但是底泥受到了严重的Cd污染,而且不同采样点的RI与Cd元素的含量具有较好的一致性。各重金属污染物对京杭大运河苏北段底泥生态风险构成危害的影响程度依次为:Cd﹥Hg﹥Cu﹥As﹥Pb﹥Cr﹥Zn;各元素所带来的生态风险评价表明,36.4%的采样点断面存在两种重金属含量介于ERL~ERM值之间;9、12、14、52号采样点断面存在三种重金属含量介于ERL~ERM值之间;53、54号采样点断面存在四种重金属含量介于ERL~ERM值之间;而55号采样点断面六种重金属含量全介于ERL~ERM值之间;因此对于这些断面要采取适当的措施进行治理,以降低发生生态风险的几率;同时也有21.8%的采样点断面各种重金属含量均小于ERL值。
     最后利用水槽(UPV C材料,全长1.5米)模拟了河道在不同工况下(温度、流速、pH值、络合物的浓度)底泥中重金属的释放特征,单因素和正交多因素实验结果表明:控制底泥重金属释放的影响因素中按其影响程度大小分别是流速、络合剂、PH值、温度;依据实验结果,建立了底泥中镉向上覆水体释放的模型:C = Q/ VK+(1-1/VK)Qe~(kt),并得出其释放系数为0.020。
The Grand Canal (Northern Section of Jiangsu Province)is east route of Water Transfer Project from South to North in China. Whose water quality will significantly affect the efficiency of Water Transfer Project from South to North .Apart from the transferred water quality being influenced by the imported water quality, the state of original heavy metals in sediments will have a significant effect on water quality Water Transfer Project’s from South to North. As far as the factors above are concerned, a systematic research on the heavy metal pollution intensity in sediments of the Great Canal (Northern Section of Jiangsu Province) has been conducted with financial support of the Doctoral Fund of Chinese Ministry of Education.
     In the dissertation,Twenty three sediment of the Grand Canal (Northern Section of Jiangsu Province) were determined by XRD analysis and the results showed that the clay mineral is composed of kaolinite, llite, ontmorillonite and Illite/Montmorillonite interstratified minerals and the X-ray Diffraction pattern showed quartz is the main mineral.
     The concentration and fractions of Copper, Cadmium, lead, Zinc, Chromium, mercury, arsenic and total organic carbon in the fifty-six sediments in the Grand Canal(Northern Section of Jiangsu Province)were determined by Inductively Coupled Plasma Mass Spectrometry, double-channel atomic fluorescence spectrometer and liquid total organic carbon analyzer respectively .At the same time the statistical SPSS software was used to determine the correlation analysis and principal component analysis ,the results showed that the correlation coefficient between copper and zinc is 0.76 and the correlation coefficient between Toc and oxidized state is high.
     The heavy metal’s pollution of the sediment were assessed by the Geoaccumulation Index, the Potential Ecological Risk Index and the health risk assessment and the results showed that the heavy metals in the sediment of the Grand Canal (Northern Section of Jiangsu Province)was not polluted by chromium, was lightly polluted by zinc, mercury and arsenic.
     Finally the sinks which were made of UPVC and used to simulate the channel under different conditions(temperature, velocity, pH value, concentration of complexing agents) in order to find the main impact factor. So the single experiment and the orthogonal experiment were carried out , and the results showed that velocity was the main impact factor and the mode was built.
引文
[1]陈静生,周家义.中国水环境重金属研究[M].北京:中国环境科学出版社,1992:305-328.
    [2]陈静生.水环境化学[M].北京:高等教育出版社,1987.
    [3]陈静生.环境地球化学[M].北京:海洋出版社,1990.
    [4]刘文新,汤鸿霄.河流沉积物重金属污染质量控制基准的研究[J].环境科学学报,1999,19(2):120-124
    [5] USEPA. An SAB Report: Review of the Agency’s approach for developing sediments criteric for five metals.EPA-SAB-EPEC-95-020.Washington DC.1995.[1].
    [6]文湘华.水体沉积物质量基准的研究[J].环境化学,1993,12(5):334-341.
    [7]刘昌明,沈大军.南水北调工程的生态环境影响[J].大自然探索, 1997,(02) .
