用户名: 密码: 验证码:
空间电磁对接/分离动力学与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在轨服务技术代表了航天科学发展的前沿与重点方向,空间对接/分离为其关键基础技术。随着在轨航天器数目的增多以及空间任务复杂性的增强,常态化在轨服务需求逐渐凸现。空间电磁对接/分离技术为常态化在轨服务提供了一种新型对接/分离方式,能有效避免传统推力器方式所固有的推进剂消耗、羽流污染及光学干扰等,具有非接触、连续、可逆及同步控制能力。针对空间电磁对接/分离的动力学与控制问题,论文开展动力学及自对接性、姿/轨控制、角动量管理、六自由度仿真与地面试验系统设计研究,形成了一套较为完整的空间电磁对接/分离动力学模型与特性分析、控制算法及地面试验装置。
     (1)空间电磁对接/分离动力学及自对接性。将星间电磁场作用以磁偶极子表征,采用电磁理论推导得到远场电磁力/力矩模型,包括直角坐标和球坐标两种形式。考虑星间电磁力的内力特性及Hill模型的线性特性,以质心轨道坐标系为参考系,运用Hill方程、电磁力模型和线性叠加原理推导建立了空间电磁对接/分离动力学模型。分析了空间电磁对接/分离的动力学特性,包括强非线性、耦合性、模型不确定性及控制能力特性。提出了电磁对接的自对接性概念,从地面(包括一维、二维情形)和空间电磁对接出发分析及理论证明了该自对接性,给出自对接可实现的电磁装置条件。
     (2)柔性对接轨迹运动的鲁棒及自适应控制。考虑航天器柔性对接需求,采用glideslope方法设计了期望对接轨迹,并基于动力学模型及期望轨迹推导得到轨迹跟踪前馈控制律。针对空间电磁对接动力学的强非线性、耦合性及模型不确定性问题,采用内环反馈线性化+外环鲁棒H∞方法设计了满足柔性对接需求且对模型不确定性具有较强鲁棒性的轨迹跟踪偏差反馈控制律。考虑到鲁棒H∞方法的性能保守性,采用内环反馈线性化+外环ESO(Extended State Observer)及LQR(Linear Quadratic Regulator)方法,以及基于Lyapunov稳定性理论的自适应控制方法设计了轨迹跟踪偏差反馈控制律,并逐个通过仿真算例予以验证。另外,针对ESO的参数优化整定及估计误差、自适应控制律参数整定及其作用下闭环系统渐近稳定性开展理论分析,给出了相关参数的整定策略。
     (3)安全分离轨迹运动的制导控制。星间电磁力的可逆性使得采用同一套电磁装置执行对接与分离成为可能,与柔性对接需求不同的是,电磁分离强调安全分离。面向伴星在轨释放背景,首先给出了空间电磁分离的几类基本假设。其次,基于主伴星恒定磁矩矢量模式仿真分析得出H-bar、V-bar及R-bar分离特性,给出了磁矩幅值与伴星分离运动特征参数的近似代数关系。最后,针对分离后伴星对主星或其他航天器自然椭圆近距离绕飞,采用循环追踪理论和微分同胚映射方法设计满足期望构型需求的安全电磁分离制导控制律,并开展了参数整定分析。
     (4)姿态运动的分散协同鲁棒控制。考虑星间电磁力矩和地磁力矩对两航天器姿态运动的影响,分析了空间电磁对接/分离的姿态控制需求,指出对两航天器采用分散协同主动姿态控制的必要性。给定绝对/相对姿态偏差定义及其数学表达式,推导建立了单位四元数表示的绝对/相对姿态偏差运动方程。考虑磁力矩模型的不确定性,采用基于行为的分散协同策略、自适应控制及ESO方法设计了两航天器姿态控制律,理论分析了闭环系统的全局渐近稳定性。最后,通过仿真算例验证了分散协同鲁棒姿态控制下两航天器相对姿态运动的快速协同性及绝对姿态运动的渐近收敛性,对模型未建模动态及外界干扰具有较好鲁棒性。
     (5)空间电磁对接/分离的角动量管理。将地磁场作用以磁偶极子表征,推导得到地磁力矩及星间电磁力矩在两航天器系统质心惯性系的投影分量模型。研究了基于地磁场作用的角动量管理策略及磁偶极子求解算法,包括:针对轨控作用力及其中一颗航天器的星间电磁力矩与地磁力矩相消需求,以V-bar、R-bar及H-bar对接为例,研究“正常模式的动量管理”;针对姿控执行机构角动量饱和情形,研究采用地磁力矩卸载多余角动量的“角动量卸载模式的动量管理”。鉴于采用地磁场作用的角动量管理策略具有被动性,初步研究了ACMM(AttitudeControl/Momentum Management)设计策略,包括“序列磁偶极子求解”和“ACMM控制”两部分。
     (6)六自由度仿真与地面试验系统设计。面向基于空间电磁对接/分离的航天器近距离绕飞观测背景,开展空间电磁对接/分离的六自由度仿真分析,给出了仿真框架及重点验证了前述章节动力学模型与控制算法的可行性及性能。另外,开展电磁对接/分离地面试验系统设计及研制,给出了试验系统总体方案以及软/硬件设计成果。
     总之,论文通过对空间电磁对接/分离动力学与控制研究,一方面从动力学与控制角度验证了该新型对接/分离技术的可行性,另一方面为下一步深入理论研究、地面演示验证试验及在轨试验提供了动力学模型、特性分析、控制算法及地面试验平台。
On-Orbit Servicing (OOS) technology, based on spacecraft docking and separationoperation, represents the frontier and important development trend of aerospace scienceresearch. The increase of on-orbit spacecraft number and spaceflight missioncomplexity highlights the requirement for regular OOS, for which the spaceelectromagnetic docking and separation technology would provide a novel docking andseparation style. This novel technology could resolve the inherent problems of thruster,such as propellant consumption and plume contamination, etc. and has non-contacting,continuous, reversible and synchronous control capability. Concentrating on dynamicsand control problems of space electromagnetic docking and separation, dynamics andself-docking characteristics, trajectory and attitude control, angular momentummanagement,6-DOF simulation and ground experiment system design are investigatedin this paper. The main research points are as follows.
     (1) Dynamics and self-docking characteristics of space electromagneticdocking and separation. Hypothesizing the spacecraft electromagnets as magneticdipoles, the far-field electromagnetic force/torque models, with formats of Cartesiancoordinates and spherical coordinates, are derived by the electromagnetic theory.Referenced to the orbit coordinate frame at center of mass of the spacecraft pair, therelative motion dynamic models for the two spacecraft are derived based on Hill’sequations and far-field electromagnetic force model, and then the dynamic model ofspace electromagnetic docking and separation is got by directly subtracting the twodynamic models. Based on the dynamic model, its dynamics properties, includingstrong nonlinearity, coupling, model uncertainty and controllability, are analyzed. And,the concept of electromagnetic self-docking is put forward and proved from the ground(including one-dimensional and two-dimensional) and space cases and thecorresponding sufficient conditions of self-docking are given.
     (2) Robust and adaptive control for soft docking trajectory motion.Considering spacecraft soft docking requirements, the desired docking trajectory isdesigned by applying the glideslope approach, and the feedforwad controller is derivedbased on the dynamic model. To resolve the control problems of space electromagneticdocking, such as strong nonlinearity, coupling and dynamic model uncertainty, a twoloop control frame with the inner loop of feedback linearization and outer loop of H∞method, is put forward and a soft trajectory tracking error feedback robust controller isfirstly designed, ensuring better robust capability to model uncertainty. Then,considering the conservative property of the H∞method, another two approaches,including inner loop feedback linearization with outer ESO(Extended State Observer) and LQR(Linear Quadratic Regulator), and the adaptive control method based onLyapunov stability theory, is explored to design the soft trajectory error feedbackcontroller, and verified by simulation cases. In addition, the estimation error of ESO andthe asymptotical stability of closed system with adaptive controller are theoreticallyanalyzed, and the tuning approach of parameters for ESO and adaptive controller arefollowed.
     (3) Guidance control for safe separation trajectory motion. Reversible controlcapability of electromagnetic force makes it possible to utilize one electromagneticmechanism to accomplish docking and separation operation. Different from the softelectromagnetic docking, the electromagnetic separation emphasizes safety. With thebackground of on-orbit release partner satellite, several basic hypotheses for spaceelectromagnetic separation are given. Based on constant magnetic moment vectors, thecharacteristics of H-bar, V-bar and R-Bar electromagnetic separation are analyzed andput forward by numerical simulation, and the algebraic relationship between themagnetic moment and the separation relative motion of partner spacecraft is formulated.At last, concentrating on two normal elliptical close proximity fly-around mission aimedto the master or other spacecraft, the space electromagnetic separation guidancecontroller is designed based on the cyclic pursuit theorem and the differentiablehomeomorphic mapping, and the parameters tuning of which is analyzed.
     (4) Decentralized and coordinated robust control for attitude motion.Considering the effects of inter-satellite electromagnetic torque and the Earth's magnetictorque to the attitude motions of the spacecraft pair, the requirements of attitude controlare studied and the necessity of decentralized coordinate active attitude controlapproach is pointed out. Defining and formulating the absolute and relative attitudedeviation, the dynamic and kinematics models of absolute and relative attitude deviationmotion with the unit quaternion expression are derived. The attitude controller isdesigned by utilizing behavior-based decentralized control approach, adaptive controland ESO method, and then the global asymptotical stability of the closed system istheoretically analyzed. At last, the quick coordination of relative attitude, asymptoticalconvergence of absolute attitude, and robust capability to model uncertainty andexternal disturbances, are verified by simulation cases for the closed attitude controlsystem with decentralized coordinate attitude controllers.
     (5) Angular momentum management for space electromagnetic docking andseparation. Treating the Earth's magnetic field as magnetic dipoles, the projectionmodels of the Earth's magnetic torque and the inter-satellite electromagnetic torque onthe inertial coordinate frame centered at the center of mass of the spacecraft pair isderived. Then, the angular momentum management approach and correspondingsolution algorithms for magnetic dipoles are studied, including the following two. First, considering the requirements of trajectory motion control and one spacecraft'sinter-satellite electromagnetic torque counteracting with the Earth's magnetic torque,taking V-bar, R-bar and H-bar docking for example, the "normal angular momentummanagement" approaches are explored. Second, considering the angular momentumsaturation case of attitude control actuation mechanism, the "angular momentumreduction management" approach is studied by applying the Earth's magnetic torque.Because the designed angular momentum management approaches are negative, anAttitude Control/Momentum Management (ACMM) approach is studied, whichincludes the "sequence magnetic dipoles solution" and the "ACMM control".
     (6)6-DOF simulation and ground experiment system design. With thebackground of spacecraft close proximity fly-around observation based on spaceelectromagnetic docking and separation technology, a6-DOF numerical simulation caseof space electromagnetic docking and separation is implemented. A simulation frame isconstructed, and the feasibility and performance of previous dynamic models andcontrol algorithms are verified. Additionally, a ground experiment system is studied anddesigned, and the general system scheme, design results of hardware and software arepresented.
     In conclusion, the research of dynamics and control for the space electromagneticdocking and separation technology, on one hand, verifies the feasibility of this noveltechnology from the dynamics and control aspect; on the other hand, provides dynamicmodels, characteristics analysis, control algorithms and ground experiment base forfuture theoretical research, ground demonstration and verification experiments, orfurther on-orbit experiments.