    [8]陈静生,王飞越,宋吉杰,等,中国东部河流沉积物中重金属含量与沉积物主要性质的关系[J]。环境化学,1996,15(1):8-15.
    [9]王立新,陈静生,洪松,等.水体沉积物重金属质量基准研究新进展[J].环境科学与技术,2001,9(4)
    [10]张辉,马东升.长江(南京段)现代沉积物中重金属的分布特征及其形态研究[J].环境化学,1997,16(5):429~434.
    [11]黄廷林,沈晋.环境化学条件对水体沉积物中重金属释放影响的研究评述[J].陕西机械学院学报,1993,9(4):285~292.
    [12]魏俊峰,吴大清,彭金莲,等.污染沉积物中重金属的释放及其动力学[J].生态环境,2003,12(2):127~130.
    [13]方涛,肖邦定,张晓华,等.曝气对两种不同类型沉积物中重金属释放的影响[J].中国环境科学,2002,22(4):355~359.
    [14]贾振邦,赵智杰.洋涌河、茅洲河河东宝河沉积物中重金属的污染及评价[J].环境化学,2001,20(3):212~219.
    [15] Singh S.P. Heavy Metal Fractionation and Extractability in Dredged Sediment Derived Surface Soils, Water Air and Soil Pollution, 1998, 102 (3/4):313-328.
    [16] Davidson C.M. Evaluation of a Sequential Extraction Procedure for the Speciation of Heavy Metals in Sediments, Anal. Chen. Acta, 1994, 291 (3) :276-286.
    [17] Galvez-Cloutier R.An evaluation of Fresh Water Sediments Contamination. The Lachine Canal Sediments Case,Montreal,Canada.PartⅡ:Heavy Metal Particulate Speciation Study,Water Air and Soil Pollution, 1998, 102 (3/4) :281-302.
    [19] Forstner U, Metal Pollution in the Aquatic Environment.Berlin: Springer-Verleg,1978,110-192.
    [20]戴秀丽,孙成.太湖沉积物中重金属污染状况及分布特征探讨[J].上海环境科学,2001,20(2):71~
    [21]徐曼英,,胡健英.底泥中Pb Cd Cu Zn Mn Fe测定方法及对比试验[J].环境污染治理技术与设备, 1980,(08).
    [22]汪祖强,张桂英,钱敏仁.大运河苏州段底泥中重金属的污染状况及评价[J].环境科学, 1987,(01),1109-1112.
    [23]张辉,马东升.长江(南京段)现代沉积物中重金属的分布特征及其形态研究[J].环境化学,1997,16(5):429—434.
    [24]朱广伟,陈英旭,周根娣,等.运河(杭州段)沉积物中重金属分布特征及变化[J].中国环境科学,2001,21(1):65—69.
    [25]陈静生,王飞越,宋吉杰,等,中国东部河流沉积物中重金属含量与沉积物主要性质的关系[J]。环境化学,1996,15(1):8-15.
    [26] LARS Hakanson.An ecological risk index for aquatic pollution control-A sedimentological approach [J].Water Research,1980,14: 975-1001.
    [27] Taylor S. E. , Birth G. F. , The environmental implications of readily resuspended contaminated estuarine sediment[J]. 30th international geological congress abstract, Beijing, 2006, VOL(3):424.
    [28] Huang W. , Campredom R. , Abrao J. J. , et al , Variation of heavy metals in recent sediments from piratininga Laggon (Brazil)– interpretation of geochemical data with the aid of multivariate analysis [J]. Environmental Geology , 2004, Vol 36(4):241-247.
    [29] Lawson N. M. , Mason R. P., Laporate J. M., The fate and transport of mercury , methyl mercury , and other trace metals in Chesapeake Bay tributaries[J]. Wat Res., Vol 35(2):501-505.
    [30] Rate A. W. Distribution of Heavy Metals in Near-Shore Sediments of the Swan River Estuary [J]. Western Australia, Water Air and Soil Pollution, 2000, 124(1/2):155-168.
    [31] Gonzalez A. E. , Assessment of Metals in Sediment in a Tributary of Guadalquivir River (Spain): Heavy Metal Partitioning and Relation Between the Water and Sediment System[J]. Water Air and Soil Pollution, 2008, 121(11/12):11-29.