引文
[1] Strain R. On-orbit satellite servicing study[R]. Maryland: National Aeronauticsand Space Administration,2010:1-189.
    [2] Tatsch A, Fitz-Coy N, Gladun S. On-orbit servicing: a brief survey[C]. ThePerformance Metrics for Intelligent Systems Conference, Maryland, Aug.2006:276-281.
    [3] Charles F. On-orbit assembly and servicing for future space observatories[C].Space2006, California, Sep.2006:1-12.
    [4] Sellmaier F, Boge T, Spurmann J, et al. On-orbit servicing missions: challengesand solutions for spacecraft operations[C]. SpaceOps2010Conference, Alabama,Apr.2010:1-11.
    [5] Eberle S, Ohndorf A, Faller R. On-orbit servicing mission operation at GSOC[C].SpaceOps2010Conference, Alabama, Apr.2010:100-110.
    [6] Zimpfer D, Kachmar P, Tuohy S. Autonomous rendezvous, capture and in-spaceassembly: past, present and future[C]. The1stSpace Exploration Conference:Continuing the Voyage of Discovery, Orlando, Jan.2005:1-12.
    [7] Brown O, Eremenko P, Hamilton B A. Fractionated space architectures: a visionfor responsive space[C]. The4thResponsive Space Conference, Los Angeles,Apr.2006:1-14.
    [8]李东旭,李智.航天器自主交会对接技术[M].长沙:国防科技大学出版社,2009.
    [9]林来兴.四十年空间交会对接技术的发展[J].航天器工程,2007,16(4):70-77.
    [10] Ringelberg J. Docking assembly techniques and challenges[C]. AIAA SpaceConference&Exposition, California, Sep.2007:1-5.
    [11] McGhan C L R, Besser R L, Sanner R M, et al. Semi-autonomous inspectionwith a neural buoyancy free-flyer[C]. AIAA Guidance, Navigation, and ControlConference and Exhibit, Keystone, Aug.2006:1-11.
    [12] Mohan S. Reconfiguration methods for on-orbit servicing, assembly, andoperations with application to space telescopes[D]. Massachusetts: MassachusettsInstitute of Technology,2007.
    [13]刘豪,梁巍.美国国防高级研究计划局F6项目发展研究[J].航天器工程,2010,19(2):92-98.
    [14] Li M, Yang H. A review of China’s rendezvous and docking task[C]. The63thInternational Astronautical Congress, Naples, Oct.2012:1-11.
    [15] Kong E. Spacecraft formation flight exploiting potential fields[D]. Massachusetts:Massachusetts Institute of Technology,2002.
    [16] Kwon D W. Propellantless formation flight applications using electromagneticsatellite formations[J]. Acta Astronautica,2010,67:1189-1201.
    [17]王龙,杨乐平,许军校.电磁编队飞行与电磁交会对接关键技术及进展[J].装备指挥技术学院学报,2009,20(1):74-78.
    [18]张三慧.大学物理学——电磁学[M].北京:清华大学出版社,1999:244-252.
    [19] Miller D, Sedwick R. Electromagnetic formation flight: NIAC phase I review[R].Massachusetts: Massachusetts Institute of Technology,2002:1-18.
    [20]崔乃刚,王平,郭继峰,等.空间在轨服务技术发展综述[J].宇航学报,2007,28(4):805-813.
    [21] Mulder T A. Orbital Express autonomous rendezvous and capture flightoperations[C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit,Honolulu, Aug.2008,1-22.
    [22] Denehy C J, Carpenter J R. A summary of the rendezvous, proximity operations,docking, and undocking (RPODU) lessons learned from the defense advancedresearch project agency (DARPA) orbital express (OE) demonstration systemmission[R]. Virginia: NASA report, NASA/TM-2011-217088:1-37.
    [23] Jeffrey M M. Closed-loop control of spacecraft formations with applications onSPHERES[D]. Massachusetts: Massachusetts Institute of Technology,2008.
    [24] Fejzic A, Nolet S, Breger L, et al. Results of SPHERES microgravityautonomous docking experiments in the presence of anomalies[C]. The59thInternational Astronautical Congress, Glasgow, Oct.2008:1-16.
    [25] Mohan S, Saenz-Otero A, Nolet S, et al. SPHERES flight operations testing andexecution[J]. Acta Astronautica,2009,65:1121-1132.
    [26] McCamish S B, Romano M, Nolet S, et al. Flight testing of multi-spacecraftcontrol on SPHERES during close-proximity operations[J]. Journal of Spacecraftand Rockets,2009,46(6):1202-1213.
    [27] Field J M, Miller D. Acquisition and control of a precision formation flyingmission[D]. Massachusetts: Massachusetts Institute of Technology,2010.
    [28] Bloom J. On orbit autonomous servicing satellite (OASiS) systems requirementsdocument[R]. Washington: University of Washington,2000:1-101.
    [29] Bloom J, Sandhu J, Paulsene M, et al. On orbit autonomous servicing satellite(OASiS) project preliminary design review[R]. Washington: University ofWashington,2000:1-224.
    [30] Ocampo C, Williams J. Electromagnetically guided autonomous docking andseparation in micro-gravity[R]. Texas: University of Texas,2005:1-32.
    [31] Morring F. Flying eyeball: NASA pushes tiny robot to provide astronauts a‘God’s-eye view’ of shuttle future vehicles[R]. Space Technology,2005,163(5):10-14.
    [32] Fredrickson S, Mitchell J. Managing technology development: insights from theMiniAERCam R&D project[R]. Houston: NASA Johnson Space Center,2006:1-39.
    [33] Greenfield N J. Low cost range attitude determination solution for small satelliteplatforms[D]. Montana: University of Montana State,2006.
    [34] Wokes D, Smail S, Palmer P, et al. Pose estimation for in-orbit self-assembly ofthe intelligent self-powered modules[C]. AIAA Guidance, Navigation, andControl Conference, Chicago, Aug.2009:1-18.
    [35] Smail S, Underwood C I. Electromagnetic flat docking system for in-orbitself-assembly of small spacecraft[C]. AAS/AIAA Spaceflight MechanicsMeeting, Georgia, Feb.2009:173-183.
    [36] Underwood C I, Pellegrino S. Autonomous assembly of a reconfigurable spacetelescope (AAReST) for astronomy and earth observation[C]. AAS/AIAASpaceflight Mechanics Meeting, Georgia, Feb.2009:1-7.
    [37] Rodgers L, Hoff N R, Jordan E, et al. A universal interface for modularspacecraft[C]. The19thAnnual AIAA/USU Conference on Small Satellites,Logan, Aug.2005:1-8.
    [38] Hoff N R. Design and implementation of a relative state estimator for dockingand formation control of modular autonomous spacecraft[D]. Massachusetts:Massachusettes Institute of Technology,2007.
    [39]许军校.面向空间对接的电磁机构设计与实验研究[D].长沙:国防科技大学,2008.
    [40]王龙.空间电磁对接动力学和控制研究[D].长沙:国防科技大学,2008.
    [41]张元文,杨乐平.空间电磁对接控制问题[J].控制理论与应用,2010,27(8):1069-1074.
    [42]张元文,杨乐平.空间电磁对接的鲁棒非线性轨迹跟踪控制[J].宇航学报,2011,32(7):1502-1507.
    [43]张元文,杨乐平,朱彦伟,等.空间电磁对接的鲁棒协调控制[J].国防科技大学学报,2011,33(3):33-37.
    [44]张元文,杨乐平.空间电磁对接的非线性控制[J].控制理论与应用,2011,28(8):1181-1186.
    [45]张元文,杨乐平,朱彦伟,等.空间电磁对接轨迹跟踪的自适应控制[J].系统工程与电子技术,2012,34(1):136-142.
    [46]张元文,杨乐平,朱彦伟,等.空间电磁对接鲁棒姿态控制[J].国防科学技术大学学报,2012,34(5):5-9.
    [47] Zhang Y W, Yang L P, Zhu Y W, et al. Self-docking capability and controlstrategy of electromagnetic docking technology[J]. Acta Astronautica,2011,69:1073-1081.
    [48] Zhang Y W, Yang L P, Zhu Y W, et al. Nonlinear6-DOF control of spacecraftdocking with inter-satellite electromagnetic force[J]. Acta Astronautica,2012,77:97-108.
    [49] Zhang Y W, Yang L P, Zhu Y W, et al. Dynamics and nonlinear control of spaceelectromagnetic docking[J]. Journal of Systems Engineering and Electronics, Apr.2013.
    [50] Zhang Y W, Yang L P, Zhu Y W, et al. Angular momentum management ofspacecraft electromagnetic docking considering the Earth’s magnetic field[J].Journal of Guidance, Control, and Dynamics, Apr.2013, DOI:10.2514/1.57723.
    [51]杨乐平,张元文.基于电磁力的航天器空间对接及编队飞行技术[C].中国空间机械工程技术高峰论坛,北京,2011:161-170.
    [52]黄涣,杨乐平,朱彦伟,等.双星电磁编队的动力学平衡态稳定性与控制研究[J].国防科技大学学报,2013.
    [53] Huang H, Yang L P, Zhu Y W, et al. Dynamics and relative equilibrium ofspacecraft formation with non-contacting internal forces[J]. Proceedings of theInstitution of Mechanical Engineers, Part G, Journal of Aerospace Engineering,2013.
    [54] Cai W W, Yang L P, Zhu Y W, et al. Formation keeping control throughinter-satellite electromagnetic force[J]. SCIENCE CHINA: TechnologicalSciences,2013.
    [55]苏建敏,董云峰.电磁卫星编队位置跟踪滑模变结构控制[J].宇航学报,2011,32(5):1093-1099.
    [56]胡敏,曾国强.基于终端滑模的集群航天器电磁编队有限时间控制[J].航天控制,2011,29(6):22-28.
    [57] Zeng G Q, H M. Finite-time control for electromagnetic satellite formations[J].Acta Astronautica,2012,74:120-130.
    [58] Song J L, Hu M, Zeng G Q. Collision avoidance maneuver for electromagneticsatellite formations[C]. The63thInternational Astronautical Congress, Naples,Oct.2012:1-5.
    [59]谢中秋.电磁编队飞行网络化控制方法研究[D].哈尔滨:哈尔滨工业大学,2011.
    [60]冯成涛,王惠南,刘海颖,等.磁控小卫星编队飞行的非线性控制[J].传感器与微系统,2009,28(3):54-58.
    [61] Elias L M, Kong E M, Miller D. An investigation of electromagnetic control forformation flight applications[C]. Proceedings of SPIE Astronomical Telescopeand Instrumentation Conference, Hawaii, Aug.2002:166-180.
    [62] Kwon D W. Electromagnetic formation flight of satellite arrays[D].Massachusetts: Massachusetts Institute of Technology,2005.
    [63] Neave M. Dynamic and thermal control of an electromagnetic formation flighttestbed[D]. Massachusetts: Massachusetts Institute of Technology,2005.
    [64] Ahsun U. Dynamics and control of electromagnetic satellite formation in lowEarth orbits[C]. AIAA Guidance, Navigation, and Control Conference andExhibit, Keystone, Aug.2006:1-15.
    [65] Sakaguchi A. Micro-electromagnetic formation flight of satellite systems[D].Massachusetts: Massachusetts Institute of Technology,2007.