    [32]Bubb,J.M.;Lester, J.N.Anthropogenic heavy metal inputs to lowland river system, a case study: The River Stour,U.K. Water Air Soil Pollut.78:279-296;1994.
    [33] Jae-Kil Jang. Temporal and spatial distribution and source identification of organic pollutants in Lake Calumet area [D]. University of Illinois at Chicago, 2001:2-8.
    [34]张敏.京杭大运河(杭州段)底质沉积物中重金属Cu、Pb、Cr的离散规律及相关性[J].福建环境,1998,15(6):10-11.
    [35]韩宝平,王晓,冯启言,等.徐州市荆马河底泥重金属污染特征研究[J].中国矿业大学学报(自然科学版),2003,32(2):138-140.
    [36]何云峰,朱广伟,陈英旭,等.运河(杭州段)沉积物中重金属的潜在生态风险研究[J].浙江大学学报(农业与生命科学版),2002,28(6):669-674. 108
    [37]刘芳文,颜文,黄小平,等珠江口沉积物中重金属及其相态分布特征,热带海洋学报,2003,22(5),16-2.
    [38]汤鸿霄.试论重金属的水环境容量[J].国家环境科学,1985,5(5):38-43
    [39]霍文毅,黄风茹,陈落生,等.河流颗粒物重金属污染评价方法比较研究[J].地理科学,1997,17(1):81-86.
    [40] Tessier A. et al. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals, Analytical Chemistry , 1979, 51(7):844-851.
    [41] Gismera M.J,Lacal J. ,da Silva P. ,Garcia R. ,Sevilla M.T., and Procopio J.R. Study of metal fractionation in river sediments. A com-parison between kinetic and sequential extraction procedures [J] .En-vironmental Pollution.2004, 127 :175–182 .
    [42] Gomez A.J.L,Giraldez I. ,Sanchez-Rodas D., and Morales E. Com-parison of the feasibility of three extraction procedures for trace metal partitioning in sediments from South-west Spain [J] .The Science of the Total Environment. 2000, 246 :271–283 .
    [43] Lee C.S. ,and Kao M.M. Effects of extracting reagents and metal speciation on the removal of heavy metal contaminated soils by chemical extraction [J] .Journal of Environmental Science and Health Part A–Toxc/hazardous Substances & Environmental Engineering. 2004, 39 :1233–1249。
    [44] Ngiam L.S., and Lim P.E. Speciation patterns of heavy metals in tropical estuarine anoxic and oxidized sediments by different sequen-tial extraction schemes [J] .Science of the Total Environment. 2001, 275 :53–61 .
    [45] Riba I,Garcia-Luque E., Blasco J. ,and Delvalls T.A. Bioavailability of heavy metals bound to estuarine sediments as a function of pH and salinity values [J] .Chemical Speciation and Bioavailability, 2003, (15) :101–114。
    [46] Salomons W. Adoption of common schemes for single and sequential extractions of trace metal in soils and sediments [J] .Intern. J. Environ. Anal. Chem. 1993, 51 :3–4 .
    [47]刘恩峰,沈吉,杨丽原,等.南四湖及主要入湖河流表层沉积物重金属形态组成及污染研究[J].环境科学, 2007,(06) ,876-879.
    [48]汤鸿霄,薛含斌,田宝珍,等.逐级化学分离法对水体沉积物各组分吸附作用模式的研究[J].环境科学学报, 1982,(04) ,107-110.
    [49] Tessier A,Campbell P.G.C. ,and Bisson M. Sequential extraction procedure for the speciation of particulate trace metal [J] .Analytical Chemistry. 1979, 51 :844–851 .
    [50] DiToro D M, Mahony J D, Hansen D J, et al. Toxicity of cadmium in sediments: the role of acid volatile sulfide .Environmental Toxicology and Chemistry, 1990, (9) :1487-1502 .
    [51]利锋,温琰茂,朱娉婷,等城市污染河道沉积物AVS与重金属生物毒性研究[J].环境科学, 2007,(08) ,1129-1133.