    [66] Elias L M, Kwon D W, Sedwick R J, et al. Electromagnetic formation flightdynamics including reaction wheel gyroscopic stiffening effects[J]. Journal ofGuidance, Control and Dynamics,2007,30(2):499-504.
    [67] Ahsun U. Dynamics and control of electromagnetic satellite formations[D].Massachusetts: Massachusetts Institute of Technology,2007.
    [68] Lee S. Design and implementation of the state estimator for trajectory followingof an electromagnetic formation flight testbed[D]. Massachusetts: MassachusettsInstitute of Technology,2008.
    [69] Kwon D W. Cryogenic heat pipe for cooling high temperature superconductorswith application to electromagnetic formation flight satellites[D]. Massachusetts:Massachusetts Institute of Technology,2009.
    [70] Ahsun U, Miller D, Ramirez J L. Control of electromagnetic satellite formationsin near-Earth orbits[J]. Journal of Guidance, Control, and Dynamics,2010,33(6):1883-1891.
    [71] Hashimoto T, Sakai S, Ninomiya K, et al. Formation flight usingsuper-conducting magnets[C]. The1stInternational Symposium of FormationFlying Missions and Technologies, Toulouse,2002:3-10.
    [72] Kaneda R, Yazaki F, Sakai S. The relative position control in formation flyingsatellites using super-conducting magnets[C]. The2ndInternational Symposiumof Formation Flying Missions and Technologies, Washington,2004:1-12.
    [73] Gardner P N. A study of selected aspects of electromagnetic formation flight[D].Maryland: University of Maryland,2008.
    [74] Wawrzaszek R, Banaszkiewicz M, Seweryn K. Autonomous reconfiguration ofservicing satellite by electromagnetic forces[C]. The9thWorkshop on AdvancedSpace Technologies for Robotics and Automation, Noordwijk, Nov.2006:1-8.
    [75] Wawrzaszek R, Banaszkiewicz M. Control and reconfiguration of satelliteformations by electromagnetic forces[J]. Journal of telecommunications andinformation technology,2007,1:54-58.
    [76] King L B, Parker G G. A study of inter-spacecraft Coulomb forces andimplications for formation flying[C]. The38thAIAA/ASME/SAE/ASEE JointPropulsion Conference and Exhibit, Indianapolis, Jul.2002:1-14.
    [77] King L B, Parker G G, Deshmukh S, et al. Spacecraft formation-flying usinginter-vehicle Coulomb forces[R]. Michigan: Michigan Technological University,2002:1-103.
    [78] Natarajan A. A study of dynamics and stability of two-craft Coulomb tetherformations[D]. Virginia: Virginia Polytechnic Institute and State University,2007.
    [79] Natarajan A, Schaub H. Linear dynamics and stability analysis of a Coulombtether formation[C]. The15thAAS/AIAA Space Flight Mechanics Meeting,Colorado, Jan.2005:1-15.
    [80] Natarajan A, Schaub H. Linear dynamics and stability analysis of a two-craftCoulomb tether formation[J]. Journal of Guidance, Control, and Dynamics,2006,29(4):831-838.
    [81] Yamamoto U, Yamakawa H. Two-craft Coulomb-force formation dynamics andstability analysis with Debye length characteristics[C]. AIAA/AASAstrodynamics Specialist Conference and Exhibit, Hawaii, Aug.2008:1-9.
    [82] Inampudi R K. Two-craft Coulomb formation study about circular orbits andlibration points[D]. Colorado: University of Colorado,2010.
    [83] Inampudi R K, Schaub H. Orbit radial dynamic analysis of two-craft Coulombformation at libration points[C]. AIAA/AAS Astrodynamics SpecialistConference, Toronto, Aug.2010:1-19.
    [84]张皓,师鹏,李保军,等.利用库仑力实现悬停轨道的新方法研究[J].宇航学报,2012,33(1):68-75.
    [85] Izzo D, Pettazzi L. Self-assembly of large structures in space using intersatelliteCoulomb forces[C]. The56thInternational Astronautical Congress, Fukuoka, Oct.2006:1-8.
    [86] Natarajan A, Schaub H, Parker G G. Reconfiguration of a nadir-pointing2-craftCoulomb tether[J]. Journal of British Interplanetary Society,2007,60(6):209-218.
    [87] Wang S Q, Schaub H. Electrostatic spacecraft collision avoidance usingpiece-wise constant charges[C]. AAS/AIAA Spaceflight Mechanics Meeting,Georgia, Feb.2009:1-20.
    [88] Natarajan A, Schaub H. Hybrid control of orbit normal and along-track two-craftCoulomb tethers[J]. Aerospace Science and Technology,2009,13:183-191.
    [89] Wang S Q, Schaub H. Nonlinear feedback control of a spinning two-spacecraftCoulomb virtual structure[J]. IEEE Transactions on Aerospace and ElectronicSystems,2011,47(3):2055-2067.
    [90] Wang S Q. Shape control of charged spacecraft cluster with two or threenodes[D]. Colorado: University of Colorado,2010.
    [91] Inampudi R, Schuab H. Optimal reconfigurations of two-craft Coulombformation in circular orbits[C]. AIAA/AAS Astrodynamics Specialist Conference,Toronto, Aug.2010:1-18.
    [92] Inampudi R, Schuab H. Disturbance compensating control of orbit radiallyaligned two-craft Coulomb formation[J]. Celestial Mechanics and DynamicalAstronomy,2012,112:445-458.
    [93] Joe H, Schaub H, Parker G G. Formation dynamics of Coulomb satellites[C]. The6thInternational Conference on Dynamics and Control of Systems and Structuresin Space, Liguria, Jul.2004:1-14.
    [94] Schaub H, Kim M. Differential orbit element constraints for Coulomb satelliteformations[C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit,Providence, Aug.2004:1-14.
    [95] Berryman J F. Analytical and numerical analysis of static Coulomb formations
    [D]. Virginia: Virginia Polytechnic Institute and State University,2005.
    [96] Schaub H, Parker G G, King L B. Coulomb thrusting application study[R].Virginia: Virginia Polytechnic Institute,2006:1-119.
    [97] Yung K W, Landecker P B, Villani D D. An analytical solution for the forcebetween two magnetic dipoles[J]. Magnetic and Electrical Separation,1998,9:39-52.
    [98] Elias L M. Dynamics of multi-body space interferometers including reactionwheel gyroscopic stiffening effects: structurally connected and electromagneticformation flying architecture[D]. Massachusetts: Massachusetts Institute ofTechnology,2004.
    [99] Kramer E J. Scaling laws for flux pinning in hard superconductors[J]. Journal ofApplied Physics,1973,44(3):1360-1370.
    [100] Brandt E H. Rigid levitation and suspension of high-temperature superconductorsby magnets[J]. American Journal of Physics,1990,58(1):43-49.
    [101] Kordyuk A. Magnetic levitation for hard superconductors[J]. Journal of AppliedPhysics,1998,83(1):610-612.
    [102] Roy W, Drew P, Ravi-Persad S, et al. A magnetic bumper-tether system usingZFC Y123[C]. The Third International Symposium on Magnetic SuspensionTechnology, Houston, Jul.1996.
    [103] Jones L L, Peck M A. Stability and control of a flux-pinned docking interface forspacecraft[C]. AIAA Guidance, Navigation, and Control Conference, Toronto,Aug.2010:1-12.
    [104] Shoer J P, Peck M A. A flux-pinned magnet-superconductor pair forclose-proximity station keeping and self-assembly of spacecraft[C]. AIAAGuidance, Navigation and Control Conference, South Carolina, Aug.2007:1-18.
    [105] Gersh J. Architecting the very-large-aperture flux-pinned space telescope: ascalable, modular optical array with high agility and passively stable orbitaldynamics[C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit,Hawaii, Aug.2008:1-11.
    [106] Norman M C, Peck M A. Simplified model of a flux-pinned spacecraftformation[J]. Journal of Guidance, Control, and Dynamics,2010,33(3):814-822.
    [107] Norman M C, Peck M A. Modeling and properties of a flux-pinned network ofsatellites[C]. AAS/AIAA Astrodynamics Specialist Conference, Mackinal Island,2007:1-14.
    [108] Norman M C. Stationkeeping of a flux-pinned satellite network[C]. AIAAGuidance, Navigation and Control Conference, Hawaii, Aug.2008:1-12.
    [109] Wilson W R, Shoer J P, Peck M A. Demonstration of a magnetic lockingflux-pinned revolute joint for use on CubeSat-standard spacecraft[C]. AIAAGuidance, Navigation, and Control Conference, Illinois, Aug.2009:1-13.
    [110] Shoer J P. Flux-pinned interfaces for the assembly, manipulation, andreconfiguration of modular space systems[C]. AIAA Guidance, Navigation, andControl Conference, Honolulu, Aug.2008:1-17.
    [111] Butail S, Peck M. Non-contacting interfaces: a case study in modular spacecraftdesign[C]. Proceedings of CSER, New Jersey, Mar.2007:1-12.
    [112] Norman M C, Peck M A. Orbit maneuvers through inter-satellite forcing[C].AIAA Guidance, Navigation, and Control Conference, Illinois, Aug.2009:1-9.
    [113] Norman M C, Peck M A. Integrals of motion for planar multi-body formationswith internal forces[J]. Journal of Guidance, Control, and Dynamics,2011,34(6):1790-1797.
    [114] Miller D, Sedwick R, Elias L, et al. Electromagnetic formation flight[R].Massachusetts: Massachusatts Institute of Technology,2006.
    [115]张涛.非线性系统控制策略的研究[D].浙江:浙江大学,2001.
    [116]原伟.基于Lyapunov函数的非线性控制方法研究[D].中山:中山大学,2008.
    [117]刘恒坤,常文森.磁悬浮系统的两种线性化控制方法[J].控制理论与应用,2005,24(1):14-17.
    [118]刘恒坤,施晓红,常文森.磁悬浮系统的非线性控制[J].控制工程,2007,14(5):455-458.
    [119]周克敏, Doyle J C, Glover K.鲁棒与最优控制[M].北京:国防工业出版社,2002.
    [120]王曦,曾庆福.频域不确定性系统加权混合灵敏度函数频域整形[J].航空学报,1999,20(1):358-361.
    [121]张晓宇,贺有智,王子才.基于H∞性能指标的质量矩拦截弹鲁棒控制[J].航空学报,2007,28(3):634-640.
    [122]赵山,金玉华,刘惠明. H∞控制理论在BTT导弹驾驶仪中的应用[J].现代防御技术,2007,35(2):52-56.
    [123]刘玉玺,周军,周凤歧.基于遗传算法的H∞混合灵敏度导弹解耦控制器及加权函数选择方法研究[J].航天控制,2007,25(3):28-32.
    [124]高云霞,田沛,李沁. H∞混合灵敏度控制器在主气压系统中的应用[J].电力系统及其自动化学报,2007,19(1):92-95.
    [125]郑大钟.线性系统理论[M].北京:清华大学出版社,2005.
    [126]张鼎.基于扩张状态观测器和非线性PID的数字式悬浮控制系统研究[D].长沙:国防科学技术大学,2005.
    [127]韩京清.自抗扰控制技术[J].前沿科学,2007,1:24-31.
    [128]余涛,朱守真,沈善德,等.基于扩张状态观测器的电力系统非线性鲁棒协调控制[J].中国电机工程学报,2004,24(4):1-5.
    [129]周黎妮,唐国金,李海阳.航天器姿态机动的自抗扰控制器设计[J].系统工程与电子技术,2007,29(12):2122-2126.