    [52] Grethuysen C V. Trace metals in floodplain lake sediments-SEM/AVS as indicator of bioavailabilityand ecological effects[D] .Wagening,The Netherlands: 2006, :25—29 .
    [53] U S Environmental Protection Agency. Procedures for the derivation of equilibrium partitioning sediment benchmarks(ESBs)for the protection of benthic organisms:metal mixtures (cadmium, copper, lead, nickel, silver and zinc) [R] .EPA-600-R-02-011. Washington, DC, USA: US Environmental Protection Agency, 2005, :21—27 .
    [54] Berry,W.J.,Boothman,W.S.,Serbst,J.R.,Edwards,P.A. Predicting the toxicity of chromium in sediments. Environ Toxicol Chem, 2004, 23 :2981~2992 .
    [55] Icopini,GA,Long,DT. Speciation of aqueous chromium by use of solid-phase extractions in the field .Environ Sci Technol, 2002, 36 :2994~2996 .
    [56] Lawra A G,James L J H,William I W,et al. Seasonalbioavailability of sediment-associated heavy metals along theMississippi River Floodpain .Chemosphere, 2001, 45 :643~651 .
    [57] Muchaa A P,Vasconcelos M Teresa S D,Bordalo A A. Spatial andseasonal variations of the macrobenthic community and metalcontamination in the Douro estuary (Portugal). MarineEnvironmental Research. 2005, 60(5) :531~550 .
    [58] Mackey A P,Mackay S. Spatial distribution of acid volatile sulfideconcentration and metal bioavailability in mangrove sediments fromthe Brisbane River,Australia .Environmental Pollution, 1996, 93(2) :205~209 .
    [59] Thompson S L,Manning F C R,Mccoll S M. Comparison of thetoxicity of chromium(Ⅲ)and chromium(Ⅵ)toCyanobacteria[J] .Bulletin of Environmental Contamination and Toxicology, 2002, 69 :286-293 .
    [60] Besser J M,Brumbaugh W G,Kemble N E,et al. Effects ofsediment characteristics on the toxicity of chromium(Ⅲ)andchromium(Ⅵ)to the amphipod,Hyalella azteca[J] .EnvironmentalScience and Technology, 2004, 38 (23) :6210-6216 .
    [61] Lewis M A,Daniels C B,Moore J C,et al. Potential genotoxicity ofwastewater-contaminated pore waters with comparison to sedimenttoxicity and macrobenthic community composition [J]. EnvironmentalToxicology, 2002, 17 (1) :63-73 .
    [62]韩建波,马德毅,闫启仑,等.海洋沉积物中Zn对底栖端足类生物的毒性[J].环境科学,2003,(06):112-116.
    [63]郑利,徐小清.武汉东湖沉积物中酸挥发性硫化物(AVS)的深度分布及其影响因素[J].湖泊科学,2003,(03):56-60
    [64]甘居利,贾晓平,林钦,等.红海湾底质硫化物的分布和变化[J].湛江海洋大学学报, 1998,(04),239-242.
    [65]樊庆云,何江,薛红喜,等.包头南海湖沉积物中AVS-SEM的分布规律研究[J].农业环境科学学报, 2007,(03),567-571.
    [66] Ditoro, D. M. ,J. D Mahony, and D. J. Hansen. Toxicity of cadmium in sediments: role of acid volatilesulfide .Environ Toxicol. Chem, 1990, (9) :1487-1502.
    [67] Van Den Berg,G A,J P Gustav Loch,L M Van Der Heijdt,J J GZwolsman. Vertical distribution of acid-volatile sulfideand si multaneously extracted metals in a recent sedi mentationarea of the river Meuse in the Netherlands .Environ.Toxico.Chem, 1998, (17) :758~763.
    [68] Warran, L. A. ,and A. P Zimmerman. Particulate Matter and Aquatic Contaminants .Chelsea, MI, USA: Lewis Publishers, 1993, :127-155.
    [69] Allen H E, G Fu and B Deng. Analysis of acid-volatile sulfide(AVS) and simultaneously extracted metals(SEM) for the estimation of potential toxicity in aquatic sediments .Environmental Toxicology and Chemistry, 1993, (12) :1441-1453.
    [70] Kemp, P. F. and R. C. Swartz, 1988.Acute toxicity of intersti-tial and particle-bound cadmium to a marine infaunal amphi-pod .Mar. Environ. Res, 26 :135-153.
    [71]国家环保局.土壤环境质量标准[M].北京:中国标准出版社,1995.
    [72]方涛,刘剑彤,张晓华,等.河湖沉积物中酸挥发性硫化物对重金属吸附及释放的影响[J].环境科学学报, 2002,(03),128-132.
    [73]方涛,陈晓国,张维昊,等.水体沉积物中酸挥发性硫化物垂直分布模型的参数计算及相关分析[J].环境化学, 2002,(01),104-107.
    [74]李敏,韦鹤平,王光谦,等.长江口、杭州湾水域沉积物对磷吸附行为的研究[J].海洋学报(中文版), 2004,(01),88-92.
    [75]陈永红,徐俊,陈军,等.淮河淮南段底泥中酸性挥发硫与同步浸提金属的分布[J].环境科学学报, 2008(08),677-681.
    [76]魏俊峰,吴大清,彭金莲,等.污染沉积物中重金属的释放及其动力学[J] .生态环境,.2003(02),77-82.
    [77]李鱼,王晓丽,陈昕,等.湿地水环境中表层沉积物吸附铅、镉能力的研究[J].吉林大学学报(地球科学版), 2005,(02),389-392.
    [78]王婷,王晓丽,杜显元,等.样品陈化对自然水体采集生物膜中重金属形态分布的影响吉林大学学报(理学版), 2008(05),345-348.
    [79]梁文俊,李坚,赵春禄,等.汾河太原段沉积物中重金属Ni和Zn的释放规律[J].北京工业大学学报,2005(05),132-136.
    [80]刘亮,董德明.自然水体悬浮颗粒物中主要化学组分对铅、铜的吸附作用--实验室模拟吸附特征与水环境中富集特征的比较.高等学校化学学报[J].2007(11),44-48.
    [81] A. V. Adedeji G. O. Egharevba C. Jeynes and E. O. B. Ajayi. Preparation and characterization of pyrolytically deposited (Co–V–O and Cr–V–O) thin films .Thin Solid Films, 2002, 402 (1-2) :49-54 .
    [82]王繁,周斌,徐建明,等.杭州湾悬浮泥沙浓度垂向分布规律分析与模拟[J].浙江大学学报(工学版),2008(11),668-673.
    [83]孙德勇,李云梅,王桥,等.不同浓度悬浮泥沙水体的光谱吸收特性模拟[J].地理与地理信息科学,2008(5),102-105.
    [84]张勇,金镠.淤泥质海滩悬沙回归模型的建立及其应用[J].泥沙研究, 1987(01),59-62.
    [85]陈静生.环境中的重金属[J].国际学术动态,.1991( 1).
    [86]丁振华,贾洪武,刘彩娥,等.黄浦江沉积物重金属的污染及评价[J].环境科学与技术, 2006,(02) ,1187-1190.
    [87]雷凯,卢新卫,王利军,等.渭河西安段表层沉积物重金属元素分布及潜在生态风险评价[J].地质科技情报, 2008,(03) ,665-668.
    [88]王晓,韩宝平.徐州市区故黄河底泥重金属污染研究[J].环境科学与技术, 2006,(11),98-101.
    [89]方涛,徐小清.应用平衡分配法建立长江水系沉积物金属相对质量基准[J].长江流域资源与环境, 2007(4),114-118.
    [90]文湘华.水体沉积物重金属质量基准研究环境化学[J], 1993(05),23-27.
    [91] Hakan Pekey. Heavy Metal Pollution Assessment in Sediments of the Izmit Bay, Turkey[J]. Environmental Monitoring and Assessment, 2006,123(1-3) :219~231.
    [92]文湘华.乐安江沉积物酸碱性及其对重金属释放特性的影响[J],环境化学, 1996(6),98-101.
    [93]杜青,文湘华.天然水体沉积物对重金属离子的吸附特性[J],环境化学, 1996(3),102-105.
    [94]文湘华,杜青.天然水体沉积物的表面特征[J],环境化学, 1996(2),88-92.