    [130]李顺利,李立涛,杨旭.柔性多体航天器自抗扰控制系统的研究[J].宇航学报,2007,28(4):845-850.
    [131]韩京清.一类不确定对象的扩张状态观测器[J].控制与决策,1995,10(1):85-88.
    [132] Sun L M, Jiang X Z, Li D H. Tuning of auto-disturbance-rejection controller fora class of nonlinear plants[J]. Acta Automatica Sinica,2004,30(2):251-254.
    [133] Yoo D, Stephen S, Yau T, et al. On convergence of the linear extended stateobserver[C]. IEEE International Symposium on Intelligent Control, Munich, Oct.2006:1645-1650.
    [134] Yang X X, Huang Y. Capabilities of extended state observer for estimatinguncertainties[C]. American Control Conference, Missouri, Jun.2009:3700-3705.
    [135] Choi Y, Yang K, Chung W K, et al. On the robustness and performance ofdisturbance observers for second-order systems[J]. IEEE Transactions onAutomatic Control,2003,48(2):315-320.
    [136] Zheng Q, Gao L Q, Gao Z Q. On stability analysis of active disturbance rejectioncontrol for nonlinear time-varying plants with unknown dynamics[C]. The46thIEEE Conference on Decision and Control, Louisiana,2007:3501-3506.
    [137]韩京清,张荣.二阶扩张状态观测器的误差分析[J].系统科学与数学,1999,19(4):465-471.
    [138]朱建鸿,张兆靖,杨慧中.基于跟踪-微分器的扩张状态观测器[C].25th中国控制会议,黑龙江,2006.
    [139] Aoki M. On feedback stabilizability of decentralized dynamic systems[J].Automatica,1972,8:163-173.
    [140]钱山.在轨服务航天器相对测量及姿态控制研究[D].长沙:国防科技大学,2010.
    [141] Mehrabian A R, Tafazoli S, Khorasani K. Coordinated attitude control ofspacecraft formation without angular velocity feedback: a decentralizedapproach[C]. AIAA Guidance, Navigation, and Control Conference, Illinois, Aug.2009:1-15.
    [142] Subbarao K, Welsh S. Nonlinear control of motion synchronization for satelliteproximity operations[J]. Journal of Guidance, Control, and Dynamics,2008,31(5):1284-1289.
    [143] Tweddle B E, Saena-Otero A. SPHERES development and demonstrations ofclose proximity formation flight maneuvers[C]. ION NTM, San Diego, Jan.2008:217-223.
    [144] McCamish S B, Romano M, Yun X P. Autonomous distributed control algorithmfor multiple spacecraft in close proximity operations[C]. AIAA Guidance,Navigation and Control Conference and Exhibit, South Carolina, Aug.2007.
    [145] McCamish S B. Distributed autonomous control of multiple spacecraft duringclose proximity operations[D]. California: Naval Postgraduate School,2007.
    [146] McCamish S B, Romano M, Nolet S, et al. Ground and space testing of multiplespacecraft control during close proximity operations[C]. InternationalAstronautical Congress, Honolulu, Oct.2008.
    [147] Saenz-Otero A, Aoude G, Jefrey M M, et al. Distributed satellite systemsalgorithm maturation with SPHERES aboard the ISS[C]. InternationalAstronautical Congress, Honolulu, Oct.2008.
    [148] Chung S J, Slotine J J, Miller D. Nonlinear model reduction and decentralizedcontrol of tethered formation flight[J]. Journal of Guidance, Control, andDynamics,2007,30(2):390-400.
    [149] Chung S J, Miller D. Propellant-free control of tethered formation flight, Part I:linear control and experimentation[J]. Journal of Guidance, Control, andDynamics,2008,31(3):571-584.
    [150] Riberos J L. New decentralized algorithms for spacecraft formation control basedon a cyclic approach[D]. Massachusetts: Massachusetts Institute of Technology,2010.
    [151] Ramirez J L, Pavone M, Frazzoli E, et al. Distributed control of spacecraftformation via cyclic pursuit: theory and experiments[C]. American ControlConference, St. Louis, Jun.2009:4811-4818.
    [152]周黎妮.考虑动量管理和能量存储的空间站姿态控制研究[M].长沙:国防科技大学,2009.
    [153] Russell S P, Spencer V, Metrocavage K. On-orbit propulsion and methods ofmomentum management for the international space station[C]. The44thAIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, Jul.2008:1-6.
    [154] Chen X J, Steyn W H. Optimal combined reaction-wheel momentummanagement for LEO Earth-pointing satellites[J]. Journal of Guidance, Control,and Dynamics,1999,22(4):543-550.
    [155] Rodgers L, Miller D W. Concepts and technology development for theautonomous assembly and reconfiguration of modular space systems[D].Massachusetts: Massachusetts Institute of Technology,2005.
    [156] Hilstad M O. A multi-vehicle testbed and interface framework for thedevelopment and verification of separated spacecraft control algorithms[D].Massachusetts: Massachusetts Institute of Technology,2002.
    [157] Friedman D A. Laboratory experimentation of autonomous spacecraft dockingusing cooperative vision navigation[D]. California: Naval Postgraduate School,2005.
    [158] Romano M, Friedman D A, Shay T J. Laboratory experimentation of autonomousspacecraft approach and docking to a collaborative target[J]. Journal ofSpacecraft and Rockets,2007,44(1):164-173.
    [159] Morris J C. Automated spacecraft docking using a vision-based relativenavigation sensor[D]. Texas: Texas A&M University,2009.
    [160] Hoff N R, Mohan S, Nolet S, et al. Docking and reconfiguration of modularspacecraft-preliminary SWARM testing at MSFC[C]. Proc. of SPIE-Sensors andSystems for Space Applications,2007,6555:1-8.