    [95]吕兴娜,刘春.柴河水库沉积物中重金属释放的静态实验[J],辽宁城乡环境科技, 2001( 02).178-181.
    [96]方宇翘,裘祖楠,姚振淮,等.城市河流底泥耗氧速率的测定及应用[J],研究环境化学, 1989(02),90-93.
    [97]黄廷林.渭河沉积物中重金属释放的粒度效应[J],西安建筑科技大学学报,1995(04),104-108.
    [98]王永辉,黄廷林.电位溶出滴定法研究水中痕量金属有机络合参数的计算机模拟分析[J],西安建筑科技大学学报,1995(04),78-93.
    [99]黄廷林,沈晋.渭河沉积物中Cd释放的实验研究[J],西安建筑科技大学学报,1995(01),102-105.
    [100]黄廷林.水体沉积物中重金属释放动力学及试验研究[J],环境科学学报,1995(04),88-92.
    [101]周立祥,沈其荣,陈同斌,等.重金属及养分元素在城市污泥主要组分中的分配及其化学形态[J],环境科学学报,2000(03),90-93. [102 ]濮培民,王国祥.底泥疏浚能控制湖泊富营养化吗?[J],湖泊科学, 2000(3),102-105.
    [103]江苏省地图集[M],2004.
    [104]江苏省水资源公报[M],1995-2002.
    [105]江苏省环境质量报告书[M],1996-2003.
    [106]中国南水北调工程[M],2006.
    [107]江苏省统计局[M],2002-2004.
    [108]江苏省水环境质量报告书[M],1996-2003.
    [109]吴焕兴.京杭运河苏北段的船闸管理[J],水运工程,1996(03),66-69.
    [110]马腾云.京杭运河刘山二线船闸工程设计[J],水运工程,1997(12),48-51.
    [111]张玮.船闸通过能力主要影响因素[J],交通运输工程学报,2004(03),55-58.
    [112]廖鹏,张玮.船闸日到船概率分布参数估计[J],交通运输工程学报,2004(02).69-72.
    [113]廖鹏,张玮..船闸服务水平与经济评价[J],中国港湾建设,2004(03),87-90.
    [114]潘立勇,栗多寿.京杭运河徐州段底栖动物与水质的关系[J],城市环境与城市生态,1994(04),77-79.
    [115]潘峰,孙天云.京杭运河(徐州段)亚硝酸盐氮污染分布初探[J],江苏环境科技,1998(04),49-52.
    [116]高建群,郑英铭.京杭运河徐州段的水质模型研究[J],上海环境科学,1995(09).102-105.
    [117]冯启言,刘仲伟.京杭运河徐州段水污染趋势预测[J],中国矿业大学学报,2002(06),59-62.
    [118]李玉前.徐州市地下水质状况评价及污染趋势分析[J].治淮,2004(4),35-39.
    [119]李玉前.南水北调东线大运河徐州段水环境质量评价[J].江苏煤炭,2004(2),47-50.
    [120]刘洪林,邢文洁.南水北调东线输水干线南四湖水环境质量研究[J].水文,2003(4),48-50.
    [121]庞煜,龙腾锐,尘峰,等.南水北调东线山东段沿线水污染现状调查与分析[J],给水排水, ,2002(08).59-62.
    [122]赵菲,慕金波.南水北调东线工程山东段汇水区COD环境容量研究[J],山东环境,2003(01).27-30.
    [123]张景富,秦玉玲.东平湖区高浓度污染水团的发生规律监测研究[J],水资源保护,2004(05).58-63.
    [124]阮晓红,朱维斌.南水北调东线工程江苏段水污染防治对策研究[J],河海大学学报(自然科学版),2002(06).67-69.
    [125]张劲松,方国华.运用经济手段有效防治南水北调东线工程水污染[J],水资源保护,2004(02).32-35.
    [126]许新宜,尹宏伟,姚建文.南水北调东线治污及其输水水质风险分析水资源保护[J], ,2004(02).46-49.
    [127]许新宜.2004年南水北调工程前期工作的形势和任务[J],中国水利, 2004(08).
    [128]许新宜.正确认识当前南水北调工程前期工作——2004年南水北调工程前期工作的形势和任务[J],南水北调与水利科技, 2004( 02).33-37
    [129]朱广伟,陈英旭,周根娣,等.运河(杭州段)沉积物中重金属分布特征及变化[J],中国环境科学,2001,21(1)65-69.
    [130]方开泰.实用多元统计分析[M].上海,华东师范大学出版社.1986.2.
    [131]陆书玉.环境影响评价[M],高等教育出版社,2001.7.
    [132]池俏俏,朱广伟,张战平,等.风浪扰动对太湖水体悬浮物重金属含量的影响[J].湖泊科学, 2006,(05) 45-51.
    [133]毛小苓,倪晋仁.生态风险评价研究述评[J].北京大学学报(自然科学版), 2005,(04) .124-127
    [134]范文宏,张博,陈静生,等.锦州湾沉积物中重金属污染的潜在生物毒性风险评价[J].环境科学学报, 2006 (06) :234-238
    [135] Thompson B.L, Nelson D.E., Blake C. Assessment of health risk behaviors: A tool to inform consumers, providers, health care organizations, and purchasers American. Journal of Preventive Medicine, 1999, 16(1): 48-59.
    [136]郭文成,钟敏华,梁粤瑜.环境风险评价与环境风险管理[J].云南环境科学,2001,12: 19-26.
    [137]卢宏玮,曾光明,谢更新.洞庭湖流域区域生态风险评价[J].生态学报,2003,23(12) : 2520-2530.
    [138] Kretchik J.T. Persistent organic pollutants (POPS). Chemical Health and Safety, 2002,9(4):35.
    [139]洪燕峰,刘凡,窦燕生.环境风险预警评估方法研究.重庆环境科学[J],1999,21(2) : 18-20.
    [140]张妍,尚金城.长春经济技术开发区环境风险预警系统.重庆环境科学[J],2002,24 (4): 22-24.
    [141]曾光明,卓利,钟政林.水环境健康风险评价模型及其应用.水电能源科学[J],1997,15 (4): 28-33.
    [142]胡二邦.环境风险评价实用技术和方法[M].北京:中国环境科学出版社, 2000,163-164.
    [143]孙冬,王玉才,谢春梅.垃圾焚烧烟气中污染物对人体健康风险评价[J].环境卫生工程, 2004,12(3):144-166.
    [144]国家环境保护总局. HJ/T25-1999.工业企业土壤环境质量风险评价基准.1999.
    [145] ASTM International.E2081-00. Standard Guide for Risk-Based Corrective Action.2000.
    [146]高继军,张力平,黄圣彪,等.北京市饮用水源水重金属污染物健康风险的初步评价[J].环境科学, 2004 , 25 (2) : 47-50.
    [147] Hunsaker CT, Grahm RL, Suter GW, et al. Assessing Ecological Risk on a Regional Scale. [J] Environmental Management, 1990,(14): 325-332.
    [148] Lipton J, Galbraith H, Burger J, et al. A Paradigm for Ecological Risk Assessment[J]. Environmental Management, 1993(17): 1-5.
    [149] USEPA. Guidelines for Ecological Risk Assessment. FRL-6011-2, 1998.
    [150] Fava JA, Adams WJ, Larson RJ, et al. Research Priorities in Environmental Risk Assessment. [J] Toxicological Chemistry, 1987,(10): 949-960.
    [151] Barnthouse LW, SuterⅡGW. Use Manual for Ecological Risk Assessment[J]. ORNL-6251, 1988.
    [152] Rubenstein M. Patterns in Problem Solving. New Jersey: Prentice Hall Inc, 1975.
    [153] USEPA. Clinch and Powell Valley Watershed Ecological Risk Assessment, EPA/600/R-01/050, 2002.
    [154] Long E R,Field L J,MacDonald DD.Predicting toxicity marin sediments with numerical sediment quality guidelines [ J]Environ.Toxicol.Chem.,1998,17(4): 714~727.
    [155] Long E R, Macdonald D D, Smith S L,et al. Incidence of adverse biological effects with ranges of chemical concentration in marine and estuarine sediments [ J ]. Environmenta Management, 1995, 19(1):81~97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700