    [161] Andrade C. Robust control applied to consistent rendezvous and docking[D].Massachusetts: Massachusetts Institute of Technology,2008.
    [162] Andrade C, Ramirez-Mendoza R, Giacoman-Zarzar M, et al. Robust controlapplied towards rendezvous and docking[C]. ECC conference, Oct.2009:1-6.
    [163]郝艳龙.磁浮列车悬浮控制系统监控平台研究[D].长沙:国防科学技术大学,2010.
    [164]阮一高.磁轴承参数辨识与数控平台研究长沙[D].长沙:国防科学技术大学,2010.
    [165]钟毅.磁悬浮嵌入式控制系统基础理论和关键技术研究[D].武汉:武汉理工大学,2007.
    [166]杨国华.空间对接综合试验台及其Stewart运动平台的轨迹规划研究[D].上海:上海交通大学,2006.
    [167]张世杰,曹喜滨.基于MicroSim仿真平台的航天器交会对接物理仿真系统[J].航天控制,2006,24(2):63-68.
    [168] Schweighart S A. Electromagnetic formation flight dipole solution planning[D].Massachusetts: Massachusetts Institute of Technology,2005.
    [169] Richard B. An introduction to the mathematics and methods ofastrodynamics[M]. Houston: AIAA Education Series,1999.
    [170]郗晓宁,王威,高玉东.近地航天器轨道基础[M].长沙:国防科技大学出版社,2003.
    [171]孙世贤,黄圳圭.理论力学教程[M].长沙:国防科技大学出版社,1999.
    [172] Pearson D J. The glideslope approach[J]. Advances in the Astronautical Sciences,1989,69:109-123.
    [173] Nolet S. Development of a guidance, navigation and control architecture andvalidation process enabling autonomous docking to a tumbling satellite[D].Massachusetts: Massachusetts Institute of Technology,2007.
    [174] Khalil H K. Nonlinear systems[M]. New Jersey: Prentice Hall Inc.,1996.
    [175]韩京清.从PID技术到“自抗扰控制”技术[J].控制工程,2002,9(3),13-18.
    [176]黄一,韩京清.非线性连续二阶扩张状态观测器的分析与设计[J].科学通报,2000,45(13):1373-1379.
    [177] Zhang Y W, Yang L P, Zhu Y W. Estimate error analysis of the nonlinear thirdorder extended state observer[C]. The10thWorld Congress on Intelligent Controland Automation, Beijing, Jul.2012:1621-1627.
    [178]王宇航,姚郁,马克茂.二阶扩张状态观测器的误差估计[J].吉林大学学报(工学版),2010,40(1):143-147.
    [179] Feng C, Lozano R. Adaptive control systems[M]. Oxford: ButterworthHeinemann Linacre House,1999.
    [180] Jean-Jacques E S, Li W P. Applied nonlinear control[M]. New Jersey: PrenticeHall Inc.,1991.
    [181] Yan X J, Zhang K. Development of a small reusable space release device usingSMA[C]. Sensors and Smart Structures Technologies for Civil, Mechanical, andAerospace Systems, San Diego, Apr.2007.
    [182]杜新明,高惠婷,杨新.在轨释放伴随卫星方法与仿真分析[J].计算机仿真,2009,26(10):39-43.
    [183]王功波.小卫星在轨释放有关问题研究[D].长沙:国防科学技术大学,2006.
    [184]王志刚,袁建平,陈士橹.伴随卫星最优小推力释放与回收控制[J].西北工业大学学报,2003,21(3):294-297.
    [185]朱彦伟.航天器近距离相对运动轨迹规划与控制研究[D].长沙:国防科学技术大学,2009.
    [186]杨乐平,朱彦伟,黄涣.航天器相对运动轨迹规划与控制[M].北京:国防工业出版社,2010.
    [187] Woffinden D. On-orbit satellite inspection navigation and Δv analysis[D].Massachusetts: Massachusetts Institute of Technology,2004.
    [188]杨涛.面向空间任务的追踪理论与应用研究[D].长沙:国防科学技术大学,2010.
    [189] Pavone M, Frazzoli E. Decentralized policies for geometric pattern formation andpath converge[J]. Journal of Dynamics Systems, Measurement, and Control,2007,129(5):633-640.
    [190]任仙海.航天器近距离观测任务规划研究[D].长沙:国防科技大学,2011.
    [191] Fehse W. Automated rendezvous and docking of spacecraft[M]. Cambridge:Cambridge University Press,2003.
    [192]黄圳圭.航天器姿态动力学[M].长沙:国防科技大学出版社,1997.
    [193]朱仁璋,林彦.航天器交会最终逼近段相对姿态估计与控制[J].北京航空航天大学学报,2007,33(5):544-548.
    [194] Scharf D P, Hadaegh F Y, Ploen S R. A survey of spacecraft formation flyingguidance and control (part II): control[C]. American Control Conference, Boston,Jul.2004:2976-2985.
    [195]韩京清.自抗扰控制技术——估计补偿不确定因素的控制技术[M].北京:国防工业出版社,2009.
    [196] Clohessy W, Wiltshire R. Terminal guidance system for satellite rendezvous[J].Aerospace Science Journal,1960,27(9):653-658.
    [197]吴忠,赵建辉.空间站姿态控制/动量管理系统设计与仿真[J].系统仿真学报,2006,18(1):151-154.
    [198]胡珊,袁建平,李文华.空间站姿态控制和动量管理研究[J].航天控制,2004,22(5):36-41.
    [199] Vadali S R, Oh H S. Space station attitude control and momentum management:a nonlinear look[J]. Journal of Guidance, Control, and Dynamics,1992,15(3):577-586.
    [200] Wu Z. Nonlinear control of attitude and momentum for space station[J]. ActaAeronautica ET Astronautica SINICA,2006,27(6):1155-1160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700